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Dynamic encoding of face information
in the human fusiform gyrus
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Humans’ ability to rapidly and accurately detect, identify and classify faces under variable

conditions derives from a network of brain regions highly tuned to face information. The

fusiform face area (FFA) is thought to be a computational hub for face processing; however,

temporal dynamics of face information processing in FFA remains unclear. Here we use

multivariate pattern classification to decode the temporal dynamics of expression-invariant

face information processing using electrodes placed directly on FFA in humans. Early FFA

activity (50–75ms) contained information regarding whether participants were viewing a

face. Activity between 200 and 500ms contained expression-invariant information about

which of 70 faces participants were viewing along with the individual differences in facial

features and their configurations. Long-lasting (500þms) broadband gamma frequency

activity predicted task performance. These results elucidate the dynamic computational

role FFA plays in multiple face processing stages and indicate what information is used in

performing these visual analyses.
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F
ace perception relies on a distributed network of inter-
connected and interactive regions that are strongly tuned to
face information1. One of the most face selective regions in

the brain is located in fusiform gyrus (the fusiform face area,
FFA). Damage to FFA results in profound impairments in face
recognition2, and the FFA is thought to be a processing hub for
face perception3. Recent studies have demonstrated that the FFA
activity contains information about individual faces invariant
across facial expression3 and gaze/viewpoint4, and have started to
describe some of the organizing principles of individual-level face
representations5–7. However, due to the use of low temporal
resolution analyses or imaging modalities, little is known
regarding the relative timing of when FFA becomes sensitive to
different aspects of face-related information. Specifically, face
processing is thought to occur through a set of partially distinct
stages8, and it remains unclear in which of these stages FFA
participates and, more generally, when they occur in the brain.

Evidence from FFA in humans and the putative analogue to
FFA in non-human primates has demonstrated that FFA shows
strong selectivity for faces versus non-face objects9–14. There is
disagreement about when exactly the FFA, and the human brain
in general, first responds selectively to faces15–17. In particular, it
is unknown when FFA becomes face selective relative to areas in
lateral occipital cortex15,16,18, relative to single neurons in the
cortex of non-human primates12–14,19 and relative to rapid
behavioural face detection20. A recent study using intracranial
electrocorticography (ECoG) showed that fusiform becomes
sensitive to the category of a visual object around 100ms after
stimulus onset21. However, the brain network highly tuned to face
information1 may allow faces to be processed more rapidly than
other categories of objects. Therefore, it remains unclear how
early FFA becomes face selective and whether it contributes to
face detection.

Regarding face individuation, ensembles of single neurons
responsive to individual faces have been identified in face-
sensitive cortical regions of the non-human primate
brain13,14,22,23. Studies with humans also show that FFA
encodes information about individual faces3,6. However, little is
known regarding the temporal dynamics of individual face
processing in FFA, particularly relative to other processing stages.

Furthermore, it remains unknown whether FFA is sensitive to
the key facial features used for face recognition, particularly the
eyes, mouth and configural face information. Single neurons of
middle face patch in the non-human primate (a putative homolog
of FFA) show sensitivity to external facial features (face aspect
ratio, direction, hair length and so on) and properties of the
eyes22. A recent ECoG study showed that FFA is sensitive to
global and external features of the face and head (face area, hair
area and so on)6. Behavioral studies have shown that the eyes are
the most important facial feature used for face recognition,
followed by the mouth24 and that configural and holistic
processing of faces is correlated with face recognition ability25.
It remains unknown whether FFA is sensitive to individual
differences in these featural and configural properties critical to
face recognition, particularly when changeable aspects of the face
(for example, expression) are taken into account.

Finally, how FFA contributes to task-related stages of
face processing is undetermined. Specifically, previous studies
have described a late, long-lasting (lasting many hundreds of
milliseconds) face specific broadband gamma frequency
(40þHz) activity6,26,27. Broadband gamma activity is closely
related to the underlying population firing rates28,29, both of
which are face selective for many hundreds of milliseconds after
seeing a face14,26,27, extending well beyond the timeframe of face
individuation seen in non-human primates14. It is unknown what
role this long-lasting activity plays in face processing. Here we

examine whether this long-lasting gamma band activity reflects
the maintenance of face information in support of perceptual
decision-making and working memory processes30,31.

We used intracranial ECoG in humans and multivariate
machine learning methods to document the temporal dynamics
of face information processing in the FFA from the moment a
face is first viewed through response-related processing. Multi-
variate pattern classification was used to decode the contents and
timecourse of information processing in FFA to elucidate the
dynamics and computational role of this area in face perception.
Electrophysiological activity (specifically the timecourse of the
single-trial voltage potentials and broadband gamma frequency
power) from the epileptically unaffected FFA was assessed, while
each of four patients (P1-4) participated in two face processing
experiments (see Fig. 1 for electrode locations; all face-sensitive
electrodes appear to be in mid-fusiform, lateral to the mid-
fusiform sulcus, see Weiner et al. [2014] for a detailed description
regarding the face-sensitive regions of the fusiform). Experiment
1 was adopted to examine the temporal dynamics of face
sensitivity and specificity in FFA (for example, face detection),
and experiment 2 was employed to examine the temporal
dynamics of face individuation and categorization invariant with
respect to facial expression. The results of these experiments
demonstrate that, within 75ms of presentation, FFA activity

P1 P2

P3 P4

Figure 1 | Locations of electrodes used in the study and their

neighbouring electrodes on subjects’ native pial surface reconstruction.

Electrodes in red denote the ones used in the experiment and electrodes in

white denote the other contacts on the same electrode strip. A high

resolution MRI was not available for pial surface reconstruction of P4, and

thus the electrode is visualized on a low resolution T1 MRI slice. MNI

coordinates of electrodes are as follows: P1—(35, � 59, � 22), (33, � 53,

� 22), (42, � 56, � 26); P2—(40, � 57, � 23); P3—(� 33, �44, � 31);

P4—(� 38, � 36, � 30). All electrodes are over the fusiform gyrus.
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encodes the presence of a face (face detection), between 200 and
450ms FFA activity encodes which face it is (face individuation),
and late (500þ ms) broadband gamma FFA activity encodes
task-related information about faces. These results demonstrate
the dynamic contribution of FFA to multiple, temporally distinct
face processing stages.

Results
Timecourse and magnitude of face sensitivity in FFA. To assess
the face sensitivity and specificity of FFA (experiment 1), we used
a k-nearest neighbours algorithm to decode the neural activity
while participants viewed six different categories of visual images:
faces, human bodies, houses, hammers, shoes and phase-scram-
bled faces (30 images per category, each repeated once, presented
in random order; faces, bodies and shoes were balanced for
gender; see Fig. 2a for examples). Participants pressed a button if
an image was repeated in consecutive trials (20% of trials, repe-
ated images were excluded from analysis). Each individual par-
ticipated in two sessions of experiment 1; one session from P4
was not used due to evidence of an ictal event during the
recording (a total of seven sessions across four participants). We
classified single-trial voltage potentials between 100 and 250ms
after stimulus presentation into one of the six categories described

above and examined the decoding accuracy using the signal
recorded from face-sensitive electrodes (see Methods for details
on electrode selection and Fig. 1 for locations). This time range
was selected for the initial analysis because it includes most of the
previously described face-sensitive electrophysiological respon-
ses9,15,26 (also see Fig. 2a,b). We were able to identify the category
of a stimulus presented on a given trial with 54–93% accuracy
across the seven sessions if the stimulus was a face (six-way
classification, chance¼ 16.7%). Neural activity for non-face
images was misclassified as a face in 0–8% across the sessions
(P1¼ 93/0%, 82/1%; P2¼ 88/8%, 54/8%; P3¼ 73/6%, 77/1%;
P4¼ 67/8%; true-positive rate/false-positive rate; chance¼ 16.7/
16.7%; Po10� 5 in each of the eight sessions). Little consistency
in classification accuracy was seen across sessions and
participants for the five other object categories (Supplementary
Table 1). In addition, in all participants electrodes 1-2 cm away
from the electrodes of interest showed little face-sensitive (peak
sensitivity index [d0] o1, Fig. 1 and Supplementary Fig. 1),
suggesting that face sensitivity was constrained within 1–2 cm.
The high sensitivity and specificity for face classification reported
here demonstrates that human FFA regions are strongly face
selective14,19.

Figure 2c shows the temporal dynamics of single-trial face
classification averaged across participants in FFA using the
sensitivity index (d0), which takes into account both the true- and
false-positive rate for face detection. Face sensitivity was seen in
FFA between B50 and 350ms after stimulus onset. To determine
the onset of face selective activity in FFA, we examined the d0 for
face classification from 0 to 100ms in 25ms moving windows
shifted by 12.5ms. All windows between 50 and 100ms showed
significant face sensitivity (Fig. 2d, 50–75ms: mean d0 ¼ 0.200,
t(3)¼ 3.13, P¼ 0.0260; 62.5–87.5ms: mean d0 ¼ 0.368,
t(3)¼ 3.72, P¼ 0.0169; 75–100ms: mean d0 ¼ 0.551, t(3)¼ 5.91,
P¼ 0.0048), earlier time windows did not reach statistical
significance. None of the other five categories, including phase
scrambled faces, showed significant classification in these time
windows. This suggests that this rapid face processing was not
driven by spatial frequency information17 as phase scrambled
faces contain the same spatial frequency content as intact faces.
The 50–75ms time window is earlier than human fusiform
becomes sensitive to other visual object categories21. However,
this time window is consistent with the reports of the earliest
face sensitivity in single cortical neurons in non-human
primates12–14,19 and rapid behavioural face detection20,
suggesting that FFA is involved in face detection.

Timecourse of individual-level face processing in FFA. In each
of two sessions recorded on separate days, P1-P4 were shown 70
different faces, each repeated five times with different facial
expressions each time (happy, sad, angry, fearful and neutral
expressions) for a total of 350 unique images. The participants’
task was to report the gender of each face they saw (50% male,
50% female faces). We used a nearest neighbour classification
algorithm to determine how accurately we could predict which
face (given two drawn from the set of faces) a participant was
viewing at a particular moment in session 1 based on a model
trained on the timecourse of the single-trial voltage potentials
from session 2. Session 2 was used as the training set and session
1 as the test set for this analysis to test classification on previously
unseen faces. In each of the four participants in experiment 2,
above chance intra-session classification of the neural response
to individual faces was observed (Fig. 3a, Po0.05 using a
permutation test, corrected for multiple time comparisons).
Classification accuracy peaked in P1 at 65% and was significant in
the 210–390ms time window, in P2 at 59% and was significant in
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Figure 2 | Dynamics of face selectivity in human FFA. (a) Example of

stimuli from each condition and event related potential (ERP) waveforms

from session 1 of P1. Across trial means are plotted and standard errors are

shaded in light colours. (b) Average ERP waveforms across the four

participants. In each participant a positive going face-sensitive peak

between 100 and 140ms and a negative going face-sensitive peak between

160 and 200ms could be identified. The timing of these peaks is consistent

with previous ERP studies of face processing9,15,26. (c) Face classification

accuracy over time as measured by d0 (n¼4, mean d0 plotted against the

beginning of the 100ms sliding window), which takes into account both the

true- and false-positive rate. Classification is based on single-trial voltage

potentials. See Supplementary Fig. 1 for individual subject d0 timecourses for

these electrodes and neighbouring electrodes. Standard deviations are

shaded grey. (d) Face classification accuracy in the first 100ms after

stimulus onset with 25ms windows. Classification is based on single-trial

voltage potentials. d0 scores in panels c and d differ due to the different

window sizes used for the respective analyses. s.d. values are shaded grey.
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the 280–460ms time window, in P3 at 63% and was significant in
the 270–490ms time window, and in P4 at 60% and was sig-
nificant in the 350–540ms time window (chance¼ 50%; 57%
corresponds to P¼ 0.05 corrected for multiple comparisons). In
addition, we examined whether individual-level face classification
was invariant over expression by training the classifier on four of
the five expressions and testing the other, then repeating this with
different expressions in the training and test set until each
expression (leave-one-expression-out cross-validation). In each
participant, above chance across-expression classification of the
neural response to individual faces was observed (Fig. 3b, Po0.05
using a permutation test, corrected for multiple time compar-
isons). This across-expression classification had a similar time-
course as the across-session classification in Fig. 3a, suggesting
that the coding for individual faces in FFA is not driven by low-
level differences between images and is at least partially invariant
over expression. Indeed, classification of expression failed to
reach statistical significance at any point between 0 and 500ms
(Supplementary Fig. 5). In addition, classification accuracy across
face genders was similar to classification within face gender
(Supplementary Fig. 6), suggesting that classification of individual
faces in FFA was not driven by task demands. Also, training with
the data from session 1 and classifying the data from session 2
changed the peak classification accuracy by o0.5%, the peak time
by o15ms and the significant time window by o25ms. Fur-
thermore, individual faces could not be classified above chance in
the adjacent or nearby electrodes (Supplementary Fig. 7). These
results suggest that the 200–500ms time window is critical for
expression-invariant face individuation in FFA.

Facial information used in service of face individuation. To
investigate what specific face information FFA encodes in the
service of face individuation, we mapped anatomical landmarks
on each of the faces presented in experiment 2 and projected each
face into an 18-dimensional ‘feature space’ that applied to all faces
(for example, eye area, nose length, mouth width, skin tone
and so on; see Fig. 4 for a full list of the features used)32.
The multivariate canonical correlation between these facial

feature dimensions and the voltage potentials between 200 and
500ms post-stimulus onset was then calculated to evaluate the
shared relationship between these variable sets. The full canonical
model between the neural activity and the face feature space
was significant in P1, P3 and P4 and approached significance in
P2 (P1: X2(171)¼ 211.33, Wilks’ l¼ 0.021, P¼ 0.019; P2:
X2(152)¼ 181.21, Wilks’ l¼ 0.045, P¼ 0.053; P3: X2(171)¼
230.93, Wilks’ lo0.001, P¼ 0.001; P4: X2(152)¼ 194.06, Wilks’
l¼ 0.03, P¼ 0.012) demonstrating that FFA activity is sensitive
to individual differences in these facial feature dimensions.
Only the full model was significant as none of the other
hierarchical statistical tests reached significance. Figure 4 presents
the normalized function weights for the full canonical model
demonstrating that the most relevant facial variables were related
to the eyes, the mouth, and the ratio between eye and mouth
dimensions. There are also notable differences across participants,
with P1 showing strong sensitivity to eye information and almost
no sensitivity to mouths and P4 showing strong sensitivity to
mouth information and less to eyes. It is unclear whether these
differences are due to different electrode locations (see Fig. 1),
random variation (as we do not have the power with only four
participants to statistically quantify these individual differences)
or different face processing strategies among participants. More
generally, we did not track eye movements and therefore cannot
relate our results to particular face processing strategies or
preclude FFA sensitivity to other internal or external facial
features6,22. Rather our results show that, under free viewing
conditions, FFA is tuned to natural variations in eye and mouth
feature dimensions and configural information relating the eyes
to the mouth in service of face individuation.

Broadband gamma activity predicts task performance. Finally,
we examined the role of the slowly decaying broadband gamma
power (40–90Hz) activity that has been shown to be face
sensitive6,26,27. The results from experiment 1 confirm that this
gamma activity shows strong selectivity for faces and also showed
that it lasts for the entire trial (Fig. 5a and Supplementary Fig. 8).
Experiment 1 was a working memory task, and one possible role
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Figure 3 | Face individuation in human FFA. (a) Time course of individual level face classification accuracy based on single-trial voltage potentials in

each participant. This shows, given two faces, how accurately we could predict which one the participant was viewing based on the neural data, plotted

against the beginning of the 100ms sliding window. Red line at 57% indicates P¼0.05, corrected for multiple time comparisons based on the permutation
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with a particular expression, how accurately we could predict which one the participant was viewing based on the neural data from the other four

expressions used in the study. Red line at 55.5% indicates P¼0.05, corrected for multiple time comparisons based on the permutation test, grey line

indicates chance accuracy (50%).
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for face-specific activity that persists for the entire trial is task-
related maintenance of face information that is manipulated by
frontal and/or parietal regions involved in working memory
and decision making30,31,33. In support of this hypothesis, in
repeated trials face activity decayed more rapidly than in first
presentations, potentially due to the release of task demands once
detection was accomplished. However, the relative paucity of
repeated face trials and decreased face activity due to repetition
suppression make interpreting these results difficult. Thus, to test
the hypothesis that broadband gamma frequency activity was
related to maintaining the face representation in support of task-
related processing, we examined the relationship between long-
lasting gamma activity and behavioural reaction time in
experiment 2. In support of a role in task-related processing,
the decay time of the gamma activity from 500 to 1,000ms after
stimulus presentation predicted reaction time in experiment 2.
Specifically, longer lasting gamma activity was significantly
correlated with slower response times (Po0.05) in the gender
identification task for each participant (Figs 5b and 6a). The
amplitude of this gamma band activity 100–300ms before
the response significantly predicted reaction time for each
participant, and this activity returned to baseline only once the
participants had responded and task demands had waned (Figs 5c
and 6b). While this gamma frequency power significantly
predicted reaction time, we were unable to decode the gender
decision of the participant from this activity. In summary, greater
than baseline, face-specific broadband gamma power was seen
until the point of behavioural response, and a larger gamma peak
and more rapid decay predicted more rapid decisions of face
gender, but this gamma activity did not predict behavioural
responses (that is, ‘male’ or ‘female’).

Discussion
Our results establish the timecourse of information processing in
human FFA and elucidate the specific computations FFA
performs on faces from the moment a face is first viewed
through decision-related processing. These results demonstrate
that FFA activity first contains face-specific information
B50–75ms after subjects viewed a face. FFA displays sharp face
sensitivity between 100 and 250ms, with little evidence for
selectivity for four other categories of non-face objects or phase
scrambled faces. Individual-level face information invariant over
facial expression could be decoded for previously unseen faces
between 200 and 500ms. During this same time window, the
neural activity from FFA contained information about individual
differences in eye and mouth features and the relative size of eyes
versus mouths, suggesting that the FFA uses this information to

individuate faces. Finally, late, long-lasting (500þms) gamma
frequency band activity (40–90Hz) predicted participants’ trial-
by-trial reaction times in a gender categorization task. Taken
together, these results reveal the highly dynamic role that FFA
plays in multiple distinct stages of face processing.

One caveat of the current work is that the input to all of our
analyses was the timecourse of FFA activity recorded from single
electrodes in each participant. The significant decoding demon-
strated in this analysis suggests that FFA displays at least a degree
of temporal encoding of face information34. However, the data we
report are only weakly sensitive to information that is primarily
coded spatially. Specifically, the data are differentially sensitive
to neural populations with different proximity or different
orientations relative to the electrodes. That said information
primarily encoded spatially is far less likely to be detected by our
analyses than information encoded temporally. Thus, lack of
significant classification (for example, for expression or the
gender decision) does not necessarily imply that FFA is not
sensitive to this information, but rather it is not coded temporally.

FFA is face sensitive in the 50–75ms time window. This time
window is as early (or earlier) as face sensitivity in lateral occipital
face-sensitive regions15,18 and is consistent with onset of face
sensitivity reported for single cortical neurons in non-human
primates12–14,19. Behaviourally, it has been shown that humans
can saccade towards a face within 100–150ms (ref. 20). The
decoding of face information in the 50–75ms time window
reported here is consistent with FFA playing a role in this rapid
face detection. The early face sensitivity of FFA reported here
provides strong evidence that this area is involved in face
detection.

A recent human ECoG study showed that category selective
activity is first observed in temporal cortex around 100ms after
stimulus onset21. Our results show that human FFA becomes face
sensitive in the 50–75ms window, suggesting that faces are
processed more rapidly in temporal cortex than other object
categories. Indeed, studies of single-neuron firing latencies in
non-human primates have reported that face sensitivity first
arises around the 50–75ms window12–14,19. This more rapid
processing of face information may be a result of the network of
areas highly tuned to face properties1. Future studies will be
required to determine whether non-face categories with highly
tuned perceptual networks (for example, words35 and bodies36)
are also processed more rapidly than other categories of objects.
One caveat is that the ECoG study by Liu et al.21 reported that the
100ms object category response in temporal cortex shows
invariance to viewpoint and scale changes and future studies
will be required to determine whether the 50–75ms FFA face-
sensitive response is invariant over these transformations as well.
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The time window critical for individual level classification
occurred between 200 and 500ms, after face sensitivity observed
in experiment 1 had mostly waned. One potential explanation
why face individuation occurred during a period where
face-specific activity is relatively weak is that individual level
face information may be represented by relatively few neurons
(sparse coding)37. Sparse coding would imply that relatively
few face-sensitive neurons were active and that the summed
face-related activity in this time period therefore would be weak.
However, the neurons that were active encode for individual level
face information, which would explain the significant decoding of
identity we report here. One point to note is that, while face-
specific voltage potentials had waned in this time period,
significant face-specific broadband gamma activity was observed
in the same time period as individual level face classification,
though it too was declining. To the extent that this broadband
gamma activity reflects single-neuron firing28,29, the decrease in
this activity potentially also supports a sparse coding hypothesis.
One caveat being that further studies are required to determine
whether the decrease in broadband gamma is due to less neurons
being active in this time period (sparse coding) or a decrease in
the firing rate.

Neuroimaging studies and lesion studies in patients have
implicated parts of anterior temporal cortex strongly connected
to the FFA38,39 as important to face individuation3,40,41.
Furthermore, a recent study suggested that FFA might act as a
hub of face identity processing and act in concert with these
anterior temporal face-sensitive regions3. The timewindow in
which we found individual-level face coding (200–500ms) is
generally consistent with the idea that recurrent top-down and
bottom-up interactions are likely to be critical to face
individuation. Note that in P3 and perhaps in P1 there are two
peaks of individual-level face classification. More data will be
required to statistically substantiate these two peaks; however, the
dual peaks suggest the possibility of a feedback loop involved in
face individuation.

Neural activity in FFA during the same time window when
significant individual-face decoding was observed (200–500ms)
displayed significant multivariate correlation to variation in the
eyes, mouth and eye-mouth ratio. Behavioural studies have
shown that the eyes are the most important facial feature used for
face recognition, followed by the mouth24 and that holistic and
configural face processing ability is correlated with face
recognition25. A recent study revealed that electrical stimulation
of FFA distorts the perception of facial features42. Furthermore,

previous studies have demonstrated the importance of the
presence of the eyes for face perception in general, and FFA
activity in particular43. Our results lend strong evidence to the
hypothesis that FFA uses individual differences in these facial
features in service of face individuation and recognition.

We show that FFA shows face-specific gamma frequency power
that lasts until task demands wane and that the amplitude of this
power predicts participants’ reaction times. Recent studies
demonstrate that long-lasting FFA gamma activity is modulated
by task-related attention to faces and facial expression26,27, in
support of the hypothesis that this activity is integral to task-
performance. While this activity did predict reaction time, it did
not predict the gender decision. This suggests that FFA supports
task-related processing, potentially by keeping face information
on-line, but decision-specific processing occurs elsewhere, likely in
frontal and parietal regions using the information from FFA30,31.
Indeed, a recent study challenged the view that frontal areas store
working memory and task-relevant information and suggested that
these areas instead control and manipulate information that is
stored elsewhere33. In the case of faces our results suggest that at
least some of this information is stored in FFA.

In summary, our results provide strong evidence that the FFA
is involved in three temporally distinct, but partially overlapping
processing stages: face detection, expression-independent indivi-
duation using facial features and their configuration, and task-
related gender classification. Information about these processing
stages was present in the recordings from electrodes within a 1 cm
radius in each participant suggesting that the same, or at least
very nearby, neural populations are involved in these multiple
information processing stages. A key open question is how
processing transitions between stages in these local neural
populations. One hypothesis is that the dynamics of these
processing stages are governed by interactions between multiple
regions of the face processing network. Taken together with
previous findings, the current results suggest a model in which
FFA contributes to the entire face processing sequence through
computational analysis of multiple aspects of face information at
different temporal intervals.

Methods
Subjects. The experimental protocols were approved by the Institutional Review
Board of the University of Pittsburgh. Written informed consent was obtained
from all participants.

Four human subjects underwent surgical placement of subdural electrode grids
and ventral temporal electrode strips as standard of care for surgical epilepsy
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localization. P1 was male, age 26, and had seizure onset in the hippocampus. P2
was female, age 30, and had seizure onset in the frontal lobe. P3 was female, age 30,
and had seizure onset in premotor cortex. P4 was male, age 65, and had seizure
onset in the hippocampus. None of the participants showed evidence of epileptic
activity on the FG electrode used in this study. The order of the participants
(P1–P4) is chronological, based on their recording dates.

Stimuli. In experiment 1, 30 images of faces (50% male), 30 images of bodies (50%
male), 30 images of shoes (50% mens’ shoes), 30 images of hammers, 30 images of
houses and 30 images of phase scrambled faces were used. Phase scrambled images
were created in Matlab by taking the two-dimensional spatial Fourier spectrum of
the image, extracting the phase, adding random phases, recombining the phase and
amplitude, and taking the inverse two-dimensional spatial Fourier spectrum. Each
image was presented in pseudorandom order and repeated once in each session.

Faces in experiment 2 were taken from the Karolinska Directed Emotional
Faces stimulus set44. Frontal views and five different facial expressions (happy, sad,
angry, fearful and neutral) from all 70 faces (50% male) in the database were used
for a total of 350 face images, each presented once in random order during a
session. Owing to time and clinical considerations, P3 was shown 40 faces (50%
male) from the database for a total of 200 faces each presented once in random
order during a session.

All stimuli were presented on an LCD computer screen placed B2m from
participants’ heads.

Experimental paradigms. In experiment 1, each image was presented for 900ms
with 900ms inter-trial interval during which a fixation cross was presented at the
centre of the screen (B10�� 10� of visual angle). At random, 20% of the time an
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image would be repeated. Participants were instructed to press a button on a button
box when an image was repeated (1-back). Only the first presentations of repeated
images were used in the analysis.

In experiment 2, each face was presented for 1,500ms with 500ms inter-trial
interval during which a fixation cross was presented at the centre of the screen.
Subjects were instructed to report whether the face was male or female via button
press on a button box. Each individual participated in two sessions of experiment 2
on different days.

Paradigms were programmed in Matlab using Psychtoolbox and custom written
code.

Data preprocessing. Data were collected at 2,000Hz. They were subsequently
bandpass filtered offline from 1 to 115Hz using a second order Butterworth filter to
remove slow and linear drift, the 120Hz harmonic of the line noise and high
frequency noise. Data were also notch filtered from 55 to 65Hz using a second
order Butterworth filter to remove line noise. To reduce potential artefacts in the
data, trials with maximum amplitude 5 s.d. values above the mean across the rest of
the trials were eliminated. In addition, trials with a change of 425mV between
consecutive sampling points were eliminated. These criteria resulted in the elim-
ination of o6% of trials in each subject.

Electrode localization. Coregistration of iEEG electrodes used the method of ref.
45. High resolution CT scans of patients with implanted electrodes are combined
with anatomical MRI scans before neurosurgery and electrode implantation. The
Hermes method accounts for shifts in electrode location due to the deformation of
the cortex by utilizing reconstructions of the cortical surface with FreeSurfer
software and co-registering these reconstructions with a high-resolution post-
operative CT scan. It should be noted that electrodes on the ventral surface
typically suffer minimal shift as compared with those located near the craniotomy.
A cortical surface reconstruction was not possible in P4 due to the lack of a high-
resolution MRI. Instead the high-resolution post-operative CT scan was
transformed into MNI space using a low resolution T1 MRI and the electrode
locations manually determined.

Electrode selection. Electrodes were chosen based on anatomical and functional
considerations. Electrodes of interest were restricted to those that were located
on the fusiform gyrus. In addition, electrodes were selected such that their peak
six-way face classification d0 score (see below for how this was calculated)
exceeded 1.5 and the ERP for faces was larger than the ERP for the other
object categories. To avoid concerns about circularity with regards to electrode
selection, only the data from the training set (odd trials, see below) for the
classification results reported were used for electrode selection. Thus, all statistical
values and classification accuracies reported for 6-way face classification are
derived from data independent of those used for electrode selection and classifier
training.

This procedure yielded one electrode per participant, except for P1 where it
yielded three nearby electrodes (see Supplementary Fig. 1). In the case of P1, we
averaged the signal from the three face-sensitive electrodes (all three electrodes are
shown in Fig. 1). For P2 the third electrode displayed a peak d041.5; however, in
examining the ERP it was evident that face classification accuracy in the third
electrode on the strip was due to lesser face activity relative to the other conditions
(see Supplementary Fig. 4). Face classification on the fourth electrode for P2 was
also above threshold and the activity in this electrode followed the pattern from
other subjects (for example, greater face activity relative to other conditions), thus
we chose this electrode. It should be noted that even if the anatomical restriction
was lifted and all electrodes were used, no additional electrodes would have been
chosen in any participant.

In addition to the four participants included in the study, six other individuals
participated in the experimental paradigm during the study period. None of these
individuals had any electrodes that met the selection criteria and thus were not
included in the analysis. In two of these individuals, there were no electrodes on
ventral temporal cortex. The electrode locations from the four excluded
participants with ventral temporal cortex electrodes are shown in Supplementary
Fig. 2. In one of these individuals, data quality was poor (excessive noise) for
unknown reasons (EP2, none of the electrodes showed any visual response and
were anterior to FFA). In three of these individuals, data quality was reasonable
and there were electrodes on ventral temporal cortex, yet none met the selection
criteria (see Supplementary Fig. 3). In one of the non-included participants one
electrode exceeded the d0 threshold (see Supplementary Fig. 3), but this was due to
lesser face activity relative to the other conditions (see Supplementary Fig. 4).
Considering the ventral electrode strips are placed without functional or
anatomical/visual guidance, a yield of 4/7 individuals with ventral strip electrodes
having electrodes placed over highly face selective regions is a substantial yield.

Experiment 1 classification analysis and statistics. For classification, single-trial
potentials were first split into odd trials used as the training set and even trials used
as the test set. The Euclidean distance between the time windowed data from each
of the test and each of the training trials was then calculated. The single-trial
potentials from the test trial were assigned to the stimulus condition with k-nearest

neighbours classifier. Alternatively, using the correlation (instead of Euclidean
distance) between the test and training sets, the results yielded were not sub-
stantively different. The selection of k was determined by finding the greatest d0 for
k-nearest neighbour classification based on random sub-sampling validation with
50 repeats using only the training set. True-positive and false alarm rates were
calculated across all of the test trials.

The d0 was calculated as Z (true-positive rate)—Z (false alarm rate), where Z is
the inverse of the Gaussian cumulative distribution function.

As training and test data were separated (rather than cross validation) and not
reversed (for example, the training and test sets were not switched), there is no
statistical dependence between the training and test sets and classification accuracy
follows the binomial distribution. The null hypothesis for statistical testing was that
the true-positive rate was equal to the false-positive rate under the binomial
distribution (this justifies the use of a one tailed t-test).

Experiment 2 classification analysis and statistics. To determine whether
information regarding individual faces was present in the timecourse of the single-
trial potentials, we used across sessions binary nearest neighbours classification (for
example, k¼ 1). Specifically, the neural responses for the five presentations (each
with a different facial expression) of two faces in the second session were used as
the training set. The test set was the average signal across the five presentations of
one of those faces in the first session. The Euclidean distance between the single-
trial potentials from the test face and each training face in a 100ms window was
calculated. The test neural activity was classified as belonging to the face that
corresponded to the neural activity in the training set that was closest to the neural
activity from the test trial. This procedure was then repeated for all possible pairs of
faces and all time windows slid with 5ms steps between 0 and 500ms after the
presentation of the face. It should be noted that single-trial classification was also
examined, and, while classification accuracy was lower, it was still as statistically
significant in each participant as when using the average activity across expressions
for the 70 face identities (statistical significance was higher due to the use of 350
individual trials instead of 70 averaged trials, which increased statistical power, 40
faces and 200 trials in P3).

In addition, cross-expression classification was also calculated using the same
classifier and time windows as above. In this case the neural response for the eight
presentations of four of the expressions (four expressions� two sessions) of two
faces were used as the training set. The test set was the average signal across the two
presentations of the remaining expressions for one of those faces in the first
session. This procedure was repeated for each pair of faces and with each
expression left out as the test set (for example, leave-one-expression-out cross-
validation). Note that, using cross-validation, instead of holdout validation as in the
cross-session classification, and analyzing the five expressions separately, lowered
the statistical threshold for this analysis.

Permutation testing was used for statistical testing of classification accuracy in
experiment 2. Specifically, the labels of the faces in each session were randomly
permuted. The same procedure as above was performed on these permuted trials.
The maximum classification accuracy across the 0–500ms time window was then
extracted. Using the maximum classification accuracy across the time window
implies a global null hypothesis over the entire window, which corrects for multiple
time comparisons46. The labels were randomly permuted again and this procedure
was repeated 500 times. Using this procedure, P¼ 0.05, corrected for multiple
comparisons, corresponded to a classification accuracy of B57% (±0.2% across
the four individuals).

Classification of the five facial expressions (Supplementary Fig. 5) was done
using k-nearest neighbours as in experiment 1.

Classification accuracy when the two training faces were the same gender or
when they were different gender was also compared in Supplementary Fig. 6. This
was done because participants’ task was gender classification and we wanted to
address the potential concern that neural classification for individual faces could
have been driven by task demands.

Facial feature analysis. Facial features were determined based on anatomical
landmarks found by IntraFace32. This toolbox marks 49 points on the face along
the eyebrows, down the bridge of the nose, along the base of the nose, and outlining
the eyes and mouth. On the basis of these landmarks we calculated the first 12
facial feature dimensions listed in Fig. 3b. Red, green and blue intensities were
calculated by taking the average intensity for these colours in two 20� 20 pixel
squares, one on each cheek, the bottom of which was defined to align with the
bottom of the nose and the middle to horizontally align with the middle of the eye.
High, middle and low spatial frequencies were determined by calculating the mean
power at different levels of a Laplacian pyramid47. The image was iteratively low-
pass filtered and subtracted from the original image to generate a six-level
Laplacian pyramid (from level 0 to level 5), similar to two-dimensional wavelet
decomposition. The level with smaller index contained higher frequency
components. By adding up in pairs, for example, level 0&1, level 2&3, level 4&5, we
get three images that corresponding to the high, mid and low frequency
components of the original image (note that if we add all six levels together we will
get the original image). We then performed a two-dimensional Fast Fourier
Transform for these three images to calculate the mean power for each of them.
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The values for these 18 feature dimensions were averaged across the five facial
expressions for each of the 70 faces (40 for P3). Finally, the values for each variable
were normalized by subtracting the mean and dividing by the s.d. across the 70
faces so that none would unduly influence the canonical correlation analysis.

Canonical correlation analysis. Canonical correlation analysis (CCA) finds the
maximally correlated linear combinations of two multidimensional variables48, in
this case variable one was the 18 facial feature dimensions and variable two was the
single-trial potentials between 200 and 500ms after stimulus onset. In brief, the
first canonical coefficients (a1m and b1n) of the face and neural variables (x1, x2, y,
xm and y1, y2, y, yn), respectively, are found by maximizing the correlation
between the canonical variables (W1 and V1) defined by:

W1 ¼ a11x1 þ a12x2 þ . . . þ a1mxm ð1Þ

V1 ¼ b11y1 þ b12y2 þ . . . þ b1nyn ð2Þ
This procedure is then repeated for W2 and V2 to Wp and Vp where

P¼min(m,i) and all Ws are uncorrelated to one another and all Vs are
uncorrelated to find subsequent canonical coefficients and functions. Significance
of Wilks’ l (the multivariate generalization of the inverse of R2) was based on the
chi-squared statistic.

In the presence of noise, CCA is prone to overfit the data unless the number
of samples substantially exceeds the dimensionality of the data. To reduce the
dimensionality of the neural data, we performed a principal components analysis
(PCA) on the faces� timepoints data (70 faces� 300 time points) and used the
first N eigenvalues as the neural dimensions in the CCA. The number of
eigenvalues (N) was chosen such that they accounted for 90% of the variance in the
neural data. This yielded nine eigenvalues for P1, eight for P2, nine for P3 and eight
for P4.

Gamma band analysis and statistics. Time-frequency power spectra were
calculated using a Fourier transform with a Hanning window taper calculated with
a 200ms sliding window and 2Hz frequency step for each trial. The peak frequency
in the gamma range for all trials in experiment 1 collapsed across conditions and
subjects was found to be 65Hz, and a window of þ /� 25Hz around this peak was
used as the frequency window of interest. Trials in experiment 2 were ranked by
reaction time (RT) and split into fastest, middle and slowest thirds according to RT.
In addition, Spearman’s rho between RT and gamma power across trials was
calculated. Spearman’s rho was used to minimize the potential for outliers skewing
the correlation, though it should be noted that Pearson’s correlation and Spear-
man’s rho did not substantially differ in any participants and both were significant
in all runs and participants.

References
1. Haxby, J. V., Hoffman, E. A. & Gobbini, M. I. The distributed human neural

system for face perception. Trends Cogn. Sci. 4, 223–233 (2000).
2. Barton, J. J., Press, D. Z., Keenan, J. P. & O’Connor, M. Lesions of the fusiform

face area impair perception of facial configuration in prosopagnosia. Neurology
58, 71–78 (2002).

3. Nestor, A., Plaut, D. C. & Behrmann, M. Unraveling the distributed neural code
of facial identity through spatiotemporal pattern analysis. Proc. Natl Acad. Sci.
USA 108, 9998–10003 (2011).

4. Anzellotti, S., Fairhall, S. L. & Caramazza, A. Decoding representations of face
identity that are tolerant to rotation. Cereb. Cortex 24, 1988–1995 (2014).

5. Cowen, A. S., Chun, M. M. & Kuhl, B. A. Neural portraits of perception:
reconstructing face images from evoked brain activity. Neuroimage 94, 12–22
(2014).

6. Davidesco, I. et al. Exemplar selectivity reflects perceptual similarities in the
human fusiform cortex. Cereb. Cortex 24, 1879–1893 (2014).

7. Goesaert, E. & Op de Beeck, H. P. Representations of facial identity information
in the ventral visual stream investigated with multivoxel pattern analyses.
J. Neurosci. 33, 8549–8558 (2013).

8. Bruce, V. & Young, A. Understanding face recognition. Br. J. Psychol. 77(Pt 3):
305–327 (1986).

9. Allison, T., Puce, A., Spencer, D. D. & McCarthy, G. Electrophysiological
studies of human face perception. I: Potentials generated in occipitotemporal
cortex by face and non-face stimuli. Cereb. Cortex 9, 415–430 (1999).

10. Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: a module
in human extrastriate cortex specialized for face perception. J. Neurosci. 17,
4302–4311 (1997).

11. McCarthy, G., Puce, A., Gore, J. C. & Allison, T. Face-specific processing in the
human fusiform gyrus. J. Cogn. Neurosci. 9, 605–610 (1997).

12. Perrett, D. I., Rolls, E. T. & Caan, W. Visual neurones responsive to faces in the
monkey temporal cortex. Exp. Brain Res. 47, 329–342 (1982).

13. Sugase, Y., Yamane, S., Ueno, S. & Kawano, K. Global and fine information
coded by single neurons in the temporal visual cortex. Nature 400, 869–873
(1999).

14. Tsao, D. Y., Freiwald, W. A., Tootell, R. B. & Livingstone, M. S. A cortical
region consisting entirely of face-selective cells. Science 311, 670–674 (2006).

15. Itier, R. J. & Taylor, M. J. N170 or N1? Spatiotemporal differences
between object and face processing using ERPs. Cereb. Cortex 14, 132–142
(2004).

16. Pitcher, D., Goldhaber, T., Duchaine, B., Walsh, V. & Kanwisher, N. Two
critical and functionally distinct stages of face and body perception. J. Neurosci.
32, 15877–15885 (2012).

17. Rossion, B. & Caharel, S. ERP evidence for the speed of face categorization in
the human brain: disentangling the contribution of low-level visual cues from
face perception. Vision Res. 51, 1297–1311 (2011).

18. Pitcher, D., Charles, L., Devlin, J. T., Walsh, V. & Duchaine, B. Triple
dissociation of faces, bodies, and objects in extrastriate cortex. Curr. Biol. 19,
319–324 (2009).

19. Baylis, G. C., Rolls, E. T. & Leonard, C. M. Selectivity between faces in the
responses of a population of neurons in the cortex in the superior temporal
sulcus of the monkey. Brain Res. 342, 91–102 (1985).

20. Crouzet, S. M., Kirchner, H. & Thorpe, S. J. Fast saccades toward faces: face
detection in just 100 ms. J. Vis. 10, 16 11-17 (2010).

21. Liu, H., Agam, Y., Madsen, J. R. & Kreiman, G. Timing, timing, timing: fast
decoding of object information from intracranial field potentials in human
visual cortex. Neuron 62, 281–290 (2009).

22. Freiwald, W. A., Tsao, D. Y. & Livingstone, M. S. A face feature space in the
macaque temporal lobe. Nat. Neurosci. 12, 1187–1196 (2009).

23. Leopold, D. A., Bondar, I. V. & Giese, M. A. Norm-based face encoding by
single neurons in the monkey inferotemporal cortex. Nature 442, 572–575
(2006).

24. Haig, N. D. Exploring recognition with interchanged facial features. Perception
15, 235–247 (1986).

25. DeGutis, J., Wilmer, J., Mercado, R. J. & Cohan, S. Using regression to measure
holistic face processing reveals a strong link with face recognition ability.
Cognition 126, 87–100 (2013).

26. Engell, A. D. & McCarthy, G. The relationship of gamma oscillations and face-
specific ERPs recorded subdurally from occipitotemporal cortex. Cereb. Cortex
21, 1213–1221 (2011).

27. Kawasaki, H. et al. Processing of facial emotion in the human fusiform gyrus.
J. Cogn. Neurosci. 24, 1358–1370 (2012).

28. Manning, J. R., Jacobs, J., Fried, I. & Kahana, M. J. Broadband shifts in local
field potential power spectra are correlated with single-neuron spiking in
humans. J. Neurosci. 29, 13613–13620 (2009).

29. Ray, S. & Maunsell, J. H. Network rhythms influence the relationship between
spike-triggered local field potential and functional connectivity. J. Neurosci. 31,
12674–12682 (2011).

30. Freedman, D. J., Riesenhuber, M., Poggio, T. & Miller, E. K. A comparison of
primate prefrontal and inferior temporal cortices during visual categorization.
J. Neurosci. 23, 5235–5246 (2003).

31. Shadlen, M. N. & Newsome, W. T. Neural basis of a perceptual decision in the
parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86, 1916–1936
(2001).

32. Xiong, X. & De la Torre, F. Supervised descent method and its application to
face alignment. IEEE CVPR (2013).

33. Lara, A. H. & Wallis, J. D. Executive control processes underlying multi-item
working memory. Nat. Neurosci. 17, 876–883 (2014).

34. Richmond, B. J., Optican, L. M., Podell, M. & Spitzer, H. Temporal encoding of
two-dimensional patterns by single units in primate inferior temporal cortex. I.
Response characteristics. J. Neurophysiol. 57, 132–146 (1987).

35. Behrmann, M. & Plaut, D. C. Distributed circuits, not circumscribed centers,
mediate visual recognition. Trends Cogn. Sci. 17, 210–219 (2013).

36. Peelen, M. V. & Downing, P. E. The neural basis of visual body perception. Nat.
Rev. Neurosci. 8, 636–648 (2007).

37. Young, M. P. & Yamane, S. Sparse population coding of faces in the
inferotemporal cortex. Science 256, 1327–1331 (1992).

38. Pyles, J. A., Verstynen, T. D., Schneider, W. & Tarr, M. J. Explicating the face
perception network with white matter connectivity. PLoS ONE 8, e61611
(2013).

39. Thomas, C. et al. Reduced structural connectivity in ventral visual cortex in
congenital prosopagnosia. Nat. Neurosci. 12, 29–31 (2009).

40. Collins, J. A. & Olson, I. R. Beyond the FFA: The role of the ventral
anterior temporal lobes in face processing. Neuropsychologia 61C, 65–79
(2014).

41. Kriegeskorte, N., Formisano, E., Sorger, B. & Goebel, R. Individual faces elicit
distinct response patterns in human anterior temporal cortex. Proc. Natl Acad.
Sci. USA 104, 20600–20605 (2007).

42. Parvizi, J. et al. Electrical stimulation of human fusiform face-selective regions
distorts face perception. J. Neurosci. 32, 14915–14920 (2012).

43. McCarthy, G., Puce, A., Belger, A. & Allison, T. Electrophysiological
studies of human face perception. II: Response properties of face-specific
potentials generated in occipitotemporal cortex. Cereb. Cortex 9, 431–444
(1999).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6672 ARTICLE

NATURE COMMUNICATIONS | 5:5672 | DOI: 10.1038/ncomms6672 | www.nature.com/naturecommunications 9

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications
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