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Protein design with a comprehensive statistical
energy function and boosted by experimental
selection for foldability
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The de novo design of amino acid sequences to fold into desired structures is a way to reach a

more thorough understanding of how amino acid sequences encode protein structures and to

supply methods for protein engineering. Notwithstanding significant breakthroughs, there are

noteworthy limitations in current computational protein design. To overcome them needs

computational models to complement current ones and experimental tools to provide

extensive feedbacks to theory. Here we develop a comprehensive statistical energy function

for protein design with a new general strategy and verify that it can complement and rival

current well-established models. We establish that an experimental approach can be used to

efficiently assess or improve the foldability of designed proteins. We report four de novo

proteins for different targets, all experimentally verified to be well-folded, solved solution

structures for two being in excellent agreement with respective design targets.
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I
n recent years, protein design has achieved some milestone
successes with profound implications in biosciences and
biotechnology1–3, including the designs of a novel protein

fold4, new biomolecular interactions and regulations5, as well as
new biocatalysts6,7. These progresses have been driven by
underlying computational or rule-based design methods, which
can be stringently calibrated through the de novo design of amino
acid sequences that fold into desired three-dimensional
structures4,8–10. In this regard, rule-based designs have attained
some remarkable successes7,11,12, albeit limited to particular types
of target structures or structure motifs. More general methods
such as RosettaDesign13 are based on minimizing an effective
energy function, which has been, for large parts, derived from
molecular mechanics force fields4. It has been shown that
RosettaDesign can achieve high success rates for idealized target
structures10. However, success rates of automated design with
common targets has remained low14,15. Meanwhile, different
sequences designed for the same target are usually highly
homogeneous, not reflecting the diversity of natural sequences
sharing conserved structures15. In many cases, the designed
proteins also lacked the rich conformational dynamics exhibited
by their native counterparts16.

Given the great promises held by protein design, it will be of
wide impact to improve computational protein design from its
current level. This is especially challenging given that substantial
method improvements have not been seen for a decade despite
intensive research efforts. It may require novel theoretical
approaches that can complement current best methods. Method
improvements can also be tremendously accelerated by experi-
mental tools that can yield extensive feedbacks to theory by, for
example, distinguishing between positive and negative design
results rapidly, as well as telling what might be the design errors
and suggesting how to correct them15. Conventional in vitro
structure analysis augmented by site-directed mutagenesis can
barely do the job because of its low throughput and high costs.
Although efficient experimental methods may be devised for
target proteins with specific selectable functions17, a generally
applicable approach is yet to be established15.

The first aim of this work was to develop and validate a
comprehensive energy function with novel ingredients so that it
could verifiably complement current models of computational
protein design. We considered statistical energy functions (SEFs),
which were derived from known sequence and structure data of
natural proteins18,19. Potentially, an SEF may pick up factors in
protein sequence–structure relationships that are not yet treated
properly by current physics-based models. Although SEFs for
protein structure prediction have been well developed20,21 and
most current protein design approaches contain certain statistical
terms4,13, a comprehensive or full-scale SEF that by itself achieves
automated protein design has not been established to compete
with state of the art physics-based models22. In most previous
SEFs, probability distributions were estimated based on a prior
discretization of structural properties, for example, the solvent
accessibility partitioned into a few discrete categories, or a
distance divided into bins. Although sensible for SEFs aimed at
structure prediction, this approach leads to several problems for
sequence design. First, some target properties will fall near not the
centre but the boundary of pre-defined intervals, causing
significant biases in probability estimations. Second, it is
difficult to treat multiple and/or multi-dimensional properties
jointly with decent accuracies. Here we propose a general strategy
of selecting structure neighbours with adaptive criteria (SSNAC)
to address these accuracy-jeopardizing issues. In this approach,
conditional distributions of single or pairs of amino acid types are
estimated from training data selected as neighbouring items
centred on a target point in a space spanned by multiple

structural properties, allowing straightforward considerations of
different types of structural properties as joint conditions for the
distributions. Adaptive cutoffs for training data selection are used
to balance between the amount and the relevance of the training
data. A special likelihood-range-based procedure was devised to
correct the effects of small sample size. How the various structure
properties are selected and treated for the single residue and the
residue pairwise SEF terms are determined based on redesigning
single sites in native proteins. The resulting pure SEF (noted as
ESEF) treats inter-residue side-chain packing at a highly coarse-
grained level. Its extension to include van der Waals energies
(noted as ESEF_v) to treat finer packing effects has also been
considered.

Our second aim was to establish the applicability and efficiency
of an experimental method to assess and/or to correct de novo
designed proteins. This approach was originally developed by Foit
et al.23 to evolve protein stability in vivo. In the approach, the
structural stability of a protein of interest (POI) is linked to the
antibiotic resistance of bacteria cells expressing an engineered
TEM1-b-lactamase that contains the POI with flanking linker
sequences composed of a few tens of glycine/serine residues as an
inserted segment. POIs that are not well-folded are prone to
proteolysis by periplasmic proteases specifically recognizing
unfolded proteins, leading to weak antibiotic resistance of host
cells. This system may be used not only to assess the foldability of
designed proteins but also to select mutations that can rescue an
initially problematic design. Such results may comprise critical
feedbacks for the improvement of computational models and are
not easily obtained through other approaches.

In this work, we construct an SEF based on the SSNAC strategy
and compare it with the established method of RosettaDesign13 in
fixed backbone design. Redesigned sequences for 40 native
protein backbones covering different fold classes are evaluated
by ab initio structure predictions and energy analyses. The
TEM1-b-lactamase-based selection is applied to several designed
proteins followed by nuclear magnetic resonance (NMR) analysis.
Four well-folded de novo proteins for three different targets are
obtained, one having exactly the designed sequence and the other
three containing a few point mutations. Solution structures of two
de novo proteins are solved by NMR and they are in excellent
agreement with respective design targets. These results suggest
that the SEF may complement and rival established models for
computational protein design. Sequences designed with it can be
well-folded or close to foldable. In addition, the TEM1-b-
lactamase-based system is highly efficient in assessing and
improving the foldability of de novo proteins.

Results
Theoretical tests of the SEF. We first tested the SEFs theoreti-
cally. Design targets were 40 backbone structures of 76–191
residues from the Protein Data Bank (PDB), spanning 4 structure
classes (all-a, all-b, a/b and aþb) according to the structure
classification of proteins24. For each target, we designed three
sequences using the SEF developed here. For comparisons,
another three sequences were designed using Rosetta fixed
backbone design. Target PDB IDs are given in Supplementary
Table 1 and the designed sequences in Supplementary
Tables 12–14. Despite the fact that our SEFs do not contain
any residue type-specific constant reference energy terms,
designed sequences are of overall amino acid compositions
similar to native proteins (Supplementary Table 5). The SEF or
SEF_v design results have sequence identities of about 30%
relative to respective native proteins, similar to sequences
produced with Rosetta fixed backbone design (Fig. 1a).
Figure 1a also shows that the sequences designed with the SEFs
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have lower than 30% sequence identities with those designed with
Rosetta fixed backbone. As would be expected, the sequence
identities are lower for surface positions than for those less
solvent-exposed positions (Supplementary Table 6). Thus, for the
same target structure, the low energy sequences of the current
SEF can diverge significantly from those of RosettaDesign,
indicating mutual complementary of the two approaches in
their solution spaces.

We applied Rosetta ab initio structure prediction25 to each
designed sequence and each native sequence. In ab initio
structure prediction, tertiary structure models of input
sequences are constructed without using any native protein
tertiary structures as templates. The similarity of predicted
models with corresponding design targets were quantified using
the template modeling score or TM score26, a quantity to measure
structure similarity with a numerical value from 0 to 1. For each
sequence, 200 structures were predicted. Statistics of the TM
scores for individual targets are reported in Supplementary
Table 7. The results for targets of different fold classes are
summarized in Fig. 1b (the results for SEF_v are shown in this
figure, the results for SEF being similar, see also Supplementary
Table 7). According to these data, the sequences designed using
our SEF do not, in general, lead to as high fractions of highly
target-like predicted models (TM score 40.5) as the native
sequences; however, they significantly surpass the Rosetta fixed
backbone design results, especially for targets containing b-
strands, although the prediction method itself also has worse
performance on these targets than on the all-a ones. It seems that
the major cause for the Rosetta sequences to lead to worse
predicted tertiary structures is not their poorer secondary

structure propensities. We carried out secondary structure
predictions on the native and the designed sequences, and
checked their agreement rates with targets. For the Rosetta
sequences, this agreement rate averaged over all 40 targets is still
81%, to be compared with the average rate of 83% for the native
sequences and 86% for the SEF sequences. In addition, for quite a
number of targets for which the Rosetta-designed sequences do
lead to high rates (above 85%) of correctly predicted secondary
structures, the predicted tertiary structures still agreed much
poorer with respective targets than the same predictions for the
native or the SEF sequences.

To further examine the complementarity between different
energy functions, we separately applied the Rosetta energy
function and the SEF to evaluate the energies of sequences
deigned with ESEF_v and with Rosetta fixed backbone, respec-
tively, both under corresponding target structures. The energies
were compared with those calculated for the native sequences
using the same energy functions (Fig. 1c,d). As expected,
calculated with the Rosetta/SEF energy function, the sequences
designed by Rosetta/SEF_v have lower energies. Interestingly, the
Rosetta energy function predicts that the sequences designed by
SEF_v have lower energies than the corresponding native
sequences. Surprisingly, the SEF predicts that most of the results
of Rosetta fixed backbone design for the non-all-a targets have
significantly higher sequence energies than the corresponding
native sequences. Thus, the SEF captures certain energy
contributions that favour the native sequences over the Rosetta
fixed backbone designs. Assuming that the native sequences are
indeed more compatible to respective target structures either
according to ab initio structure prediction or based on the fact
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Figure 1 | Complementarity between SEFs and physics-based energy functions. (a) Sequence identities between native proteins, proteins designed

with SEF, proteins designed with SEF_v and proteins obtained with Rosetta fixed backbone design (Ros_fb). Results are averages over 40 target proteins.

(b) Fractions of highly target-like models in structures predicted ab initio using native and using different designed sequences. The fold classes of

targets are indicated. For each fold class, results are averages over ten targets. (c) Energies of designed sequences relative to corresponding native

sequences for 40 target proteins of different fold classes. The energies were calculated with ESEF. (d) Same as in c, but the energies were calculated with

Rosetta.
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that the native sequences are known for sure to fold into
respective target structures, this result suggests that these energy
contributions may be missed or insufficiently represented in
current state-of-the-art energy functions for computational
protein design. Decomposing the total energy differences into
components (Supplementary Tables 8 and 9) suggests that the
pairwise SEF terms play important parts. Although a statistical
pairwise term in the Rosetta energy function favours the Rosetta-
designed sequences over the native sequences for all target classes
(Supplementary Table 8), the pairwise term in the current SEF
does the opposite, except for the all-a classes (Supplementary
Table 9). Enabled by the SSNAC strategy, the present model
specifies the structural characteristics of interacting position pairs
much more completely than previous statistical models.

Experimental assessment and evolution of designed proteins.
Several proteins designed with ESEF or ESEF_v were experimentally
characterized with the TEM1-b-lactamase-based in vivo system as
well as with solution NMR spectroscopy. For the examined
sequences, antibiotics resistance conferred by corresponding
fusion proteins (Fig. 2a) well correlate with the propensity of the
designed proteins to form well-folded structures in solution as
suggested by NMR spectra (Fig. 2b): three designed proteins,
D_1cy5, D_1r26 and Dv_1r26 lead to weak antibiotics resistance,
while the corresponding 1H-NMR spectra also do not suggest
unique well-folded structures; another designed protein,
Dv_1cy5, leads to an intermediate level of antibiotics resistance,
while its 1H-NMR spectrum do signal folded structures; the
designed protein Dv_1ubq leads to strong antibiotics resistance,
in consistence with its 1H-NMR spectrum strongly signalling a
stable structure.

For two of the initially designed sequences (D_1cy5 and
Dv_1r26) that were not associated with strong antibiotic
resistance and did not exhibit well-folded structures, we carried
out directed evolution of their foldability, again using the TEM1-
b-lactamase-based in vivo system. After one or two rounds of
selection, several mutants that led to strong antibiotic resistance
were identified. Some of them were further characterized by 1H-
NMR spectroscopy (results not shown), based on which three
mutants (D_1cy5_M1, D_1cy5_M2 and Dv_1r26_M1, for their
associated antibiotic resistance see Fig. 2a) were selected for

subsequent 1H–15N heteronuclear single quantum coherence
experiments. The results (Fig. 3a–c) proved that these mutants
(Fig. 3d,e) indeed form well-folded three-dimensional structures.

Differential scanning calorimetry (DSC) was employed to
measure the melting temperatures of these proteins. The melting
temperatures (measured as peak positions on respective relative-
specific heat versus temperature curves, see Supplementary Fig. 1)
are 123.3 �C for Dv_1ubq, 84.8 �C for D_1cy5_M1, 58.3 �C for
D_1cy5_M2 and 74.0 �C for Dv_1r26_M1. The DSC curve of
Dv_1ubq suggests that this protein is highly thermostable. For the
other three proteins, respective DSC results suggest that their
thermo unfolding is not very cooperative. Temperature-depen-
dent circular dichroism (CD) spectra of the proteins were also
measured (Supplementary Fig. 2). The CD spectra are consistent
with expected secondary structure types and contents of
respective proteins. They are consistent with the DSC results as
well. The CD spectrum of Dv_1ubq does not show much change
with increased temperature. For the other three proteins, the CD
results suggest insignificant and non-cooperative loss of second-
ary structures at high temperatures. Such thermo-unfolding
behaviours are often encountered in designed proteins27–29

irrespective of energy functions or rules used during design. It
could be results of the shared design strategy of stabilizing the
folded structures as much as possible in all aspects according to
the given energy functions or rules.

The data indicate two things: first, some de novo designed
proteins, although not exactly being foldable, are in fact very close
to foldable ones in the sequence space; and second, the TEM1-b-
lactamase-based in vivo system can make a highly efficient
method for finding out whether the initially problematic designs
can be rectified through sequence perturbations, and how. As
such data accumulates, pitfalls in design methods may be revealed
for subsequent analysis and improvement.

Solution structures of two de novo proteins. We carried out
necessary NMR spectroscopy experiments to determine the
solution structures of Dv_1ubq and D_1cy5_M2. The sequence of
Dv_1ubq has been designed with the SEF_v energy function using
the structure of human ubiquitin as target (PDB ID 1ubq). The
solution structure of Dv_1ubq is highly similar to 1ubq (Fig. 4a),
the root mean square deviation (RMSD) of aC atom positions
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Figure 2 | TEM1-b-lactamase antibiotic resistance correlates with the foldability of de novo proteins. The designed proteins are named as ‘D_X’ for

those designed with ESEF, or ‘Dv_X’ for those designed with ESEF_v, the symbol ‘X’ to be replaced by the PDB ID of respective targets. Mutants of

designed proteins are named with the extra ‘_Mn’ attached to the names of original proteins, with ‘n’ being a numerical ID. Native ubiquitin is labelled as

‘1ubq’. (a) Antibiotic resistance associated with various proteins. (b) 1H-NMR spectra of de novo designed proteins.
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between the two structures being 1.17Å. In Dv_1ubq, 51 of the
total 76 amino acid residues have been changed from those in
1ubq (we note that the Dv_1ubq residues identical to those in
1ubq were not pre-fixed but also generated by design). Thus, most
of the tertiary inter-residue contacts in 1ubq, although still
maintained in Dv_1ubq, have been substituted by contacts
between different types of residue pairs (Fig. 4b). To examine the
overall effects of the completely computer-designed sequence
changes on structure stability, guanidine hydrochloride-induced
denaturation experiments were performed on both the native and
the designed proteins. The results suggested that the designed
protein Dv_1ubq is structurally more stable than its native
counterpart 1ubq (Fig. 4c).

The sequence of D_1cy5_M2 has been obtained by completely
redesigning the sequence of human caspase recruitment domain
(PDB ID 1cy5) with the SEF energy function, followed by
antibiotic resistance-based in vivo selection of fold-stabilizing
mutations (Figs 2a and 3b). The structure of D_1cy5_M2 is in
good agreement with that of 1cy5, the target for designing the
parent sequence D_1cy5. Both structures have the same six helix–
helix bundle fold with the Greek key topology. The major
difference between the two structures is limited to a short amino-
terminal segment: in 1cy5, the first helix (residues 3–19) is kinked
around residue 12, resulting in 2 helix segments (labelled as a1
and a2, respectively, above the 1cy5 sequence shown in Fig. 4d)
forming an angle of about 141�; in D_1cy5_M2, the kink around
residue 12 is much less obvious, resulting in an intact helix which
is almost straight (Fig. 4d). The N-terminal segment (residues
1–11) excluded the remaining parts of the two proteins (residues

11–89) can be well superimposed (Fig. 4d) with a aC atom
position RMSD of 2.35 Å. We note that Dv_1ubq fold into its
desired target structure more closely than D_1cy5_M2. This
might have been caused by that Dv_1ubq has been designed with
an additional van der Waals energy component that treats atomic
packing in a more fine-grained manner than the SEF alone. On
the other hand, it might also be due to that the a/b ubiquitin fold
adopted by Dv_1ubq and 1ubq is intrinsically less dynamic than
the all-a-death-domain fold adopted by 1cy5 and D_1cy5_M2. In
D_1cy5_M2, 69 out of its total 92 residues are different from
those in 1cy5. Thus, most of the inter-residue tertiary contacts are
also formed by different types of residue pairs in these two
proteins (Fig. 4e). Although the exact designed sequence D_1cy5
is not yet able to fold (which is unlike the case of Dv_1ubq), the
agreement between the structures of D_1cy5_M2 and 1cy5
strongly testifies on the accuracy of the SEF to design D_1cy5, the
parent sequence of D_1cy5_M2.

Discussion
In summary, we proposed a novel strategy to construct SEFs for
protein design and built a comprehensive SEF based on this
strategy. Ab initio structure prediction and sequence energy
comparisons suggest that the SEF can complement and rival
current well-established physics-based models. We found that the
TEM1-b-lactamase-based in vivo system was well suited both to
directly assess the foldability of designed sequences and to
identify foldable sequences close to initial designs. As examples,
we have obtained four de novo proteins for three target structures,
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all experimentally verified to be well folded. We reported solution
structures for two of these proteins, one having exactly the
designed sequence and the other being a mutant of an initial
design, with the mutations identified through efficient directed
evolution. Both structures are in excellent agreement with
respective design targets.

In a certain sense, protein design with SEFs shares spirits with
rule-based protein design approaches. However, the descriptive
rules one may actually use to design a protein sequence are very
few, having been discovered only unsystematically, and definitely
being far from complete. To make the situation worse, one
usually does not know how to balance between different rules
when they are in conflicts with each other. Thus, rule-based
designs strongly rely on human expertise and have so far been
successful only for special secondary structure motifs or special
topologies (for example, helix bundles). In the SEF constructed
with the SSNAC strategy, the ‘rules’ have been extracted in a
systematic way and integrated in a coherent manner.

Compared with previous SEFs or statistical components in an
overall energy function, our SEF contains a number of novel
ingredients that may be of key importance for its improved
accuracy. First, each of the one-residue and two-residue
distributions are conditioned on multiple structural properties
jointly, not separately. The differences between these two types of
treatment are profound. As an example, we assume that the
rotamer preference at a position i is dependent on two types of
structure properties, one being the secondary structure type and
the other being the solvent accessibility. When the two types of
property are considered jointly, we have a single one-residue SEF
energy term, namely, Ei(ri)¼ � ln P(ri|{SSi, SAi}). On the other
hand, when the two types of property are considered separately,
the one-residue SEF energy would be the sum of two terms,

namely, Ei(ri)¼ � ln P(ri|SSi)� ln P(ri|SAi). The two different
formulations lead to different statistics. If the effects of secondary
structure and solvent accessibility on sequence preferences were
strongly coupled (and they probably are), the first formulation
would be much more accurate. In fact, the large difference
between the two treatments can be seen from the single-site
redesign results (see Method and Supplementary Method)
comparing different forms of the pairwise SEF terms
(Supplementary Table 3). In one form, the relative positioning
of two residues were considered independently from local
structural properties of individual residues (corresponding results
are in the row entry 0_0_0_0.5 of the table). The resulting
pairwise SEF terms can barely improve over the SEF with only the
single-residue terms but no pairwise terms (compare results in
Supplementary Table 3 with those in Supplementary Table 2). For
comparisons, the remaining results in Supplementary Table 3
indicate that the jointed consideration of relative positioning and
local structural properties brought about large improvements.
The joint consideration of multiple structural properties in
individual SEF terms is straightforward in the construction of SEF
terms based on structure neighbours. We note that Keating and
coworkers30 have used pairwise SEF terms based on structure
neighbours. A conceptual difference between our work and theirs
is that the coupling of inter-residue geometries with one-residue
local structural properties has been considered in our work but
not in theirs. Another practically important difference is that in
ref. 27 the criterion for structure neighbours was based not on
RMSD but on inter-aC atom and inter-bC atom distances. We
expect the RMSD parameter to specify structure similarity much
more thoroughly. In fact, the RMSD-based and the distance-
based methods select very different training residue pairs for the
same pair of target backbone positions. With the residue pairs in
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Figure 4 | De novo proteins compared with native ones. (a) Sequence and structure of Dv_1ubq compared with those of 1ubq. The distribution of identical

residues is indicated. (b) Tertiary inter-residue contacts of Dv_1ubq compared with those of 1ubq. The upper triangle of the contact map shows

contacts that are the same (that is, formed by the same two types of residues) in the two proteins. The lower triangle shows the remaining contacts.

(c) Results of CD in induced denaturing of designed Dv_1ubq compared with native ubiquitin. (d,e) Same as in a,b, but for comparisons between

D_1cy5_M2 and 1cy5.
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the target 1ubq as examples, training pairs selected using our
criteria (RMSD and local structural properties considered jointly)
and those selected using the criteria in ref. 30 are only o2% in
common. In the meanwhile, the distance-based approach needed
a rather restrictive or target-structure-sensitive cutoff (deviations
in both distances below 0.1Å), while the RMSD criterion with the
chosen (adaptive) cutoffs is much more inclusive. If the distance-
based criterion in ref. 30 were also considered jointly with local
structural properties, the number of selected training pairs would
be an order of magnitude less than those selected by the RMSD
criterion, common training pairs being still only a few per cent.

The price for considering multiple structure properties as joint
conditions is that the amount of selected training data can be
reduced significantly. This may lead to large statistical uncertain-
ties. The situation can be especially severe for the rotamer-based
pairwise SEF terms because of the large size of the variable space
(that is, there are several thousands of possible rotamer-type
combinations over which pairwise distributions need to be
estimated). The remaining two novel ingredients in our SEF
approach address this problem. One is the adaptive adjustment of
selection criteria for training data. In the single-site redesign
experiments, this treatment brought about only moderate
improvements in the averaged results (Supplementary Table 3).
However, if we consider that using adaptive criteria will only
affect sites for which insufficient training data could be selected
by the more stringent criteria, the moderate improvements
reflected by the results averaged over all sites actually indicate
substantial improvements for a relatively small number of sites.
Another ingredient in our method to diminish the negative
impacts of reduced training data is the special scheme of
obtaining final probability estimations by weighing observed
distributions with respect to background distributions based on
likelihood ranges (see Methods). With this empirical scheme,
even when the sample size (that is, the number of selected
training pairs) is comparable to or even smaller than the size of
the variable space (for example, the number of possible rotamer-
type combinations), dominating terms of the probability
distributions (for example, larger probabilities associated with
pairs of rotamer types that are especially favoured) may still be
estimated reasonably well.

As atomic coordinates have been used in the RMSD-based SEF
terms, one question to raise would be how sensitive the resulting
SEF is to the quality or accuracy of the backbone coordinates of
the target. Several observations suggest that the SEF should be
applicable to target backbone coordinates of moderate accuracy,
such as those generated not from high-resolution X-ray crystal-
lography but by current computational modelling techniques.
One observation is that the (adaptive) RMSD-based criterion is
inclusive enough so that every pairwise SEF term can draw
information from a large number of interacting residue pairs
from diverse protein structures. In Supplementary Fig. 3, we have
shown for the pairwise SEF terms of target 1ubq the distribution
of number of training residue pairs and the distribution of
number of training proteins contributing the training pairs. The
broad training data should cover a wide range of structure
variations. Thus, the SEF constructed from them should not be
very sensitive to small variations or inaccuracies in target
backbone coordinates. Just to obtain some ideas on this issue,
we have used modelled homologous backbones of 1ubq as targets
to design new sequences (see captions of Supplementary Figs 4
and 5, the RMSDs between the modelled and the X-ray
backbones are around 1Å). Although the designed sequences
did show some degrees of target-induced variations (pairwise
sequence identities 480% between sequences designed for the
same backbone and 50B60% between sequences designed for
different target backbones), the sequence logos generated from

different sets of designed sequences show highly similar positions
and types of conserved residues types throughout the entire
sequence (Supplementary Figs 4 and 5).

We would like to note that the current SEF should not be
confused with methods that use sequence profiles constructed
from natural protein templates with overall sequence or structure
similarity to design targets31. As results, the SEF can be applied to
general target structures in different fields of protein engineering,
either to design specific sequences or to design highly focused
sequence libraries. We note that the current SEF itself does not
yet treat atomic packing in the same level of details as physics-
based models such as RosettaDeisgn. However, it seems to do a
much better job than current physics-based models in capturing
the overall topology-related features of protein sequences,
especially for b-strand-containing topologies. In addition, the
two types of models explore in different regions of the sequence
space. Thus, they highly complement each other in a number of
important aspects. The fact that either type can now accomplish
fully automated design for general targets suggest that integrating
them tightly together may substantially boost the accuracy of
computational protein design from its current level. In addition,
the in vivo experimental approach we used to assess and improve
the foldability of designed proteins offers an option of much
higher efficiency and far less costs than conventional structure
analysis. It may be able to provide extensive feedbacks on both
positive and negative design results. Such results are much-
needed for continuous method improvement. These progresses
may accelerate the development of computational protein design
into a robust tool for a wide range of challenging applications.

Methods
Components of the SEF. These includes single-residue terms and pairwise terms,
namely,

ESEF r1; r2; ::: rLð Þ ¼
XL
i¼1

Ei rið Þþ
XL
i¼1

X
j in contact with i

Eij ri; rj
� �

ð1Þ

where L is the length of the target peptide chain, i and j indicate positions along
the chain. The variable ri with i between 1 to L can denote a residue type or, more
generally, it can denote a rotamer type that specifies besides a residue type a
discrete side-chain conformational state.

The individual terms Ei(ri) and Eij(ri, rj) are determined by the probability
distributions of rotamer types and pairs of rotamer types, respectively, conditioned
on the structural properties associated with the corresponding position or pair of
positions along the peptide chain of the design target,

Ei rið Þ ¼ � ln P ri structure properties at position ijð Þ ð2Þ
and

Eij ri; rj
� �

¼ � ln
P ri; rj structure properties of positionj pair i; j
� �

P ri structure properties at position ijð ÞP rj structure properties of position jj
� �

ð3Þ
In our SEF model, structure properties considered for a single position include

secondary structure type, solvent accessibility and backbone Ramachandran
torsional angles. Structural properties for a pair of peptide positions include first
the above properties associated with individual positions, and second the relative
positioning in three-dimensional space of eight atoms at the two positions,
including the main chain C, N, aC atoms and the side chain bC atoms.

Selecting structure neighbours with adaptive criteria. The conditional prob-
ability distributions in equations (2) and (3) are to be estimated from the native
sequences and structures of training proteins. To extract relevant information from
the training proteins, we propose the SSNAC approach that can treat general
structural properties such as the relative positioning of a group of atoms in three-
dimensional space. To construct the single-residue (or pairwise) SEF terms, every
position (or pair of contacting positions) of the target peptide chain is mapped to a
target data point in an abstract space spanned by the selected structure properties.
Training proteins are treated in the same way: each of their peptide chain positions
(or pairs of contacting positions) mapped to a training data point in the same
abstract space. Then, the training data points that are neighbours of a target data
point can be collected, from which the probability distribution of rotamer types (or
pairs of rotamer types) conditioned on the structural properties of the target can be
estimated. Based on computational experiments of redesigning single sites in native
proteins, the criteria for selecting training residues for a single-residue SEF term
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have been chosen to be that a selected training residue must have the same sec-
ondary structure type as the target residue as well as have backbone torsional angles
and solvent accessibilities within certain cutoff distances from those
of the target residue. For the pairwise SEF terms, the criteria for selecting training
residue pairs comprise; first, the single-residue criteria applied to each of the
residues constituting the pair and, second, the selected training residue pair
superimposed with the target residue pair using backbone (including bC) atomic
coordinates must have a RMSD of atomic positions from the target below a
certain cutoff value.

The cutoff values in the above scheme are expected to have significant effects on
the accuracy of the estimated conditional probability. This accuracy depends on
two factors: first, how close the collected training data points are to the target point
and, second, how many statistically independent training data points have been
collected. The former determines the relevance of the training data and the latter
the statistical errors involved. The two factors both depend on the cutoff values,
albeit in opposite directions. A key idea of SSNAC is to choose the cutoff criteria
adaptively to balance the effects of these two factors on each SEF term. As
described in Supplementary Information, for each SEF term, the actual criteria are
gradually relaxed in to collect more training data whether a minimum requirement
on statistical significance is not met.

Correction for small sample effects. In conjunction with the SSNAC strategy to
select training data, we also developed a procedure to correct the distributions
calculated from training data for the effects of small samples. This is especially
important for the estimation of the rotamer pair distributions, because there the
sample size, that is, the number of training pairs satisfying the criteria for structural
neighbours, can be especially small relative to the number of possible pair types.
Here we use the rotamer pair distribution for a position pair (i, j) as an example
to illustrate the correction. Let N be the sample size and k(ri, rj) the number
of training pairs of rotamer pair type (ri, rj). If the ‘true’ probability of the pair
(ri, rj) is p, the likelihood of p given the observed values of N and k (i.e. the
probability of observing (ri, rj) for k times in N samples) can be calculated as
Lðp jN; kÞ ¼ Ck

Np
kð1� pÞN � k .This likelihood is maximized with respect to p

when p¼ pobs(ri, rj)¼ k(ri, rj)/N, yielding

Lmax N; kð Þ ¼ max
p

L pjN; kð Þ ¼ Ck
N

k
N

� �k N � k
N

� �N � k

ð4Þ

Based on Lmax, we can define ‘an interval of high confidence’, [plow, phigh], for p
around pobs(ri, rj), with the bounds plow and phigh determined by

L plow N; kjð Þ ¼ L phigh N; kj
� �

¼ 1
5
Lmax N; kð Þ ð5Þ

Next, we estimate p as a weighted sum of pobs(ri, rj) and a ‘background’
probability pbg, namely,

~p ¼ apbg þ 1� að Þ�pobs ð6Þ
The background probability is obtained by neglecting any pairwise inter-

action, that is, pbg ri; rj
� �

¼ p ri structure properties at position ijð Þ�p rj structurej
�

properties at position j:Þ
The weighting factor a is determined by

a ¼
phigh � pobs

phigh � pobs þ 0:41pbg
if pobs � pbg
� �

pobs � plow
pobs � plow þ 0:7Pbg

if pobsopbg
� �

(
ð7Þ

The rational behind equation (7) is that it weights the background probability
more when the observed probability involves a larger uncertainty, while shifting
towards the observed probability when the confidence interval becomes narrower
relative to the background probability. Beyond this rational, formula (7) has been
chosen empirically, trial calculations using single site redesign involved.

The final estimation of the probability is

p ri; rj structure properties at position pair i; jj
� �

¼
phigh if ~p4phigh
plow if ~poplow ; and otherwise
~p:

8<
: ð8Þ

Normalization of the estimated probabilities can be done after all possible
rotamer pair types have been considered, not affecting the relative SEF energies.

Van der Waals interactions. The purely statistical pairwise terms represent the
inter-residue packing with coarse-grained rotamers. An extension to explicitly
include atomic van der Waals interactions with finer rotamers has been considered.
This leads to a modified total energy of the form (see also Supplementary Method
and Supplementary Table 4).

ESEF v r1; r2; :::; rLð Þ ¼ ESEF r1; r2; ::: rLð Þþ EvdW r1; r2; :::; rLð Þ ð9Þ
At the current stage, it is still unclear whether the extended ESEF_v can indeed

improve over the purely statistical ESEF in protein design, so both energy functions
have been used to design sequences that were subjected to theoretical and
experimental tests. For the experimentally studied proteins, those designed with
ESEF have been named as ‘D_X’ and those designed with ESEF_v named as ‘Dv_X’,

the symbol ‘X’ to be replaced by the PDB ID of the actual target. The amino acid
sequences of these proteins are given in Supplementary Table 10.

Single-site redesign. Following Kuhlman et al.4, we mainly employed single-site
redesign experiments to guide the parameterization of the energy functions. More
details about the derivation and implementation of the energy functions can be
found in Supplementary Information.

Energy minimization. A simple Metropolis Monte Carlo-simulated annealing
approach has been used to minimize the sequence energy functions. Each simu-
lation started from a random initial sequence and a high temperature that was
gradually lowered subsequently. The simulation ended when no rotamer change
has been accepted for a long period. The rate of annealing depended on sequence
length, and has been chosen so that different initial sequences could converge to
similar final sequences that were not only of high mutual sequence identity (above
80%) but also of variance in their energies only a few tenths of the energy dif-
ferences between the designed sequences and the native sequences. For energy
evaluations of given amino acid sequences, the same simulated annealing process
was applied to obtain a ESEF or ESEF_v minimized with respect to varying the
rotamer types with fixing amino acid types. There the global minimum could be
found with different simulation runs converged to exactly the same results.

Calculations using Rosetta. The Rosetta 3.2 programme package has been
obtained from https://www.rosettacommons.org/. Fixed backbone designs have
been carried out by running ‘fixbb.linuxgccrelease’ with recommended default
parameters. Ab initio structure predictions have been performed by running
‘AbinitioRelax.linuxgccrelease’ with the following example flags set in input:

-database rosetta-3.2/rosetta_database
-in:file:fasta 1q1fA.fasta
-in:file:frag3 aa1q1fA03_05.200_v1_3
-in:file:frag9 aa1q1fA09_05.200_v1_3
-abinitio:relax
-relax:fast
-abinitio::increase_cycles 10
-abinitio::rg_reweight 0.5
-abinitio::rsd_wt_helix 0.5
-abinitio::rsd_wt_loop 0.5
-use_filters true
-psipred_ss2 1q1fA.psipred_ss2
-out:nstruct 200
-out:pdb
To evaluate the Rosetta energies of a given sequence for a given target structure,

we first ran ‘fixbb.linuxgccrelease’ with the amino acid types at all positions fixed to
obtain an initial structure with frozen backbone and optimized side-chain
conformations. Then the entire structure was relaxed by running
‘relax.linuxgccrelease’ with the value of flag ‘relax’ set as ‘fast’.

Protein preparation and structure characterization. First, DNA sequences
encoding the proteins were synthesized and cloned into a modified pET-28a(þ )
vector by using the NdeI and XhoI sites. Proteins expressed and purified from cells
of the Escherichia coli strain Rosetta were used for NMR and CD studies. NMR
experiments were performed at 298K on a Bruker DMX500 or DMX600 spectro-
meter equipped with triple resonances, self-shielded z axis gradient probes. Data
were processed using the programmes NMRDraw/NMRPipe32. Spectra were
analysed and assigned using the programme SPARKY 3 (ref. 33). The Program
Procheck34 was used to assess the overall quality of the structure. In terms of
structure calculations for Dv_1ubq and D_1cy5_M2, the details of the input
restraints and structural statistics are presented in Supplementary Table 11. For each
protein, 20 refined structures are shown in Supplementary Fig. 6. Thermally induced
denaturation of designed proteins under different conditions were evaluated by DSC
using a VP-DSC Microcalorimeter (Microcal) in a 0.509-ml cell at a heating rate of
1 �Cmin� 1. Before the measurements, the sample and the reference were degassed
at 10 �C for 15min. The Dv_1ubq protein concentration was 10mgml� 1 in PBS
buffer, D_1cy5_M1 and D_1cy5_M2 concentrations were 4mgml� 1 in PBS buffer
and Dv_1r26_M1 concentration was 1mgml� 1 in 10mM KH2PO4, 100mM KCl
buffer. The thermograms were background-corrected and normalized to the molar
concentration. The lower concentration for Dv_1r26_M1 had to be used to avoid the
problem of protein aggregation on thermalization, although it led to lower signal-to-
noise ratios in results (see Supplementary Fig. 1). CD data were collected on a Jasco-
810 spectrophotometer. Chemical-induced denaturation of native ubiquitin and of
designed Dv_1ubq with GuHCl was monitored at 222 nm for 0.2–0.4mgml� 1

protein samples in 10mM NaH2PO4, 100mM NaCl buffer at 25 �C in a 1mm path-
length quartz cuvette. Far-ultraviolet CD spectra of Dv_1ubq, D_1cy5_M1,
D_1cy5_M2 and Dv_1r26_M1 were measured from 200 to 260nm for 0.2mgml� 1

protein samples in 10mM KH2PO4, 100mM KCl buffer at various temperatures of
25, 50, 75 and 95 �C in a 1-mm path-length cuvette. The thermal denaturation CD
data were obtained by measuring ellipticity every 5 �C of temperature increasing
from 25 �C to 95 �C at l¼ 218 nm (for Dv_1ubq and Dv_1r26_M1) or l¼ 222 nm
(for D_1cy5_M1 and D_1cy5_M2).
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Antibiotics resistance measurements. Sequence of interest flanked by linker
sequences of repetitive glycines and serines were introduced into TEM1-b-lactmase
using the vector pMB1-tet-pARA-bla-link_long (LFM10, courtesy of Dr Bardwell).
Mid-log phase cells expressing TEM1-b-lactamase containing inserted guest pro-
teins were normalized to A600¼ 1. Two microlitres of serial dilutions of cultures
from 100 to 10� 6 were spotted on LB plates containing 2.0mgml� 1 of ampicillin.
After 18 h incubation at 37 �C, growth or no growth for different dilutions was
examined.

Directed evolutions. Random mutagenesis was achieved through error-prone
PCR35, the products of which were used to construct plasmid libraries using
MEGAWHOP cloning36 or ligation with the LFM10 vector digested with BamHI/
XhoI. Each directed evolution round selected from a capacity of 105–106 colonies
and the load of error-prone PCR random mutations was kept accordingly low. LB
plates containing 1.0, 1.5 or 2.0mgml� 1 of ampicillin were used for selection.
The colonies showing the highest antibiotics resistance were selected and verified
by re-cloning the target sequence segments into the original LFM10 vector followed
by antibiotics resistance assay with serial dilution23.
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