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Loss-proof self-accelerating beams and their use in
non-paraxial manipulation of particles’ trajectories
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Self-accelerating beams—shape-preserving bending beams—are attracting great interest,

offering applications in many areas such as particle micromanipulation, microscopy, induction

of plasma channels, surface plasmons, laser machining, nonlinear frequency conversion and

electron beams. Most of these applications involve light-matter interactions, hence their

propagation range is limited by absorption. We propose loss-proof accelerating beams that

overcome linear and nonlinear losses. These beams, as analytic solutions of Maxwell’s

equations with losses, propagate in absorbing media while maintaining their peak intensity.

While the power such beams carry decays during propagation, the peak intensity and the

structure of their main lobe region are maintained over large distances. We use these beams

for manipulation of particles in fluids, steering the particles to steeper angles than ever

demonstrated. Such beams offer many additional applications, such as loss-proof self-

bending plasmons. In transparent media these beams show exponential intensity growth,

which facilitates other novel applications in micromanipulation and ignition of nonlinear

processes.
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S
ince the first demonstration of self-accelerating optical
beams in 2007 by Siviloglou and Christodoulides1,2, the
field has attracted considerable attention from both

theoretical and applicative points of view. Chronologically, the
first of such beams was the Airy beam, relying on an earlier
discovery by Berry and Balazs who have found a self-accelerating
solution to the Schrödinger equation3. This Airy solution,
which is propagating on a parabolic trajectory, relies on the
mathematical equivalence between the Schrödinger equation and
the paraxial wave equation for electromagnetic waves. The
tendency of the Airy beam to maintain an invariant intensity
profile while bending its propagation direction enabled
interesting applications such as optical micromanipulation of
particles4,5, microscopy6,7, laser machining of curved structures8,
generation of curved plasma channels in the air9, self-bending
electron beams10 and control of plasmonic surface waves11–13.
The field has taken a substantial step forward when accelerating
solutions of the full Maxwell equations were introduced14. These
beams support bending of light beams to large angles, up to
almost 180�, rather than the Airy beam that can only bend up to
B10� before breaking the paraxial approximation. Such non-
paraxial accelerating beams were demonstrated experimentally
soon thereafter15–17. Likewise, several other types of accelerating
beams, such as Weber and Mathieu beams, were discovered18–20,
as well as nonlinear paraxial21–24 and nonparaxial16,25

accelerating beams, and even accelerating beams in curved
space26. All of these beams exhibit similar features—
diffractionless propagation, transverse acceleration and self-
healing, which allows the beam to rebuild itself after going
through partial blocking or distortion.

It is now clear that the major interest generated by accelerating
electromagnetic beams is caused by their ability to interact with
matter: exert forces on particles, induce plasma channels in air,
trigger self-bending plasmonic wavepackets, and so on. Many of
these naturally involve loss due to absorption9,12,13, which limits
the propagation range of the bending beams. For example, the
creation of Airy plasmons has shown very limited propagation
distances and distortion of the beam shape due to heavy losses in
the metal–dielectric interface. Likewise, in optofluidic and
biological applications, the optical beams often propagate in
absorbing liquids, which attenuate the beam and make the optical
functionality difficult or impossible. Of course, the problem of
absorption is not restricted to accelerating beams—it is a limiting
factor for all optical beams and applications. For example, the
propagation range of optical solitons—nonlinear waves that
propagate while maintaining their shape by balancing diffraction
with nonlinear focusing effects—is also limited by loss, because as
power is absorbed, the nonlinearity decreases and can no longer
balance diffraction. Generally speaking, the issue of absorption in
optics is usually only dealt with via external means (for example,
amplifiers or appropriate sample design), and presently there are
no generic optical beams that can maintain the peak intensity
value and the structure of their main lobe in lossy media. Several
avenues to overcome this limitation have been demon-
strated27–30, but none targeted shape-preserving accelerating
beams.

In this article, we introduce analytic loss-proof accelerating
solutions of the full Maxwell equations in two dimensions: optical
beams that can propagate through absorbing media while
maintaining the intensity (value and structure) of their main
lobe, for an arbitrarily long distance. This is achieved through the
property of self-healing of nondiffracting beams, which allows
energy transfer from the oscillating tail of the beam to the main
lobe region. We exploit this property to predesign the beam so as
to compensate for the loss, thereby making up for linear or
nonlinear losses caused by the medium. Moreover, the loss-proof

concept presented here for beams evolving on circular trajec-
tories14 can be readily introduced for shape-preserving
accelerating beams of other kinds of trajectories, for example,
beams propagating on elliptic or parabolic trajectories18–20, and
even for beams that follow arbitrary trajectories31,32. As such, the
ideas can be used for loss-proof propagation for arbitrarily large
distances. Such beams can be used to create loss-proof long-range
plasmons and manipulate particles in absorbing fluids, especially
in biological fluids. Naturally, the paraxial limit of our solutions
yields loss-proof Airy beams, which were not known before, and
should have a variety of applications as well. Moreover, when
propagating in vacuum or in lossless media, the loss-proof
beams display exponential growth in peak intensity, which can be
used for acceleration of particles, ignition of intensity-driven
nonlinear processes or serve as a controllable focus light source.
We present these beams here theoretically and experimentally,
and demonstrate their use in micromanipulation of particles
within a fluid. Importantly, these experiments utilize non-paraxial
accelerating beams, demonstrating circular acceleration of
microparticles at much steeper angles than ever achieved by
optical means.

Results
Loss-proof beams of Maxwell’s equations. We begin by exam-
ining Maxwell’s equations in a linear, homogenous and isotropic
material, with conductance s:

~r�~E¼�m0
@~H
@t

; ~r�~H¼s~Eþ e
@~E
@t

ð1Þ

For convenience, we express all linear losses through the
Ohmic conductance, which accurately describes the loss in
plasmonic media. In dielectrics, where losses represent absorption
by electric dipoles, the loss can be cast into an Ohmic term and
appear in the same fashion in the Helmholtz equation. From here
we derive the wave equation in lossy media
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We focus in this paper on two-dimensional solutions. Thus, we
first seek TE-polarized solutions of the form~E x; y; zð Þ¼Ey x; zð Þ ŷ.
Equation (2) has full symmetry with respect to x and z, hence we
expect a circular trajectory, similar to ref. 14. Exploiting this
symmetry, we seek shape-preserving solutions propagating on a
circular trajectory. To do this we transform our equation into
polar coordinates with z¼ r sin y, x¼ r cos y:
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We seek solutions with radial symmetry of the form
~E ¼ U rð Þeiay� iot ŷ, where a is some real number and o is the
wave frequency. U(r) must satisfy
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The exact solution for this equation is the Bessel function of
order a and complex argument:
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are the real and imaginary parts of the wavevector, respectively.
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These parameters are determined by setting the initial conditions
on the beam and are chosen to match the real and imaginary
parts of the refractive index, such that the beam ‘heals itself’
exactly at the correct rate. We are interested only in the forward-
propagating beam, hence we take only the forward-propagating
part of the Fourier spectrum, which yields the ‘half-Bessel’
solution known from ref. 14, but with a complex argument:

E x; zð Þ¼
Zp
0

eiayei k
0 þ ik00ð Þ xcos yþ zsin yð Þdy

� J þa k0 þ ik00ð Þx; k0 þ ik00ð Þz½ �: ð7Þ
The main difference between this solution and the non-

paraxial accelerating beam found in ref. 14 is in the diverging tail
of the loss-proof beam found here. In a similar manner, one can
find the loss-proof accelerating TM solution, as was done for the
lossless case in ref. 14. Having found both TE and TM solutions,
this leads to full vectorial loss-proof accelerating solutions, similar
to the vectorial solutions in the lossless case19,33. Keeping in mind
that the accelerating beams, paraxial (Airy) and non-paraxial, are
not square-integrable, the fact that this loss-proof accelerating
beam has a diverging tail is intriguing but does not pose any
physical problems more than the other accelerating beams do.
Namely, as with all other accelerating beams, the Fourier
spectrum would have to be truncated (with some apodization).
Therefore, the range at which this beam remains shape-
preserving would also be finite, but it is nonetheless much
greater than the absorption length in the lossy medium. When
propagating in a lossy medium, the increased power transfer from
the tail to the front lobes makes up for the absorption and
preserves the lobes at a constant intensity. The loss-proof effect
can be viewed as an intensified self-healing process: tail lobes of
higher intensity transfer more power to the front lobes, and
maintain the intensity of the main lobe (value and structure)
despite the loss.

Comparison with ordinary accelerating beams. A comparison
between the loss-proof beam and an ordinary accelerating beam,
both propagating in the same lossy medium, is depicted in
Fig. 1. Figure 1a shows the propagation of an ordinary non-
paraxial self-accelerating beam designed for lossless media,
E x; zð Þ ¼ J þa k0x; k0z½ �, with Fig. 1c displaying two cross-sections
of the beam as it is propagating: at y¼ 0� and at y¼ 45�. As
expected, this beam maintains its shape but its intensity decays
exponentially during propagation. On the other hand, the loss-
proof accelerating beam E x; zð Þ¼J þa k0 þ ik00ð Þx; k0 þ ik00ð Þz½ �
depicted in Fig. 1b maintains both the shape and the intensity of
its main lobe during a 90� bending inside the absorbing medium.
Figure 1d displays this by showing the cross-sections of the loss-
proof beam at y¼ 0� and at y¼ 45�. Note that the "tail" of the
beam has an essential oscillatory envelope in Fig. 1d. This is
caused by the truncation of the backward-propagating wave, and
is also present in the ordinary beam in Fig. 1c and in ref. 14,
although less noticeable. The inset in Fig. 1 shows the peak
intensity of both accelerating beams—ordinary and loss-proof—
during propagation, starting at the same peak intensity. Evidently,
the ordinary beam decays exponentially in intensity, while the
loss-proof beam maintains its peak intensity along more than 80�
of bending, despite the loss in the medium. For some applica-
tions, one would also like to compare the loss-proof accelerating
beam and the ordinary accelerating beam under the same input
power and the same aperture. Such a comparison is shown in
Supplementary Fig. 2 and discussed in the Supplementary
Information section, with a specific example showing a
loss-proof beam that displays an improvement of 50% in the

acceleration range over the ordinary beam of the same power,
emitted from the same aperture and accelerating on the same
curved trajectory.

Exponentially growing and decaying beams. Another interesting
feature of the loss-proof beam described by equation (7) is its
behaviour when propagating in lossless media (s¼ 0), with a
beam designed with k00a0. In this case, equation (6) for k00 is no
longer fulfilled, so that the beam is no longer a solution of
equation (4). This results in an ‘over-healing’ effect, where the
power transfer from the tail to the main lobe is excessive. The
beam is still shape-preserving, but now the beam intensity is
rising exponentially along the curve, at a rate defined by the value
of k00 for which the beam was designed: I yð Þ ¼ I0 exp 2k00Ry½ �,
where R¼ a/k0 is the acceleration radius and y¼ sin� 1 (z/R) is
the angle of bending. For many cases of interest, the initial
aperture is chosen such that the shape-preserving acceleration
occurs up to y ’ 50�, in which case one can approximate
I yð Þ � I zð Þ ¼ I0 exp 2k00z½ �. This ‘exponentially growing beam’
effect is shown in Fig. 2b,d, in comparison with an ordinary non-
paraxial accelerating beam (Fig. 2a,c). This beam is now showing
exponential growth in its intensity, which continues until the
beam’s tail is all used up. Once the power in the tail has all been
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Figure 1 | Loss-proof non-paraxial accelerating beam compared with an

ordinary accelerating beam. (a) Dynamics of an ordinary non-paraxial

accelerating beam (a¼400, wavelength 532 nm) propagating through an

absorbing medium with absorption coefficient k 00 ¼ k 0/500. The beam

maintains its shape but its intensity decays during propagation. Scale bar,

10 mm. (b) Dynamics of a loss-proof non-paraxial beam propagating

through the same medium and launched from the same aperture. In this

case, the intensity of the main lobe remains invariant during propagation,

while the tail decays to compensate for the losses. All parameters are

identical to a. (c,d) Profiles of the beams of a and b taken at the blue and

red planes therein, which correspond to bending of y¼0� and y¼45�.
Inset: Comparison between the peak intensity of the main lobe of the

ordinary accelerating beam of a and that of the loss-proof accelerating

beam of b, as the beams propagate on the same trajectory. The beams start

off with the same peak intensity, but the ordinary accelerating beam decays

exponentially in intensity due to absorption, whereas the loss-proof beam

maintains its peak intensity over more than 80� of bending.
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transferred to the main lobes, the beam decays quickly. The inset
in Fig. 2 compares the peak intensity of the ordinary beam and
the exponentially growing beam during propagation in a lossless
medium (free space). Both beams carry the same total power. The
growing beam starts with lower peak intensity, since most of the
power is concentrated at the beam’s tail, but during propagation
the main lobe grows and, as expected, reaches peak intensity
higher than that of the ordinary accelerating beam. Some appli-
cations would require a main lobe that reaches the highest pos-
sible peak intensity at a certain pre-chosen distance, assuming a
fixed beam power. In this case, the beam would be designed so as
to overcompensate for the loss, as in Fig. 2. Of course, this can
only be effective up to some distance and should be optimized
specifically for each scenario.

Loss-proof bending beams in media with nonlinear loss.
Importantly, our method for finding the loss-proof accelerating
beams is not restricted to linear cases. For example, we also solve
for loss-proof accelerating beams in media displaying nonlinear
losses caused by two-photon absorption. This case is important
for applications where multiphoton effects have a role, such as the
curved plasma channel described in ref. 9. A closely related
example is using abruptly autofocusing beams (a cylindrical

superposition of Airy beams) for multiphoton microscopy34,35.
In such cases, where the losses stem from multiphoton
absorption, proper design of the input beam can support an
accelerating beam propagating for very large distances with its
main lobe maintaining its structure and peak intensity in spite of
the nonlinear losses. Let us illustrate this feature with an
accelerating beam in a medium with two-photon absorption
loss. The wavevector in this case can be approximated by
k ¼ k

0
0 þ i k

00
0 þb Ej j2

� �
, where |E|2 is the beam intensity, b is the

nonlinear absorption coefficient and b Ej j2 oo k0j j. We substitute
this into equation (4) to obtain
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In general, equation (8) can be solved for any nonlinearity,
with either the real part of k (for example, Kerr or saturable), or
the imaginary part of k (multiphoton absorption). We solve
equation (8) and find the nonlinear self-accelerating loss-proof
beams in a method similar to that of ref. 25, which can be easily
taken to the nonlinear paraxial limit discussed in ref. 21. Figure 3
compares the nonlinear and linear loss-proof solutions. The
nonlinear beam (in red) is similar in shape to the linear case (in
blue), but displays a different tail divergence rate, which is
naturally defined by the losses. We emphasize that the method we
use to find the loss-proof beams is very general, and other
nonlinear cases, such as loss-proof beams in Kerr medium or the
abruptly focusing beams mentioned earlier can be easily handled
in a similar fashion.

Free-space experiments
We demonstrate one application of loss-proof nondiffracting
beams: extending the range of particle manipulation with
accelerating beams. We create and image a loss-proof self-
accelerating beam using a phase-only spatial light modulator
(SLM) and an amplitude mask. In this setup, a continuous-wave
laser source at wavelength 532 nm is used to illuminate a linearly
polarized wide Gaussian beam upon the SLM, which imposes the
appropriate Fourier space phase on the beam. While in previous
experiments, phase-only modulation was sufficient to generate
accelerating beams2,19,36, in this current case some amplitude
modulation in Fourier space37 is required for designing the
loss-proof beam (see Supplementary Fig. 1 and discussion in the
Supplementary Material for Fourier space analysis). The
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difference between generating the ordinary accelerating beam and
launching the loss-proof beam is only at the tail, which in Fourier
space is translated into diverging amplitude for the high positive
wavevectors. We use a simple linear filter as a coarse amplitude
mask, to impose the required Fourier space amplitude on the
beam. The modulation profile for the linear filter is given by
f(x)¼ 10� ((N�OD)/(2L))x, where OD is the maximal optical
density at the edge of the filter, L is the filter width and N is
the number of filters used successively. In our experiment
OD¼ 4, L¼ 45mm and N¼ 2, which is approximately equivalent
to k00 ¼ k0/500. The beam is then demagnified and Fourier
transformed using a � 60 microscope objective lens, to produce
the accelerating beam in the spatial domain. We let the beam
propagate in air and image its structure using a moving � 60
microscope objective and a CCD camera to capture its
propagation dynamics. The results are shown in Fig. 4, for
acceleration parameter a¼ 400. We compare between three types
of beams: an ordinary non-paraxial accelerating beam (Fig. 4a,b),
an exponentially growing accelerating beam (Fig. 4c,d), and
an exponentially decaying accelerating beam (Fig. 4e,f). The
latter, ‘gain-proof’ concept is very similar to loss-proof one but
with opposite trends. Namely, the gain-proof beam is created
with a wavevector containing a negative imaginary part:
E x; zð Þ ¼ J þa k0 � ik00ð Þx; k0 � ik00ð Þz½ �. This beam presents an
‘under-healing’ property rather than ‘over-healing’, and can
propagate in gain media with no intensity amplification. In free
space, the ‘gain-proof beam’ is shape-preserving while exhibiting
exponential decay. Despite being less attractive for applications,
the gain-proof beam is yet another demonstration of the
counterintuitive results that accelerating beams provide—in this
case, a shape-preserving beam which decays in free space and
resists amplification. All three beams are created using an
identical phase mask, and the only difference between them is
their Fourier space amplitude, which is controlled through the
amplitude mask. For the gain-proof beam, we flip the amplitude
mask to apply the opposite profile: f(x)¼ 10� ((N�OD)/(2L))(L� x).
We find good agreement between the simulations and
experiment, with a clear exponential growth (and decay) in
intensity on the appropriate beams, while the ordinary
accelerating beam is maintaining an approximately constant
intensity value. The intensity grows by a factor of roughly 8 for
the loss-proof beam, and decays by the same factor for the gain-
proof beam.

Particle manipulation experiments
To demonstrate some of the advantages of the loss-proof beam
compared with an ordinary accelerating beam, we construct a
setup designed to accelerate small polystyrene particles (diameter
10mm) along a circular trajectory. The beam is shaped by a proper
phase mask displayed on an SLM, and is accelerated through a
cuvette filled with water which contains the 10mm particles which
are accelerated by the beam. In addition, the cuvette contains
small diameter (50 nm) polystyrene particles which cause slight
scattering and allow us to image the beam itself. The loss caused
by scattering is negligible: aeffE0.02mm� 1, so that the liquid is
practically lossless. The light beam is accelerating the larger
particles using the combination of the gradient force and radiation
pressure. The water cuvette is imaged from above using a CCD
camera, and allows us to track the particles as they scatter the
incoming light. The particle tracks are recorded on video and
analysed (see Supplementary Material for a video showing one
experiment). Figure 5 shows a comparison of trajectories achieved
using an ordinary accelerating beam and the loss-proof beam.
Both beams carry the same total beam power of B230mW and
the same phase profile with a¼ 1,600; they only differ in their

Fourier space amplitude. In this experiment, we use the same
amplitude masking as in Fig. 4, but with a single filter so as not to
impair the total beam power. Figure 5 shows 14 trajectories of
particles accelerated using the ordinary accelerated beam and 11
trajectories of particles accelerated using the loss-proof beam. The
trajectories are superimposed one on top of the other. Both beams
guide the microparticles to large non-paraxial angles, as opposed
to the early pioneering experiments for which the design was
strictly paraxial, hence the beams could accelerate the particles
only to small angle bending (around 10 degrees), restricted by
paraxiality4,5. The ordinary accelerating beam drives the particles
on a circular trajectory up to 41� at most, after which the beam
decays in power and cannot push the particles further. On the
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Figure 4 | Experiments comparing loss-proof, gain-proof and ordinary

accelerating beams. (a) Simulated propagation dynamics of the ordinary

non-paraxial accelerating beam (propagating from left to right). Scale bar,

10 mm. (b) Experimental results depicting the propagation dynamics of the

ordinary accelerating beam. (c,d) Propagation dynamics of the

exponentially growing beam, simulation and experiment. (e,f) Propagation

dynamics of the exponentially decaying beam, simulation and experiment.

(g) Simulated evolution of the peak intensity values for the ordinary

accelerating beam (red), the exponentially growing beam (green) and the

exponentially decaying beam (blue). (h) Experimental results showing the

evolution of the peak intensity of the main lobe as a function of the bending

angle y. The ordinary accelerating beam maintains an approximately

constant peak intensity for about 30 mm propagation, while the peak

intensity of the loss-proof beam grows by a factor of 8, whereas the gain-

proof beam decays by a factor of 8. Beam power is normalized.
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other hand, the loss-proof beam allows improved guiding, with
trajectory bending as high as 49� before friction stops the particles.
This presents an B20% increase in trajectory length for the loss-
proof beam, compared with the ordinary accelerating beam.

Discussion
In conclusion, we have presented the first loss-proof diffraction-
less accelerating beam. These are close-form shape-invariant
accelerating solutions of Maxwell’s equations in the presence of
linear and nonlinear absorption. We utilized these non-paraxial
loss-proof accelerating beams experimentally, demonstrating
applications in micromanipulation of particles in fluids,
where these beams facilitate control over the particles over
steeper angles than ordinary paraxial accelerating beams. The
experiments presented here are also the first application of
self-accelerating beams in non-paraxial micromanipulation of
particles, displaying acceleration of microparticles at much
steeper angles than ever achieved by optical means. The loss-
proof and self-growing beams offer many interesting applications,
such as long range loss-proof plasmons and abruptly focusing
light beams in absorptive media. The latter is especially important
in biological and medical applications such as multiphoton
florescence microscopy, and improved control of optical
manipulation of micro and nano-particles. The nonlinear loss-
proof solutions presented here enable applications in highly
nonlinear regimes, such as loss-proof light-induced curved
plasma channels and a variety of other ideas related to
nondiffracting beams propagating in lossy media, in principle—
wherever light-matter interactions are dominant. The loss-proof
concept is based solely on the self-healing property of
nondiffracting beams, arising from interference effects. As such,

it is a general concept that can be applied to other types of
nondiffracting beams and other kinds of attenuation, including
nonlinear losses, by defining the correct compensation rate from
the tail of the beam. Furthermore, we expect that accurate design
of the tail energy will allow controllable intensity profiles along
propagation, including periodically growing and decaying light
beams. We envision that the ability to arbitrarily predesign
intensity patterns along the optical axis will pave the way to many
new developments in the optical sciences.
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