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Structural basis for trypanosomal haem
acquisition and susceptibility to the host
innate immune system
Kristian Stødkilde1, Morten Torvund-Jensen1, Søren K. Moestrup1 & Christian B.F. Andersen1

Sleeping sickness is caused by trypanosome parasites, which infect humans and livestock

in Sub-Saharan Africa. Haem is an important growth factor for the parasites and is

acquired from the host by receptor-mediated uptake of haptoglobin (Hp)–haemoglobin (Hb)

complexes. The parasite Hp–Hb receptor (HpHbR) is also a target for a specialized innate

immune defence executed by trypanosome-killing lipoprotein particles containing an

Hp-related protein in complex with Hb. Here we report the structure of the multimeric

complex between human Hp–Hb and Trypanosoma brucei brucei HpHbR. Two receptors

forming kinked three-helical rods with small head regions bind to Hp and the b-subunits of Hb

(bHb), with one receptor at each end of the dimeric Hp–Hb complex. The Hb b-subunit

haem group directly associates with the receptors, which allows for sensing of

haem-containing Hp–Hb. The HpHbR-binding region of Hp is conserved in Hp-related protein,

indicating an identical recognition of Hp–Hb and trypanolytic particles by HpHbR in human

plasma.
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S
leeping sickness is caused by infection of humans and
livestock by various forms of Trypanosoma brucei (T.b.)
parasites and is a major health and socio-economical

problem in large areas of Sub-Saharan Africa1. The parasites are
protozoan hemoflagellates transmitted by tsetse flies to the host
blood where they proliferate. Evasion of the host immune system
is achieved by antigenic variation, in which a coating of variable
surface glycoproteins (VSGs) on the parasite surface is constantly
changing within the population2,3. Trypanosomes are deficient in
haem biosynthesis and require uptake of exogenous haem4. Haem
acquisition is mediated by the haptoglobin (Hp)–haemoglobin
(Hb) receptor (HpHbR) located in the flagellar pocket of the
parasite5. The receptor recognizes and takes up the Hp–Hb
complex formed in the host’s bloodstream when Hb is released
from erythrocytes during haemolysis. The trypanosome parasites
themselves are reported to possess haemolytic activity6. This
allows the parasite to steal the haem groups from Hb for
incorporation into its own haemoproteins5. HpHbR is a 37-kDa
receptor5 structurally related to the glycophosphatidylinositol (GPI)-
anchored trypanosomal VSGs7 and the glutamic acid/alanine-rich
protein, GARP, which replaces the VSGs in the tsetse midgut8.
On the other hand, HpHbR is completely different from the
mammalian Hp–Hb receptor, CD1639. Besides its role in haem
acquisition, HpHbR is also a target for primate innate immunity
against certain trypanosome species10. In humans this is achieved
through the action of trypanolytic particles (TLF1 or TLF2) that
contain the primate-specific apolipoprotein L1 and Hp-related
protein (Hpr)11–13. Hpr is a gene duplication product highly
homologous to Hp14. TLF1 particles enter the parasite via HpHbR-
mediated uptake15. The uptake of TLF1 requires Hb, which interacts
with Hpr to form an Hpr–Hb complex16. As HpHbR, in contrast to
CD163, also recognizes Hpr–Hb5, the entire TLF1 particle is
endocytosed by the parasite17. Subsequently, apolipoprotein L1
forms a pore in the lysosomal membrane leading to a lethal release
of lysosomal content into the parasite cytosol18–21. The two human
pathogenic subspecies Trypanosoma brucei rhodesiense (T.b.
rhodesiense) and Trypanosoma brucei gambiense (T.b. gambiense)
express resistance proteins counteracting apolipoprotein L1 activity
enabling these parasite strains to evade the lethal action of TLF
particles22–25. T.b. gambiense also exhibits low-level HpHbR
expression26 and harbours a L210S substitution in HpHbR,
leading to reduced TLF1 uptake7,27,28. These defence mechanisms
are not present in the widespread Trypanosoma brucei brucei (T.b.
brucei) subspecies, which is highly infectious in many non-primate
species that do not express Hpr and apolipoprotein L.

To investigate the mechanism of trypanosomal haem acquisi-
tion by HpHbR and its role in human immunity, we have
determined the structure of the T.b. brucei HpHbR in complex
with human Hp–Hb. The structure reveals an unexpected haem-
sensing mechanism of HpHbR that appears conserved in
trypanosome species. Furthermore, we show that the Hp–Hb
epitope recognized by HpHbR is identical in TLF-associated
Hpr–Hb, which explains the inability of trypanosomes to
distinguish between the beneficial Hp–Hb and the lethal TLF1
particle.

Results
Structure determination. For structural and functional analysis
of the Hp–Hb–HpHbR complex, we purified Hp and Hb from
human blood, while HpHbR (residues 36–378) was expressed in
the yeast Pichia pastoris. Initial crystallization trials of the com-
plex were unsuccessful. However, when the Hb-binding NEAT1
domain of Staphylococcus aureus IsdH was added to the complex,
crystallization was achieved and data extending to 3.1 Å resolu-
tion were collected (Table 1; Supplementary Fig. 1). The IsdH

fragment appears to stabilize the complex and promote crystal
formation by introducing crystal contacts (Supplementary Fig. 2).
IsdH NEAT1 interacts exclusively with the a-subunit of Hb
(aHb) and is located distal to the receptor interface.

Structure of the Hp–Hb–HpHbR complex. Hp (isoform 1) is a
bivalent molecule owing to the association of its complement
control protein (CCP) domains29. Each Hp moiety forms a tight
interaction with an abHb-dimer via its serine protease-like (SP)
domain and the Hp–Hb complex has a barbell-like structure with
abHb loaded at the ends30,31. Our structure reveals that the
dimeric Hp–Hb is recognized by two HpHbR receptors
interacting with both the Hp SP domains and the b-subunits of
Hb (Fig. 1a,b). The receptors are oriented perpendicular to the
longitudinal axis of the Hp–Hb dimer with the membrane-
associated ends pointing in the same direction, showing that two
receptors are capable of cross-linking the ligand on the surface of
trypanosome parasites. This avidity effect is likely to substantially
increase the functional affinity of the interaction. A model of
trimeric Hp(isoform 2)–Hb30 bound to HpHbR supports that
higher multimers of Hp–Hb that are present in humans carrying
the Hp2 gene can also bind multiple receptors on the parasite
surface (Supplementary Fig. 3). These multimers may have even
higher functional affinity for the receptors.

Table 1 | Data collection of refinement statistics.

Hp–Hb–HpHbR–IsdH NEAT 1

Data collection
Space group P21

Cell dimensions
a, b, c (Å) 143.23, 140.95, 267.18
a, b, g (�) 90, 98.5, 90

Resolution (Å) 29-3.1(3.18-3.10)*
Rsym 16.0 (99.9)
I/sI 7.2 (1.44)

Completeness (%) 96.5 (95.3)
Redundancy 2.8 (2.7)

Refinement
Resolution (Å) 29-3.1
No. reflections 182,377
Rwork/Rfree 25.5/27.1

No.of atoms
Protein 46,602
Ligand/ion 1,142

B-factors (Chains A–J)
Protein 75.79
Ligand/ion 76.64

B-factors (Chains K–T)
Protein 77.78
Ligand/ion 81.70

B-factors (Chains U–AD)
Protein 90.58
Ligand/ion 98.01

R.m.s d.
Bond lengths (Å) 0.011
Bond angles (�) 1.552

Hb, haemoglobin; HpHbR, Hp–Hb receptor; Hp, haptoglobin.
*Highest-resolution shell is shown in parenthesis.
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HpHbR residues 36–296 adopt a rod-like structure with a
length of 110Å and approximate diameter of 15Å (Fig. 1c,d). It is
composed of three long helices (I, II and VI) with two small
helices (III and IV) forming a bulging head region at the
membrane-distal end. No electron density is observed for the
C-terminal region (residues 297–378), which is linked to the
membrane via a GPI anchor, indicating a flexible or disordered
structure. A single disulphide bridge (Cys49–Cys197) connects
helices I and III and thereby provides stability to the head region.
The structure of T.b. brucei HpHbR is highly similar to the
recently described structure of T. congolense HpHbR7(Fig. 1d)
and 202 Ca atoms can be superimposed with a r.m.s.d. of only
2.2 Å. However, the two structures differ in the conformation of
the membrane-associated end. T.b. brucei HpHbR has a bent
conformation due to kinking of helices I, II and VI, whereas T.
congolense HpHbR has a straight conformation. Furthermore, the
C-terminal extension (T.b. brucei HpHbR residues 297–378) is
substantially shorter in T. congolense HpHbR (residues 272–275)
(Fig. 1d,e). The difference in length may correlate with difference
in thickness of the VSG coat in T.b. brucei and T. congolense,
allowing both receptors to extend above the VSGs for interaction
with Hp–Hb7.

Binding interfaces. The Hp–Hb–HpHbR structure also for the
first time reveals the structure of the human Hp–Hb complex that

has previously failed to form high-resolution diffracting crys-
tals32. The human Hp–Hb is essentially similar to the recently
determined porcine Hp–Hb complex30 with two CCP domains
merging into a CCP fusion domain via b-strand swapping
(Fig. 1a). Hp–Hb binds along the side of HpHbR and
interacts primarily with residues from helices I and II (Fig. 2a;
Supplementary Fig. 4). The Hp-binding site on HpHbR is formed
by residues from helix I (residues 68–85) and two residues from
helix VI (residues 256 and 259), whereas the bHb-binding site is
formed by residues from both helix I (residues 56–70) and helix II
(residues 157–165) (Fig. 2a; Supplementary Fig. 4). Furthermore,
residues from the loop region between helices III and IV (residues
200–202) also contact bHb. The interface between HpHbR and
Hp buries a 1,618-Å2 surface area, whereas the interface between
HpHbR and bHb buries 1,491Å2. In total, the interaction
between Hp–Hb and HpHbR buries a 3,013-Å2 surface area.

Several surface-exposed loops from Hp are involved in binding
to HpHbR. These are exclusively located in the second b-barrel
subdomain of the serine protease-like domain, except for a single
residue in the C-terminal part of the Hp a-chain (Asn157). In
addition to van der Waals contacts, electrostatic interactions are
formed between Hp Lys270 and HpHbR Glu259, Hp Asp305 and
HpHbR Lys85 and Hp Glu365 and HpHbR Lys256 (Fig. 2c;
Supplementary Fig. 4). Hydrogen bonds are formed between Hp
Asn157 and the main chain carbonyl of Thr68 and between Hp
Lys345 and HpHbR Ser73. Also, the main chain carbonyl of
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Figure 1 | Crystal structure of the Hp–Hb–HpHbR complex. (a) Cartoon representation of human Hp–Hb bound to T.b. brucei HpHbR. Dimeric Hp is shown

in blue, with complement control protein (CCP) domains forming a CCP fusion domain and the serine protease-like (SP) domain of Hp interacting

with Hb and HpHbR. aHb and bHb are shown in orange and HpHbR in green. The haemoglobin-binding Staphylococcus aureus IsdH NEAT1 domain

(shown in transparent grey cartoons) was used as stabilizer in the crystallization process. Haem prosthetic groups are shown as dark-grey sticks with Fe

atoms as red spheres. Glycosylations are shown as light-grey sticks and disulphide bridges as yellow sticks. (b) As in a with the view rotated by 90�.
(c) Final 2mFo–DFc electron density map of one HpHbR receptor of the Hp–Hb–HpHbR crystal structure, displayed at 1.5s contour level (black mesh).

(d,e) Comparison of T.b. brucei HpHbR (d) and T. congolense HpHbR (PDB code 4E40) (e). Helix I is coloured blue, helix II green, helix III yellow,

helix IV orange, helix V purple and helix VI red.
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Gly276 forms a hydrogen bond with HpHbR Gln75. HpHbR
recognizes residues from bHb helices C, E and F. From bHb helix
C, Arg40 engages in electrostatic interactions with HpHbR Glu70
(Fig. 2d; Supplementary Fig. 4), whereas the main chain carbonyl
of C-helix residue Ser44 forms a hydrogen bond with HpHbR
Ser161. Lys59 from bHb helix C forms electrostatic interactions
with HpHbR Glu165 and a hydrogen bond with HpHbR Ser161.
From bHb F-helix, Lys95 form electrostatic interactions with
HpHbR Glu57 and a hydrogen bond with the main chain
carbonyl of HpHbR Ser202 (Fig. 3a; Supplementary Fig. 4).

Haem-sensing mechanism of HpHbR. HpHbR specifically
recognizes the bHb haem prosthetic group via electrostatic
interactions between the two basic HpHbR residues Lys56 and
Lys164 and the 7-propionate side chain of the haem group
(Fig. 3a; Supplementary Fig. 5). HpHbR Lys164 coordinates the
carboxylate of the haem 7-propionate side chain with a distance
of 2.9 Å, whereas the distance between Lys56 and the carboxylate
is 3.5 Å. To test the significance of the HpHbR recognition of the
bHb haem group, we prepared samples of apoHb (without haem)
by acid acetone precipitation of native human Hb
(Supplementary Fig. 6). Similar to native haem-containing Hb,
apoHb forms a stable complex with Hp. Using surface plasmon
resonance (SPR) with immobilized HpHbR, we show that Hp–
apoHb binding to HpHbR is significantly reduced compared with
native Hp–Hb (Fig. 3b). However, when hemin is added to Hp–
apoHb the binding to HpHbR is partly restored. These results
indicate that the interaction between the haem 7-propionate side
chain and HpHbR is important for ligand binding. To further test
this hypothesis, we mutated HpHbR residues Lys56 and Lys164
that interact directly with the 7-propionate side chain. The
HpHbR K164A mutation shows the same binding properties to
immobilized Hp–Hb as wild-type HpHbR, whereas the K56A
mutation significantly reduces Hp–Hb affinity (Fig. 3c). These
results show that both presence of haem on Hb and HpHbR
Lys56 are important for the interaction between Hp–Hb and
HpHbR, suggesting that direct recognition of the bHb haem
group may be of functional importance for haem acquisition by
trypanosome parasites. Although Lys164 is located closer to the
haem 7-propionate side chain than Lys56 and may engage in a

stronger interaction, our results show that it is not important for
the interaction between Hp–Hb and HpHbR. HpHbR Ser59
possibly forms a hydrogen bond with the haem 7-propionate side
chain, however, its electron density is not well defined suggesting
a flexible conformation (Supplementary Fig. 5). Furthermore, the
HpHbR S59A mutant shows no decrease in Hp–Hb affinity
(Supplementary Fig. 7), indicating no functional significance of
Ser59.

Reduced Hp–Hb affinity of T.b. gambiense HpHbR. A single
amino-acid difference in T.b. gambiense HpHbR (Ser210) com-
pared with T.b. brucei HpHbR (Leu210) leads to reduced affinity
for human Hp–Hb and Hpr–Hb7,27,28. In combination with low-
level expression of HpHbR26 and the protective effect of TgsGP22,
this evolutionary amino-acid substitution contributes to T.b.
gambiense resistance against the human TLF particles. In T.b.
brucei, Leu210 is positioned in HpHbR helix IV and its side chain
is packed in the hydrophobic core of the head region (Fig. 4).
Substitution of leucine to serine at this position probably leads to
an overall destabilization of the head region. In addition, HpHbR
Leu210 is located only 8Å from Lys56. Hence the L210S
substitution may directly affect the structural properties of
Lys56 and consequently the interaction with Hp–Hb and Hpr–
Hb associated with TLF particles.

Discussion
Trypanosome parasites are experts in host immune system
avoidance due to the VSGs that cover their surface. Only one
form of VSG is expressed at a time, but the VGSs are constantly
changing within the parasite population by means of gene
conversion3, allowing the parasite to escape the adaptive immune
system of the host. The VSGs forms an B150-Å-thick tightly
packed monolayer that prevents immunoglobulin recognition of
epitopes embedded in the layer33–35. To bind and endocytose
Hp–Hb or TLF particles, it has been suggested that HpHbR
extends above the VSG layer7. In this paper, we present the
structure of T.b. brucei HpHbR in complex with Hp–Hb, showing
the exact binding site of Hp–Hb along the side of HpHbR. The
Hp–Hb-binding site is located B55Å from the C-terminal end of
HpHbR helix VI, which is connected to the membrane via an 82
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amino-acid linker and a GPI anchor. We do not observe any
electron density for this C-terminal linker region, probably
because it is highly flexible. For the Hp–Hb-binding site to be
presented above the VSG layer, the C-terminal linker region must
span a distance of 495Å. Considering the large number of
amino acids constituting the linker, a length of 95Å is achievable.
With a ligand-binding region protruding from the VSGs a large
part of HpHbR will be accessible from the host’s bloodstream
and make the parasite susceptible to immunoglobulin attack.
However, restricted access to the flagellar pocket where HpHbR is
located and rapid endocytosis followed by antibody degradation
may protect the parasite.

Our structural analysis identified an unexpected interaction
between HpHbR and the prosthetic haem group bound to bHb.
Two HpHbR lysine residues Lys56 and Lys164 both engage in
electrostatic interactions with the 7-propionate side chain of bHb
haem. Affinity quantification by SPR analysis showed that
mutation of Lys56 and removal of haem from Hb had a
significant effect on binding, while mutation of Lys164 had no
effect. On the basis of these results, we propose that HpHbR
Lys56 serves as a haem sensor that enables HpHbR to
discriminate between haem-associated Hp–Hb complexes and
the corresponding apoprotein. Sequence conservation in an
alignment of HpHbR from T. vivax, T. congolense and T.b.
brucei mapped on the surface of HpHbR, shows moderate
conservation among the three species (Fig. 5a; Supplementary
Fig. 8). This includes the Hp–Hb-binding interface. However, the
three residues Ser59, Lys164 and Asp168 are strictly conserved
within the three species, whereas Lys56 is replaced by an alanine
in T. congolense HpHbR or a serine in T. vivax HpHbR. Thus, the
important role of T.b. brucei HpHbR Lys56 in ligand recognition
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is not conserved among trypanosome species. In T. congolense,
HpHbR residues Ser59, Lys164 and Asp168 (Ser52, Lys153 and
Asp157 in T. congolense HpHbR) are all essential for interaction
with HpHbR7. Hence, it appears that the haem-sensing function
of Lys56 may have shifted to Lys164 in T. congolense and T. vivax
HpHbR. The essential roles of Ser59 and Asp168 in T. congolense
HpHbR can be explained by their coordination of Lys164, which
may stabilize the position of Lys164 and promote its interaction
with the haem 7-propionate side chain (Fig. 5b). T.b. brucei
HpHbR Ser59 coordinate Lys56 indicating a similar function of
Ser59 in T.b. brucei and T. congolense. However, this is
contradicted by our data showing that the S59A mutation in
T.b. brucei HpHbR does not decrease its affinity for Hp–Hb. The
specific role of T.b. brucei Asp168 in Hp–Hb binding could not be
analysed, as the D168A mutant renders the protein unstable.

To our knowledge, HpHbR is the first identified endocytic
receptor that directly senses the presence of a prosthetic group
within a carrier protein. Other endocytic receptors are able to
detect prosthetic groups bound to their ligands, but in an indirect
way. The mammalian endocytic receptor cubam that via its
cubilin subunit is responsible for intestinal uptake of vitamin B12,
a metal-binding haem-like tetrapyrrole, only recognizes the
carrier protein, intrinsic factor, when it is in complex with
vitamin B12 (ref. 36). In this case vitamin B12 indirectly promotes
interaction with cubilin by locking the intrinsic factor in a specific
conformation that allows a dual-point interaction with cubilin37.

HpHbR is, as mentioned, also targeted by the human innate
immune system via Hpr, which is incorporated in the trypano-
some-killing TLFs. The gene encoding Hpr has arisen by a
duplication of the Hp gene in primate evolution38. The Hpr
amino-acid sequence is 91% identical to Hp, and the two proteins
are predicted to have nearly identical three-dimensional
structures30. Despite their structural similarity and common
ability to bind Hb, Hp and Hpr serve quite different biological
functions. Hp is responsible for binding and neutralizing the toxic
Hb released from red blood cells and subsequent scavenging by
macrophages via its interaction with the receptor CD163
(refs 9,39), whereas Hpr in complex with Hb mediates delivery
of toxic TLF particles to trypanosome parasites16,17.

Our data reveal, in atomic detail, the interaction between Hp
and HpHbR, and an alignment of Hp and Hpr shows that
residues interacting with HpHbR are conserved (Fig. 6a;
Supplementary Fig. 9). Therefore, Hp–Hb and Hpr–Hb most
likely form identical interactions with HpHbR, and the structure
of the Hp–Hb–HpHbR complex therefore applies to both the
haem acquisition mechanism and the human innate immunity
against trypanosome parasites (Fig. 6b). As the structural epitopes
presented to the parasites by Hp–Hb and Hpr–Hb contained in
TLF particles are identical, the parasites are incapable of
distinguishing between the beneficial Hp–Hb complex and the
lethal TLF particles. On the other hand, the Hp interface with
HpHbR is completely distinct from the Hp region known to
interact with the mammalian Hp–Hb receptor, CD163 (Fig. 6a).
The interaction with CD163 involves two basic Hp-specific
residues (Arg311 and Lys321) located in the loop 3 region40.
These residues engage in a common type electrostatic and
calcium-dependent binding to the scavenger receptor cysteine-
rich domains of CD163 (refs 41,42). These two essential basic
residues are not present in Hpr and consequently Hpr–Hb is not
recognized by CD163 (ref. 41). This prevents an unfavourable
CD163-mediated clearance of TLFs from circulation, while
HpHbR-mediated uptake of TLF1 by infecting trypanosome
parasites is maintained.

Treatment of human sleeping sickness caused by T.b.
gambiense and T.b. rhodesiense is currently restricted to drugs
developed over four decades ago43,44. Although efficacious in

some cases, these drugs are far from ideal due to the complexity
in their medical administration as well as emerging resistance.
Consequently, the development of new medical treatments is
needed. The new insight into the molecular ligand recognition by
the HpHbR may provide a framework for design of compounds
that target HpHbR. One tempting approach is to exploit HpHbR
for delivery of toxic and parasite-killing compounds to the
parasite. Another approach is to design compounds that inhibit
HpHbR-medidated Hp–Hb uptake and thereby restrict parasite
haem acquisition and growth.

Methods
Purification of Hp–Hb from human blood. Anti-coagulant (trisodium citrate and
EDTA) was added to human blood (from a homozygotic Hp1 donor) to a final
concentration of 15mM (trisodium citrate) and 0.15mM (EDTA). Plasma and
blood cells were separated by centrifugation at 4,000 g for 20min. The blood cell
fraction was lysed by addition of water (1:1 ratio) and cell debris was removed by
centrifugation at 8,000 g for 15min. Clotting factors were removed from plasma by
addition of 80mM BaCl2, followed by incubation on ice for 1 h and centrifugation
at 27,000 g for 15min. Serum and blood cell fractions were stored at � 80 �C.
Thawed serum and blood cell fractions were mixed in a ratio of 25:1 and incubated
at 4 �C overnight. The sample was diluted 1:2 in 20mM Tris–HCl pH 7.6 and
loaded on a Blue Sepharose Fast Flow column (GE healthcare) equilibrated in
50mM KCl, 20mM Tris–HCl pH 7.6. The flow-through was collected and loaded
on a Q Sepharose Fast Flow column (GE Healthcare) equilibrated with buffer Q-A
(50mM KCl, 20mM Tris–HCl pH 7.6). A gradient from 10 to 70% buffer Q-B
(500mM KCl, 20mM Tris–HCl pH 7.6) was applied. Fractions containing Hp–Hb
were pooled and ammonium sulphate added to 55% saturation. The sample was
centrifuged at 27,000g for 15min and loaded on a Source 15 Iso column (GE
Healthcare) equilibrated with buffer Iso-A (55% ammonium sulphate, 20mM
Tris–HCl, pH 7.6). A gradient from 0 to 100% buffer Iso-B (20mM Tris pH 7.6)
was applied. Fractions containing Hp–Hb were pooled and concentrated using an
Amicon Ultra centrifugal filter (10 kDa molecular mass cut-off (MWCO),
Millipore). The sample was further purified using a Superdex 200 column
(GE Healthcare) equilibrated in 75mM KCl, 20mM Tris–HCl pH 7.6. Fractions
containing Hp–Hb were pooled and concentrated to 2mgml� 1 using an Amicon
Ultra centrifugal filter (10 kDa MWCO, Millipore).

TLF1
Flagellar pocket

Hp SP

CD163-binding site 

Hp HbHpHbR

VSG

Hpr HbHpHbR

Flagellar pocket membrane

Figure 6 | Hp–Hb/TLF1 uptake by HpHbR. (a) Sequence conservation in

an alignment of human Hp and Hpr mapped on the surface of Hp.

Conserved residues are coloured blue and non-conserved residues grey.

Green outline indicates the HpHbR-binding site. (b) Schematic drawing of

HpHbR involvement in nutritional uptake of Hp–Hb (left) and susceptibility

to the human immune system via uptake of Hpr–Hb associated to TLF1

particles (right). HpHbR is expressed exclusively in the flagellar pocket of

the parasite5 as indicated by the black box.
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Expression and purification of HpHbR wild type and mutants. The gene
encoding the trypanosoma brucei brucei HpHbR (residues 36–378) was amplified
(primer: 50-CCCACGAATTCGCTGAGGGTTTAAAAACCAAAGACGAAG
TTG-30 , primer: 50-GATTTGCGGCCGCTTAACTAACCACGTCAACGGGCC
TTGG-30) and cloned into the EcoRI and NotI sites of the pPICZaA vector and
transformed into the P. pastoris X33 cell line (Life technologies). Point mutations
were introduced in the vector using the site-directed, ligase-independent muta-
genesis method45. Colonies expressing recombinant HpHbR were inoculated in
buffered glycerol-complex medium and incubated at 30 �C for 24 h. Cells were
transferred to buffered methanol-complex medium and grown for 72 h at 30 �C.
Protein expression was induced by adding 1.5% methanol every 12 h. Secreted
HpHbR was purified from the medium by diluting 1:5 with 20mM Tris–HCl pH
7.6 and loading on a Q Sepharose Fast Flow column (GE Healthcare) equilibrated
in buffer Q-A (50mM KCl, 20mM Tris–HCl, pH 7.6). A gradient from 15 to 80%
buffer Q-B (500mM KCl, 20mM Tris–HCl pH 7.6) was applied. Fractions
containing HpHbR were pooled and concentrated using an Amicon Ultra
centrifugal filter (10 kDa MWCO, Millipore). The sample was further purified
using a Superdex 200 column (GE Healthcare) equilibrated in 75mM KCl, 20mM
Tris–HCl, pH 7.6. HpHbR was deglycosylated by addition of 1/10 (w/w)
endoglycosidase H and incubation overnight at 25 �C.

Expression and purification of IsdH NEAT1. The gene encoding IsdH NEAT1
(residues 86–229) with an N-terminal His-tag followed by a thrombin cleavage site
was synthesized and cloned into the NdeI and BamHI sites of the pET-22b(þ )
vector (Genscript, Novagen). The vector was transformed into the BL21 rosetta
Escherichia coli strain. Protein expression was induced with 1mM IPTG. Cells were
harvested and resuspended in lysis buffer (500mM KCl, 20mM Tris–HCl pH 7.6,
20mM imidazole, 1 tablet Complete protease inhibitor (Roche Diagnostics GmBH)
and 10% glycerol). The cells were opened by sonication (Branson Sonifier 250) and
centrifuged 27,000 g for 20min. Prior to loading on a Ni-column the samples were
filtered through a 0.22-mm filter. The protein was eluted from the Ni-column with a
gradient from 20–300mM imidazole in a buffer containing 20mM Tris–HCl pH
7.6, 500mM KCl and 10% glycerol. Fractions containing IsdH were pooled and
dialysed overnight against 75mM KCl, 20mM Tris–HCl pH 7.6 and 10% glycerol.
The His-tag was removed by addition of 1/100 (w/w) thrombin and incubation
overnight at 25 �C.

Formation and purification of the Hp–Hb–HpHbR–IsdH complex. Hp–Hb,
HpHbR and IsdH NEAT1 were mixed in 1:2:2 molar ratios and incubated over-
night at 4 �C. The sample was loaded on to a Superdex 200 column (GE healthcare)
equilibrated in 75mM KCl, 20mM Tris–HCl, pH 7.6. Fractions containing the
Hp–Hb–HpHbR–IsdH NEAT1 complex were pooled and concentrated to
10mgml� 1 using an Amicon Ultra centrifugal filter (10 kDa MWCO, Millipore).

Crystallization and data collection. Crystals were obtained at 4 �C using the
sitting-drop vapour diffusion method. Two ml protein sample (10mgml� 1) was
mixed with 2 ml reservoir solution containing 15% polyethylene glycol 1500 and
0.1M Bis-Tris pH 6.0. The crystals were transferred to the cryoprotection buffer
(40% polyethylene glycol 1500 and 0.1M Bis-Tris pH 6.0) before being flash frozen
in liquid nitrogen. X-ray diffraction data were collected at the XO6SA beamline
(Swiss Light Source, Villigen, Switzerland) using a wavelength of 1.0 Å and at a
temperature of 100 K. Data were indexed, integrated and scaled with the XDS
package46. The crystals display P21 symmetry and diffract to a maximal resolution
of 3.1 Å, However, the data are highly anisotropic with diffraction limit at B4.5 Å
on the c* axis47 (Table 1). The structure was solved by molecular replacement in
PHASER48 with porcine Hp–Hb30, Hb–IsdH NEAT149 and T. congolense HpHbR7

as search models. Each asymmetric unit contains three dimeric Hp–Hb–HpHbR–
IsdH complexes. Model building was done in the programs ‘O’50 and ‘Coot’51.
Iterative refinement cycles were performed in PHENIX52. Atomic coordinates were
restrained by tight sixfold non-crystallographic symmetry (one group for each
monomeric unit of Hp–Hb–HpHbR–IsdH) with one B-factor group per residue
throughout the refinement procedure. Figures were made using PYMOL53.

Formation and purification of the Hp–apoHb complex. Extraction of haem from
Hb was achieved by acid-acetone precipitation54. Hb (5mgml� 1) was slowly
added to ice-cold acid acetone (5ml of 5M HCl per litre HPLC-grade acetone) in a
1:25 v/v ratio. After incubation for 1 h on ice, the sample was centrifuged at
25,000 g for 10min. The pellet was resuspended in 0.1M acetic acid and used for
another round of precipitation. This was repeated until no more haem could be
detected in the supernatant. At this point the precipitated apoHb was dissolved in
buffer containing 150mM NaCl, 4mM CaCl2 and 10mM HEPES pH 7.6. The
sample was subsequently dialysed overnight against the same buffer. ApoHb
was mixed with Hp in a 1:2molar ratio and the Hp–apoHb complex purified
using a Superdex 200 column (GE healthcare) equilibrated in 75mM KCl and
20mM Tris–HCl, pH 7.6. HoloHb was reconstituted by addition of 20� molar
excess of hemin prior to gelfiltration. Detection of haem was done by
SDS–polyacrylamide gel electrophoresis and subsequent staining for peroxidase
activity55 and by ultraviolet–vis absorption spectroscopy on a UltroSpec 3100
spectrophotometer (GE Healthcare).

Surface plasmon resonance. Binding studies were performed on a Biacore 3000
instrument (GE Healthcare GmbH). Immobilization was conducted in 10mM
sodium acetate pH 4.0 and remaining sites were blocked with 1M ethanolamine
pH 8.5. The signal generated for T.b. brucei HpHbR was 71.4 fmolmm� 2 and
42.6 fmolmm� 2 for Hp–Hb. Sample and flow buffer was 150mM NaCl, 1.5mM
CaCl2, 1.0mM EGTA, 0.005% Tween-20 and 10mM HEPES pH 7.6. Sensor chips
were regenerated with 500mM NaCl, 20mM EDTA and 10mM glycine pH 4.0.
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