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Chiral magnetism and spontaneous spin Hall effect
of interacting Bose superfluids
Xiaopeng Li1, Stefan S. Natu1, Arun Paramekanti2,3 & S. Das Sarma1

Recent experiments on ultracold atoms in optical lattices have synthesized a variety of

tunable bands with degenerate double-well structures in momentum space. Such degen-

eracies in the single-particle spectrum strongly enhance quantum fluctuations, and often lead

to exotic many-body ground states. Here we consider weakly interacting spinor Bose gases in

such bands, and discover a universal quantum ‘order by disorder’ phenomenon which selects

a novel superfluid with chiral spin order displaying remarkable properties such as sponta-

neous spin Hall effect and momentum space antiferromagnetism. For bosons in the excited

Dirac band of a hexagonal lattice, such a state supports staggered spin loop currents in real

space. We show that Bloch oscillations provide a powerful dynamical route to quantum

state preparation of such a chiral spin superfluid. Our predictions can be readily tested in

spin-resolved time-of-flight experiments.
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T
he ability to optically address and manipulate the spin and
momentum of electrons in a solid is not only of
fundamental importance, as it can lead to novel states of

matter with unusual properties and consequent functionalities,
but also forms the basis for the fertile fields of spintronics and
valleytronics1–3. Recent experimental progress in the field of
ultracold atomic gases has led to the creation of optical lattices
supporting bandstructures with multiple minima (valleys)4–18,
and setups which allow for the study of low-dimensional
transport phenomena12,19–22. Experimentally, this valley
degeneracy is achieved by considering atoms with Raman
induced synthetic spin-orbit coupling4–6,8–10,23, or by loading
atoms in shaken optical lattices13,14, excited optical lattice
bands7,11,12,15,24 or engineered p-flux lattices16–18. These
landmark developments herald the emergence of valleytronics
(or atomtronics) for cold atoms, and set the stage for the
discovery of novel phases of atomic matter.

The presence of multiple valley and spin degrees of freedom
often leads to a large degeneracy of single-particle ground states.
When such extensive degeneracies persist at mean-field level,
many-body fluctuations have a crucial role in selecting the
eventual ground state. Indeed, this is the basis for fascinating
phases such as fractional quantum Hall liquids in degenerate
Landau levels25, unexpected magnetic orders in quasi-one
dimensional bands26,27 and highly entangled quantum spin
liquids in frustrated magnets28. In certain systems, fluctuations
can select unusual long-range ordered many-body states which
have the maximal entropy out of the set of energetically
degenerate states, a phenomenon dubbed ‘thermal order by
disorder’29,30. On the other hand, at low temperatures, the
selection may favour ordered states with lower quantum zero
point fluctuation on top of the mean-field energy, leading to
‘quantum order by disorder’30. However, a direct identification of
this phenomenon in solid state systems is often complicated by
the presence of ordinarily negligible and material-specific terms
in the Hamiltonian, which can overwhelm the order-by-disorder
physics. Ultracold atoms, with clean and well-characterized
tunable Hamiltonians, provide a particularly attractive platform
to expose this remarkable phenomenon.

Single species of repulsive bosons loaded into a multivalley
dispersion will typically condense at a single minimum due to
mean-field interactions. This spontaneously broken valley
symmetry concurrently leads to a broken inversion and time-
reversal symmetry (TRS). Such a condensate in a p-flux triangular
lattice yields staggered charge loop current order on triangular
plaquettes18,31–35. For weak interactions, the physics of this state
is well captured by Gross–Pitaevskii theory36. Analogues of such
double-valley condensation of single-component bosons may be
realized for magnons in magnetic insulators37,38 and pumped
exciton-polaritons in quantum wells39. By contrast, as we show
here, the physics of multi-component bosons loaded into such
bands is far richer, due to an extra spin-valley degeneracy,
which persists even at the classical interacting level so that
quantum fluctuations have a crucial role in selecting the eventual
ground state.

Here we study two-component or equivalently pseudo-spin-1/2
bosons loaded into a multivalley band. This produces an extra
spin-valley degeneracy, since each spin state can be localized in
one of two valleys. We show that quantum fluctuations lead to a
‘quantum order by disorder’ effect in such a system, where
opposite spins condense at the two minima, giving rise to chiral
spin order in the system. Remarkably, this selection is ‘universal’,
in that it is independent of the microscopic details, such as the
lattice geometry or the precise dispersion, and is guaranteed by
the symmetry which protects the valley degeneracy. The most
direct experimental consequence of this chiral spin order is

R
ddkk[nm(k)� nk(k)]a0, while

R
ddk[nm(k)� nk(k)]¼ 0, where

nm/k(k) is the spin-resolved momentum distribution. The
emergent coupling between spin and orbital motions leads to
an interaction-induced spontaneous spin Hall effect of bosons in
optical lattices lacking inversion symmetry.

Taking a concrete example of spinor bosons loaded at massive
Dirac points of a graphene-like lattice, such as that recently
realized experimentally11, we predict that chiral spin order
implies spin loop currents in real space. With increasing
interaction strength, we find a rich phase diagram, with phase
transitions between partially and fully polarized superfluid phases
and Mott insulating phases separated by an emergent quantum
tricritical point. We show that Bloch oscillation techniques
provide a high fidelity route to preparing the chiral spin
superfluid and studying the concomitant bosonic spin Hall
phenomena.

Results
Emergence of chiral spin order. We first illustrate a minimal
model which supports a chiral superfluid ground state. We
consider two-component pseudo-spin-1/2 bosons in a spin-
independent optical lattice, described by the Hamiltonian
H¼H0þHint, with

H0¼
Z

ddk

ð2pÞd
EðkÞ� msð ÞfysðkÞfsðkÞ

Hint¼
1
2

X
s;s0;x;x0

Us;x;s0;x0f
y
sxf

y
s0x0fs0x0fs;x;

ð1Þ

where fsx is the lattice annihilation operator with its Fourier
transform fs(k)¼

P
xfsxe� ik � x,E(k) is the energy dispersion,

which is identical for both spin m and k, ms is the chemical
potential, and Us,x;s0 ,x’ is the density–density interaction. Our
treatment in the following is valid in spatial dimensions d¼ 2 or
3. We study a situation where the single-particle dispersion E(k)
possesses two minima, at generically incommensurate wave-
vectors ±K related by TRS. Note that TRS here refers to an
anti-unitary symmetry Tfs(k)T� 1¼fs(� k), under which the
spin is left unchanged, and the dispersion for such a system obeys
E(k)¼ E(� k). This is because ‘spin’ in our case simply refers to
distinct hyperfine states of an atom. Throughout, we will set
E(±K)¼ 0 as the energy reference point. In the presence of
translational symmetry, interactions preserve lattice momentum,
and the coupling constant in momentum space reads
Uss0(q)¼

P
rUs,x;s0 ,xþ reiq?r.

For weak interactions, the bosons condense at the two minima
at ±K, and the condensate wavefunction takes the form:

jsr¼ fs;r

� �
¼ ffiffiffiffiffiffiffiffiffiffi

rþ ;s
p

eiyþ ;seiK�r þ ffiffiffiffiffiffiffiffiffiffi
r� ;s

p
eiy� ;se� iK�r ð2Þ

Here r±,s refers to the density of each spin component at the
±K valleys, and y±,s phases of the spin component s at the two
valleys. For single species bosons with short-ranged repulsion,
the coexistence of þK and �K costs exchange interaction
(Uss(2K)40), so a single-valley condensation associated with the
spontaneous breaking of valley symmetry is energetically
favoured. In the two-component case we study, this exchange
mechanism implies that rþ ,mr� ,m¼rþ ,kr� ,k¼ 0, provided
|Umk(2K)|o(Umm(2K)Ukk(2K))1/2, a condition which is easily
satisfied for weakly interacting repulsive spinor bosons (for
example the mF¼±1 hyperfine states of 23Na (ref. 40)). For
contact interactions, this criterion reduces to the familiar criterion
for a miscible (spin mixed) phase in real space36.

Therefore at the mean-field level, each component condenses
at a single momentum (either þK or �K), yielding four
degenerate choices for the condensate wavefunction j";r;j#;r

� �
:
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(þ þ )�(eiK?r, eiK?r), (þ � )�(eiK?r, e� iK?r), (� � )�
(e� iK?r, e� iK?r), and (� þ )�(e� iK?r, eiK?r). The degeneracy
of (þ þ ) with (� � ) [or (þ � ) with (� þ )] is guaranteed by
TRS. However the degeneracy of (þ þ ) with (þ � ) is due to an
accidental symmetry in the mean-field energy,

E j"r;j
�
#r

h i
¼E j"r;j#r
� �

;
ð3Þ

with E½j"r;j#r�¼H fsr!jsr
		 , resulting from the density–density

nature of interactions, which conserve the populations of each of
the two spin components separately. In the (þ þ ) or (� � )
state, we have chiral charge (wc) order

R
ddk/(2p)dk

/Fw(k)F(k)Sa0, with F¼ (fm ,fk)T, while in the (þ � ) or
(� þ ) state, we have chiral spin (ws) order

R
ddk/(2p)dk

/Fw(k)szF(k)Sa0. In ultracold atom experiments, chiral spin
and charge orders can be distinguished by spin-resolved, time-of-
flight measurements11,41.

In the asymptotically weak interaction limit, only the minimal
momentum points ±K can be populated in the ground state, and
the classical degeneracy is exact. We now investigate how
quantum fluctuations lift this degeneracy through an ‘order by
disorder’ mechanism. To capture fluctuation effects, we start with
a heuristic argument on the basis of second order perturbation
theory. The dominant inter-spin scattering processes which lower
the mean-field energy for the (þ þ ) and (þ � ) (or equivalently
the (� � ) and (� þ )) states at second order are shown in
Fig. 1. Physically these processes correspond to annihilating two
condensate atoms in opposite spin states and creating two non-
condensed atoms. For the chiral charge state, the two processes
shown yield the same energy contribution, and give rise to the
first term in the right hand side of equation (4). By contrast, for
the chiral spin state, the two processes produce different energy
contributions, given by the second and third terms in the right
hand side of equation (4).

Treating these processes perturbatively, the resulting
energy difference between the chiral spin and charge
states DEð2Þ¼Eð2Þ

wc � Eð2Þ
ws is readily found by integrating over

momentum:

DEð2Þ=Ns¼�
Z

ddk

ð2pÞd
r"r#

j U"#ðk�KÞ j 2
EðkÞþ EðQ� kÞ




� 1
2
j U"#ðk�KÞ j 2
EðkÞþ Eð� kÞ � 1

2
j U"#ðK� kÞ j 2

EðQ� kÞþ Eðk�QÞ

�
;

ð4Þ

with Q¼ 2K, Ns the total number of lattice sites, and the integral
excludes the momentum k¼±K points. Using E(k)¼ E(� k), it
follows from the relation X� 1þY� 1

Z4(XþY)� 1 (for positive
numbers X and Y) that DE(2)40, a remarkably universal result
which is independent of the lattice geometry or details of the
bandstructure. The chiral spin ordered superfluid state is

generically selected, and this energetic selection rule is enforced
by TRS.

While the above argument is illuminating, and captures the
essential physics, a subtle issue arises in two dimensions, because
the integral in equation (4) is logarithmically divergent (from the
integral

R
d2k/k2). Thus we need to go beyond the Rayleigh–

Schrödinger type bare perturbation theory, and perform a careful
Bogoliubov theory analysis (akin to a renormalized Wigner–
Brillouin type perturbation theory), to regularize the logarithmic
divergence. In the renormalized theory (see Methods and
Supplementary Notes 1 and 2), the bare dispersions in
equation (4) are replaced by Bogoliubov energy dispersions,
and the interaction Umk replaced by effective couplings between
the Bogoliubov quasiparticles. This cures the logarithmic
divergence, since Bogoliubov spectra appearing in the denomi-
nators are linear in momentum near the condensate points. This
improved analysis still yields the same robust universal result,
DE(2)40, that is, chiral spin order is generically favoured over
chiral charge ordering. Note that, this chiral spin order of two-
component Bose superfluids in multivalley bands, is distinct from
the ‘spin superfluidity’ proposed in fermionic 3He.

In three dimensions, the superfluid transition temperature of
the chiral spin state is the non-interacting Bose–Einstein
condensate (BEC) temperature (see Methods). In two dimen-
sions, phase fluctuations dominate, and the superfluid transition
temperature is determined by vortex proliferation associated with
a Kosterlitz–Thouless (KT) transition at TcEpG1/2rs/8, with G
being the curvature of the bandstructure at K (see Methods),
which determines the energy costs for phase twists. The chiral
spin superfluid also breaks discrete Z2 symmetry, which is
expected to be restored at a higher transition temperature42,
giving rise to a rich finite temperature phase diagram, with an
intermediate non-condensed chiral spin fluid phase, separating
the fully disordered and chiral spin superfluid phases. It is worth
noting that the superfluid transition temperature is high,
comparable to ordinary BEC transition temperature, even
though the quantum fluctuation induced energy-density
splitting, DE(2)/Ns, is small.

Since the two spin components condense at opposite finite
momenta in the chiral spin superfluid, the generic feature for this
order is

R
ddkk[nm(k)� nk(k)]a0, which can be probed by spin-

resolved time-of-flight measurements. Furthermore, when the
Hamiltonian has TRS but no inversion symmetry, the chiral spin
superfluid exhibits a spontaneous spin Hall effect, which is
captured by the response to an applied linear potential (or a
constant force F),

_rs¼ � F� OðKÞ�Oð�KÞð Þ; ð5Þ
where rs is the vector connecting the charge centres of the two
spin components, and OðkÞ is the Berry curvature43. We trace
this to the underlying valley-dependent Berry curvature of the
single-particle bands, which makes itself manifest as a
macroscopic spin Hall effect, in the presence of chiral spin
order. In the interacting superfluid, this spin Hall effect only
develops below the Ising transition associated with chiral order,
and its sign fluctuates depending on the choice of the two Ising
states, a spontaneously broken symmetry. Observing a chiral spin
superfluid with these novel properties would constitute a direct
demonstration of ‘quantum order by disorder’, a quantum
fluctuation effect beyond the conventional mean-field theories
used to describe Bose–Einstein condensation.

Spinor condensate at Dirac points. We now consider a concrete
model which exhibits the chiral superfluid ground state, and the
associated spin Hall effect: bosonic atoms loaded at the massive
Dirac points of a spin-dependent honeycomb lattice, as shown in

Chiral spin superfluid

k–2K 2K–k 2K–k

–k

Chiral charge superfluid

k k

–K –KK K

Figure 1 | Scattering processes in chiral spin and charge superfluid states

in the ‘double-valley’ band. In the chiral spin state ( þ � ), two

condensate atoms of opposite spin at K and �K are scattered to k and � k

(or 2K� k and k� 2K). In the chiral charge state, atoms of opposite spin at

K and K are scattered to k and 2K� k. Here the solid (dashed) arrows

denote m (k), and the red/blue colours differentiate between the two

processes, which must be added symmetrically for every k.
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Fig. 2a. Our choice is motivated by recent experiments, where two
species of bosonic atoms were loaded into the ground band of
such a honeycomb lattice11.

The optical potential of the spin-dependent lattice is11

V latticeðx;mFÞ

¼ V0

X
j

cos ðkbj � xÞ�mFa
X
j

sin ðkbj � xÞ
 !

;
ð6Þ

with bj¼ 0,1,2¼ (� sin (2pj/3), cos (2pj/3)). We set the lattice
constant as the length unit. For a¼0, this potential has
inversion symmetry, that is, V lattice x;mFð Þ¼V lattice � x; �mFð Þ,
and the realized hexagonal lattice has the bandstructure of
graphene, two lowest bands touching at the Dirac points. With
a 6¼ 0, inversion symmetry is broken, and a gap opens at the
Dirac points (akin to the bandstructure of boron nitride44). The
first excited band has minima at two Dirac points (Fig. 2b),
related by TRS. The model still has a combined spin-space
inversion symmetry, namely V lattice x;mFð Þ¼V lattice � x; �mFð Þ
which implies that EmF

(k)¼ E�mF
(� k). Using mF¼ 1 and � 1 for

pseudo-spin m and k, the combined symmetry, together with our
defined TRS which relates k to � k (while keeping the pseudo-
spin degree of freedom unchanged), guarantees that the two spin
components possess the same energy dispersion E(k) (see the
band structure in Supplementary Fig. 1). Therefore, our general
theory directly applies to this spin-dependent lattice Hamiltonian.
The energy splitting of chiral charge and spin states is shown in
Fig. 3a. We predict that the chiral spin superfluid state is the
ground state for weakly interacting bosons loaded into the excited
band of this lattice (see Fig. 4).

The momentum distribution of the chiral spin superfluid state
(Fig. 5b) shows a pattern similar to the twisted superfluid
reported in the experiment11, but in our case, the condensates are
located at the Dirac points, rather than reciprocal lattice vectors,
as in the experiment. Further, because of the speciality of Bloch
modes at Dirac points, the chiral spin superfluid actually has
staggered spin loop currents in real space (Fig. 2a), where spin
and orbital motion are spontaneously coupled. In fermionic
systems, spin loop current orderings have also been predicted
recently, albeit in a more delicate way45,46. On the basis of
equation (5), the broken inversion symmetry implies that this
chiral spin state exhibits a spin Hall effect, due to the Berry
curvature at a massive Dirac point, O �Kð Þ¼�O Kð Þ 6¼ 0. (In

condensed matter, this is also known as a ‘valley Hall’ effect2, but
in our case, valley and spin degrees of freedom are spontaneously
coupled in the chiral spin state, giving rise to a spin Hall effect.)
In Fig. 3b, we confirm this effect by direct numerical simulations.
With time-dependent Gross–Pitaevskii calculations, we find
that spin Hall effect is captured by the semiclassical
equation (equation (5)), with its magnitude being weakly
interaction-dependent (see Supplementary Note 3 and
Supplementary Fig. 2). Furthermore, as we show below, this
chiral spin state can be prepared deterministically in experiments,
by using Bloch oscillations (see Fig. 5 and Methods).

To study phase transitions from the weakly interacting chiral
spin superfluid, we project into the second band, which is valid
when the band gap DD dominates over other energy scales, such
as effective tunnelling teff in the second band, and the intra- and
inter-species interactions U and V (see Methods.) The Wannier
orbitals for the spin m and k atoms in the resulting single-band
Hamiltonian (see Methods) are shown in Fig. 2c. We study the
properties of this tight-binding Hamiltonian using Gutzwiller
mean-field theory, which predicts the correct qualitative phase
diagram in d¼ 2,3. When V is strong, the chiral superfluid is
unstable towards phase separation into fully polarized domains.
In the weakly interacting limit, this transition is first order, and
occurs at a critical interaction strength Vc¼U/3 (ref. 36). In the
strongly interacting limit U-N, there is also a direct first-order
transition to a fully polarized state, but at a different critical value
Vc¼ 2teff (see Supplementary Note 4). For intermediate interac-
tions, that is, when U and V are not too large, correlation effects
stabilize a partially polarized chiral spin superfluid state. The
transitions out of this intermediate state are second order (Fig. 4).
With the density fixed at rmþrk¼ 1, we find a novel quantum
tricritical point at the crossing of the phase boundaries between
the polarized superfluid and Mott phases.

Discussion
From our analysis, the chiral spin superfluid is a generic state for
spinor bosons loaded into a double-well energy band, connected
by TRS. This state thus not only exists in the hexagonal lattice11,12

example we study, but also in a p-flux triangular lattice14,

A

A

1.5

1

0.5

0

–0.5

–K +KB

B

B

A

B B

R1
R2R3

e3ˆ e2ˆ

e1ˆ

Figure 2 | The spin-dependent hexagonal lattice. (a) The lattice structure.

Spin m (k) bosons mainly live on A (B) sites. (b) The condensate

configuration for the chiral spin superfluid. Spin m and k condensing at þK

and �K in the first excited band corresponds to spin loop currents in real

space, as illustrated by dashed arrows in a. (c) A contour plot of the excited

band Wannier function of spin m, which is peaked at the A sites and has a

minimum at the B sites (the opposite is true for the spin k Wannier

function).
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Figure 3 | Emergence of chiral spin superfluid and the spin Hall effect.

(a) The energy difference between chiral charge and spin superfluid states

with varying inter-spin interaction V and fixed intra-species interaction U.

The red ‘þ ’ symbols are results calculated by solving the Bogoliubov

spectra numerically, and the blue solid line is from a renormalized

perturbation theory. See the Methods section for details of the tight-binding

Hamiltonian we solve. The intra-spin interaction strength is chosen to be

U/teff¼ 1 here. For interaction strength V4VcEU/3 (not shown here), the

system is in a spin polarized state (see Fig. 4). (b) The dynamics of the

charge centres, rmk , of the two spin components with a force F applied in

the r8 direction. The two spins move oppositely in the transverse (r>)

direction, signifying a spin Hall effect. Here we choose DD/t¼ 2 and

F/t¼0.5 (t and DD are nearest neighbour tunnelling and Dirac gap

respectively, in the hexagonal lattice.).
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a shaken lattice13 and other similar Bose systems. The observable
signature for chiral spin order, expected to emerge in all these
setups, is

R
ddkk[nm(k)� nk(k)]a0. In the shaken lattice setup

recently realized in Chicago13, the chiral spin state produces a
time-of-flight signal similar to that in spin-orbit coupled gases6,
but with a spontaneously chosen sign for the spin-orbit coupling,
which will vary from shot to shot. In optical lattices with broken
inversion symmetry, this chiral spin superfluid supports a
spontaneous spin Hall effect. The required potential gradient to
observe this transport phenomenon is different in spin-
independent and spin-dependent lattices. In the former13,12, a
spin-independent force (or non-magnetic potential gradient) is
sufficient, whereas in the latter case11, a spin-dependent force
mFF (or a magnetic potential gradient) is necessary to
accommodate for the spin-dependence of the lattice.

The idea that the chiral spin order is selected due to time-
reversal invariance can be generalized to more general bands with
multi-minima respecting crystalline symmetries, where the nature
of momentum space magnetism is expected to be richer. Such

multiple minimum bands are believed to occur in high spin
systems, such as Dysprosium or Erbium atoms coupled to Raman
fields47. In addition to the motivation from optical lattices11,13,14,
the proposed momentum space magnetism is also potentially
relevant to spontaneous vortex formation in BECs confined in
ring geometries48.

Finally, we note that if the TRS is weakly broken, the chiral
spin order would no longer be generically stable. We expect a
phase transition from the chiral spin to the chiral charge
superfluid, once the energy difference, E(K)� E(�K) dominates
over the quantum fluctuation correction (equation (4) and Fig. 3).
We however emphasize here that TRS is usually respected in
optical lattices in the absence of artificial gauge fields23.

Methods
Regularization of the logarithmic divergence. To treat the logarithmic
divergence in the bare perturbation theory (equation (4)) in two dimensions,
we perform a more careful analysis using Bogoliubov theory, and find the
energy difference between chiral spin and charge states to be (see Supplementary
Notes 1 and 2)

DEð2Þ=Ns¼� 1
2
r"r#

Z
k

g2ðkÞ

� 2
e"ðk;Q� kÞþ e#ðk;Q� kÞ




� 1
e"ðk;Q� kÞþ e#ð�Qþ k; � kÞþDEðk;Q� kÞ�DEð�Qþ k; � kÞ

� 1
e#ð�Qþ k; � kÞþ e"ðk;Q� kÞþDEð�Qþ k; � kÞ�DEðk;Q� kÞ

�
;

ð7Þ
where

e2sðk1; k2Þ ¼ Eðk1; k2Þ Eðk1; k2Þþ 2rsUssðK� kÞ½ �, Eðk1; k2Þ ¼ Eðk1Þð
þ Eðk2ÞÞ=2, and DEðk1; k2Þ ¼ ðEðk1Þ� Eðk2ÞÞ=2, and the effective couplings g are
given in Supplementary Note 1. Following the same arguments as the bare
perturbation theory, we recover DE(2)40. Therefore, the chiral spin superfluid is
generically favoured over the chiral charge superfluid, in the presence of unbroken
TRS symmetry.

Finite temperature transitions. In three dimensions at low temperature, the
chiral spin superfluid state breaks two U(1) symmetries (corresponding to two
spins) and a Z2 symmetry (k-� k). For the balanced case, with rm¼rk, we
expect three nearly coincident transitions (one Ising and two U(1)) near the three
dimensional BEC transition temperature, while for the imbalanced case, we expect
a U(1) transition for the minority spin at lower temperature, followed by two nearly
coincident transitions (Ising and U(1) for the majority spin) at a higher
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TDiracE4p/(3l). (b) The difference between the momentum distributions

of the two spin components nm(k)� nk(k) in the excited band at time TDirac.

In our simulation, we choose DD¼ 3t and l¼0.2t. The spread of the

momentum distribution difference over a finite momentum range is due to

the harmonic trap.
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temperature. In two dimensions, the superfluidity transition temperature is
determined by phase fluctuations. The fluctuations on top of chiral spin superfluid
state are captured by introducing slowly varying fields jo

sr as j"r¼jo
"r e

iK�r and
j#r¼jo

#r e
� iK�r. The energy cost of these fluctuations is

DE¼
Z

d2x
X
s

1
2
Zij@xij

o�
s;x @xjj

o
s;x


 �
; ð8Þ

with Zij¼ qkiqkjE(k)|k-K. Transforming to the coordinate frame with Zij being
diagonal and replacing jo

sr by
ffiffiffiffiffi
rs

p
eiys , DE is rewritten as DE¼ (1)/

(2)
R
d2x
P

srs{l1(qx1ys)2þ l2(qx2ys)2}, where l1,2 are eigenvalues of [Z]. The KT
transition temperature is then estimated to be TcEpG1/2rs/8, where G is the
Gaussian curvature of the bandstructure at K, which is l1l2. For the symmetric
case with rm¼ rk, we have a single KT transition, while for rmark there are two
separate KT transitions at different temperatures. The Ising transition associated
with the chiral order is expected to occur slightly above the higher superfluid
transition, as observed in other studies of chiral superfluids42. In principle, a chiral
spin state which has chiral spin order, but no superfluidity, could occur in a
temperature window above superfluid transitions42; the exploration of such a
remarkable bosonic chiral spin fluid is left for future studies.

Experimental preparation of the chiral spin state. Here we propose a deter-
ministic way to prepare the chiral superfluid state with Bloch oscillations. We start
with the lowest band condensate in the lattice potential V lattice x;mFð Þ j a!0 for
which the two lowest bands touch at Dirac points. Applying a magnetic potential
gradient �mFlx, the spin m and k components will move toward the Dirac points
at K and �K, respectively. At time TDiracE(4p‘)/(3l), the components reach the
respective Dirac points, after which we quickly ramp up the spin-dependent
potential (the term proportional to a in equation (6)), to make the Dirac points
massive with a band gap DD. With DD much larger than the bandwidth and
interactions, the inter-band dynamics will be strongly suppressed. The meta-stable
state in the excited band is given by an effective single-band Hamiltonian,
described in the next paragraph. To demonstrate the efficiency of the proposed
procedure, we simulate the Bloch oscillations by taking a two-band tight-binding
model of free bosons,

H2band¼� t
X

or;r04

fyAs;rfBs;r þ h:c:
� 


þ 1
2
mFDD

X
r

fyAs;rfAs;r �fyBs;rþ ê1
fBs;rþ ê1

� 

;

ð9Þ

and the magnetic potential gradient is modelled as

Hlinear¼� lmF

X
r

rx fyAs;rfAs;r þfyBs;rþ ê1
fBs;rþ ê1

h i
; ð10Þ

where A and B label the two sublattices as shown in Fig. 2. We find that the
occupation fraction of the excited band could easily reach 50% (Fig. 5). The pre-
pared momentum distribution has sharp peaks as required for the chiral spin
superfluid. Including the effects of interactions in the dynamics via a Gross–
Pitaevskii equation, the achievable transfer fraction to the excited band is lowered
somewhat, and the peaks in the momentum distribution broaden (see
Supplementary Fig. 3). However these effects are negligible for shallow lattices,
where the interactions are weak compared with single-particle tunnelings.

Calculation of the phase diagram. To obtain the phase diagram of the meta-
stable states in the second band of the hexagonal lattice, we construct an effective
single-band tight-binding model,

H0¼
X
r;j

teff fy";rf";rþRj
þfy#;rþ ê1

f#;rþ ê1 þRj
þ h:c:

h i
; ð11Þ

Hint¼
U
2

X
r

n";r n";r � 1
� �

þ n#;rþ ê1 n#;rþ ê1 � 1
� �� �

þV
X
r;j

n";rn#;rþ êj :
ð12Þ

Here fs,r is the annihilation operator for the Wannier functions peaked at
position r (Fig. 2), and each spin species sees a triangular lattice. This Bose–
Hubbard model describes bosons loaded into the second band of the hexagonal
lattice. In this lattice setup, the Wannier functions of m and k components are
peaked at two nearby sites rather than on the same one, which makes the ratio of
interactions V/U easily tunable. For example, this ratio can be decreased by
increasing the lattice depth or the spin-dependence parameter a (see Fig. 4c). The
interaction strength U/teff can be tuned by controlling the lattice depth, as already
demonstrated by the experimental observation of the superfluid-Mott transition11.
The energy dispersion from the tight-binding model is E(k)¼ 2t

P
jcos (k?Rj),

which has band minima at ±K¼ (±(4p)/(3),0). For weak interactions, the energy
difference between the chiral charge and spin states computed from this model is
shown in Fig. 3.
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