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Implementation of a quantum metamaterial using
superconducting qubits
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The key issue for the implementation of a metamaterial is to demonstrate the existence of

collective modes corresponding to coherent oscillations of the meta-atoms. Atoms of natural

materials interact with electromagnetic fields as quantum two-level systems. Artificial

quantum two-level systems can be made, for example, using superconducting nonlinear

resonators cooled down to their ground state. Here we perform an experiment in which 20 of

these quantum meta-atoms, so-called flux qubits, are embedded into a microwave resonator.

We observe the dispersive shift of the resonator frequency imposed by the qubit

metamaterial and the collective resonant coupling of eight qubits. The realized prototype

represents a mesoscopic limit of naturally occurring spin ensembles and as such we

demonstrate the AC-Zeeman shift of a resonant qubit ensemble. The studied system

constitutes the implementation of a basic quantum metamaterial in the sense that many

artificial atoms are coupled collectively to the quantized mode of a photon field.
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M
anipulating the propagation of electromagnetic waves
through sub-wavelength-sized artificial structures is the
core function of metamaterials1–3. Resonant structures,

such as split-ring resonators, play the role of artificial ‘atoms’ and
shape the magnetic response. Superconducting metamaterials
moved into the spotlight for their very low ohmic losses and the
possibility of tuning their resonance frequency by exploiting the
Josephson inductance4–7. Moreover, the nonlinear nature of the
Josephson inductance enables the fabrication of truly artificial
atoms8–10. Arrays of such superconducting quantum two-level
systems (qubits) can be used for the implementation of a
quantum metamaterial11,12. However, while natural atoms are
identical, superconducting qubits are never the same exactly. For
instance, the three-junction flux qubits13 used in this work have a
minimal energy-level spacing D, which is exponentially sensitive
to the design parameters14. This makes the fabrication of qubits
with similar specified properties very challenging. Moreover, in a
linear qubit chain, which relies on the nearest-neighbour
interaction, single off-resonant qubits act as defects and may
destroy coherent modes. These drawbacks can be circumvented
by using a common cavity for coupling the qubits one by one to a
collective cavity mode15. The design of the quantum metamaterial
presented here can be viewed as few-atom cavity quantum
electrodynamics with artificial solid state atoms (see Fig. 1a).

Exploring the above ideas, we designed and fabricated a sample
featuring 20 superconducting aluminium flux qubits embedded
into a niobium microwave l/2 cavity (see Fig. 1a). For the used
fabrication process, a spread of o20% in the energy gap D and of
5% in the persistent current I is achieved for the flux qubits16. The
qubit–qubit nearest-neighbour coupling is designed to be negligibly
small and the coupling of each qubit to the resonator is chosen as
small enough, such that only the collective effects are expected to be
visible. On resonance, when the level spacings of the qubits are
equal to that of the resonator, the degeneracy between their states is
lifted. This can be monitored by measuring the amplitude and
phase of the microwaves transmitted at the resonator frequency. In
the case of n mutually non-interacting qubits, an enhancement of
the collective coupling by a factor of (n)1/2 compared with the
single-qubit case is expected17 (see Fig. 1b); this enhancement has
been observed previously for three superconducting qubits18.
However, the scalability of this effect for a larger number of
qubits forming a macroscopic quantum system has not been tested.
Here we use this effect in the resonant regime to identify three
subensembles A, B and S of degenerate qubits and extract their
average ensemble parameters. Interestingly, the system exhibits a
time dependence, where the large ensemble S of eight qubits
dissociates into the two smaller ones (A and B). In addition, we
demonstrate the dispersive shift of the resonator frequency19,20 by
the qubits and show the tunabilty of the level structure of the
quantum metamaterial by applying a coherent drive. One of the
applications of our system is detecting and counting of single
photons in the microwave frequency range21–23. Other proposals
suggest the possibility to observe sudden phase switching24,
quantum birefringence25 and superradiant phase transitions26.

Results
Theoretical model. In our system, the frequency spacing between

the lowest two energy levels for the ith qubit is given by Ei ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2
i þ E2i

q
(ref. 13). By detuning the external magnetic flux F

from the degeneracy point of half a flux quantum F0/2, an energy
bias Ei ¼ 2Ii � F�F0=2

‘ is provided. Thus, the energy splitting
between the ground and the excited state of individual qubits can
be controlled by changing the external magnetic field. Flux qubits

are extremely anharmonic and therefore the influence of their
higher energy levels can be ignored safely.

The cavity is formed as a coplanar wave guide resonator
with the fundamental mode at o1=2p ¼ 2:594GHz (see
Supplementary Fig. 1). The coplanar wave guide resonator has
higher harmonics oj � j � o1 with j¼ 1,2,3,..., which are
accessible through our measurement setup to j¼ 5 (see Fig. 1c).
This feature permits the investigation of the resonant interaction
at different frequencies.

The photon field in the resonator is described by the
creation and annihilation operators aw and a. The ith
qubit Hamiltonian in the energy basis {|giS, |eiS} can be
expressed as Hq ¼ ‘Ei

2 siz , where sik are the Pauli matrices.
The system of a single resonator mode coupled to n
qubits is modelled by the Tavis–Cummings Hamiltonian27

H ¼ ‘ojayaþ
Pn

i¼1 ð‘Ei2 siz þ‘ gE;ijðsiþ aþsi� a
yÞÞ, where

gE,ij¼ (Di/Ei)gij is the transverse coupling of one qubit to the
resonator. The bare coupling gij between qubit i and the resonator
mode j can be calculated from the sample’s geometry. Numerical
calculations for the used geometries reveal a mutual inductance
Mqr¼ (0.51±0.02) pH between a single qubit and the resonator
and an inductance Lr¼ (11±0.4) nH of the resonator (see
Methods section). Subsequently, the coupling constant follows
as gij ¼ MqrIi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oj=‘Lr

p
. The dense packing of the flux qubits

makes them less sensitive to local flux changes and prevents
inhomogeneous coupling, which would be expected for larger
types of superconducting qubits28. For large dephasing and
resonant driving of the oscillator, we can use a semiclassical
model for the description of the photon field,

h _ai ¼ � kj
2
þ
Xn
i¼1

g2E;ij
Gj � idij

 !
hai� i

f
2
: ð1Þ

Gf is the dephasing rate of the qubits, f is the driving strength and
dij ¼ Ei �oj is the detuning. We assume that the dephasing rate
is the same for all qubits and because the driving is weak, we
neglect terms of the order of |/aS|2 (see Methods section for
further details). In the experiment, the phase f of the
transmission coefficient t of the resonator is monitored, tp
/aS¼ |/aS|eif.

If n qubits are in resonance, the stationary phase shift
h _ai ¼ 0
� �

takes a simple form,

tanf ¼
� 2ng2E;ijdij

kj G2
j þ d2ij

� �
þ 2ng2E;ijGj

: ð2Þ

The resonant regime. The parameters of the qubit-resonator
system are in the weak-coupling limit, where kjBgE,ij and
Gf44gE,ij. Hence, single-qubit anticrossings are not resolvable
from the base noise level. For n resonant qubits, an intermediate
regime may be reached, when Gj4

ffiffiffi
n

p
gE;ij and ko

ffiffiffi
n

p
gE;ij.

However, the vacuum Rabi splitting of a qubit-resonator anti-
crossing still cannot be resolved, because the decoherence of the
qubits dominates over the coupling. Nevertheless, the signature
of the anticrossing manifests itself in a dispersive shift of the
resonance frequency29,30 and a resulting phase shift.

We performed the measurements in a dilution refrigerator with
a nominal base temperature below 20mK. The phase of the
transmission through the sample at the harmonics of the
resonator was recorded with a network analyser. A sufficiently
small amplitude of the probe signal guaranteed that the average
number of photons in the resonator was below unity. When the
resonator is probed at its harmonics o3; o4 ando5, two
symmetric features appear most prominently in the third
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harmonic signal (see Fig. 2a); they correspond to a resonant
interaction between the qubits and the resonator.

To obtain the effective parameters of the qubits belonging to
the ensemble that is responsible for the phase shift, the central
frequencies of the resonances at harmonics o3 too5 are fitted as a
function of the magnetic flux to the hyperbolic qubit spectrum
Ei(Di, Ei) (see Fig. 2a). The minimal energy-level spacing and
persistent current are found to be DS/2p¼ 5.6GHz and
IS¼ (74±1) nA. Note that these are average values for the
individual qubits taking part in the ensemble. Considering the
fourth harmonic at frequency o4, the current of the standing
wave at the centre of the resonator is expected to be zero and the
voltage has maximum amplitude. Therefore, the interaction
between the qubits and the resonator can only arise from
capacitive rather than inductive coupling. We argue that the
signature of crossing the qubit spectrum seen at the fourth
harmonic is due to the relatively low ratio of Josephson energy to
the charging energy of the Josephson junctions, leading to non-

negligible capacitive coupling between the qubits and the
resonator. Consequently, the qubits are sensitive to the charge
fluctuations. This may cause low-frequency oscillations of the
qubit energy leading to the observed splitting of the single
resonance into two resonant modes over time, as shown in Fig. 2b
(see Supplementary Note 1 and Supplementary Fig. 2 for further
information). Each of the observed features (Fig. 2a,b) are stable
over a timescale of B103 s, which is much longer than the typical
spectroscopy time of this experiment.

The effective parameters of the ensembles responsible for the
resulting two resonant modes A and B are DA/2p¼ 5.3GHz,
IA¼ (76±1) nA and DB/2p¼ 6.1GHz, IB¼ (72±1) nA, respec-
tively. The coupling of a single qubit to the third harmonic of the
resonator follows as gi3/2p¼ (1.2±0.1)MHz.

The remaining unknown parameters of the system are the
number of qubits n in the ensemble and the dephasing rate Gj.
The dephasing is responsible for the width of the resonant mode,
whereas the dispersive shift out of resonance is independent of the
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Figure 1 | A quantum metamaterial made of few artificial atoms in a cavity. (a) Coupling artificial atoms to the mode of an electromagnetic field is the

main idea behind the concept of quantum metamaterials presented here. The scanning electron micrograph shows the central part of the coplanar wave guide

resonator with 20 qubit rings situated between the central conductor line and the ground plane of the resonator; scale bar, 2mm. The artificial atoms are much

smaller than the wavelength of the transmitted signals, which is of the order of the length of the resonator (23mm). Each qubit is individually coupled to the

resonator by the mutual inductance Mqr and to its neighbour by Mqq. Even though Mqr and Mqq are of the same order of magnitude, the effect of direct

coupling between the qubits is inhibited by their strong dephasing (see Methods section). Therefore, the system effectively constitutes n mutually non-

interacting spins coupled to the photon field of the resonator, similar to few-atom cavity quantum electrodynamics. (b) The level structure of the combined

system of qubits and resonator. The horizontal lines (and their colour, as for the data traces in all subsequent figures) correspond to the modes of the

resonator. The resonant phase shift expected at the crossings between qubits and resonator (encircled areas) is enhanced linearly by the number of qubits N.

The insets show the anticrossings for N¼ 1 and N¼ 8. In the fully dispersive regime, the metamaterial gives rise to a dispersive shift of the resonator

frequency. (c) The transmission amplitude of the resonator at the fundamental mode frequency and the first four harmonics of the resonator. The black lines

are fits to Lorentzians. The linewidths k/(2p) are 55.5, 216, 715, 950 and 1,400kHz. k is the photon loss rate of the resonator. The widths of the curves are

scaled over the frequency axis to a factor of 250 to ensure visibility over the full frequency range. The relative linewidth is to scale.
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dephasing and depends solely on the number of qubits. Thus, n
and Gj can be regarded as independent fitting parameters for the
central region and for the periphery of the avoided level crossing,
respectively. Notably, the magnitude of the resonator phase shift
(equation (2)) depends linearly on n for a small number of qubits n.

The best fit according to equation (2) for the most prominent
resonant mode (Fig. 2a) between the qubit metamaterial and the
third harmonic mode of the resonator yields nS¼ 8 and Gj,S¼ 2
p� 53MHz, as shown by the solid line in Fig. 2c. This dephasing
rate corresponds to a phase coherence time of a few nanoseconds, as
expected for flux qubits operated away from their degeneracy point.

As the two separated resonant modes (Fig. 2b) are detuned
from each other, they can be treated independently. The best fit of
the measured data returns nA¼ 4 and Gj,A¼ 2p� 54MHz, and
nB¼ 4 and Gj,B¼ 2p� 41MHz (see solid line in Fig. 2d).
The resonant mode of ensemble B is closer to its degeneracy
point, which is consistent with a slightly lower dephasing rate. For
each of the resonant modes, the number of participating qubits is
half of that found for the single resonant mode. Therefore, we
conclude that the ensemble of the single resonant mode
(ensemble S, Fig. 2a,c) is formed by the same qubits as ensembles
A and B (Fig. 2b,d).

The fully dispersive regime. When all the minimal energy-level
spacings Di are above the resonator frequency, no resonant
interaction will occur. A frequency shift—the so-called dispersive
dip—of the resonator is observed while tuning the magnetic field.
It can be understood as a consequence of the AC-Zeeman shift,
where each qubit shifts the cavity frequency by g2E;ij=dij in a
positive or negative direction, depending on its state19. If the

system remains in the ground state at all times, the cavity shift
depends solely on the qubit-resonator detuning. For frequencies
below 5.3 GHz, the qubit metamaterial is in this fully dispersive
regime, which can be analysed when probing the resonator at the
fundamental mode frequency o1=2p and at the second harmonic
frequency o2=2p. In this regime, the detuning between qubits and
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Figure 2 | The qubit metamaterial in the resonant regime. (a) The phase signal of the transmission through the system at the 3rd, 4th and 5th

harmonic in dependence on the magnetic flux, which controls the transition frequencies of the qubits. The curves are separated in phase by an arbitrary

offset. The right y axis presents the probe frequency of each curve (colour indicates the mode of the resonator) and also corresponds to the qubit

frequencies of the effective parameter set S (black solid line). The extraction of the ensemble parameters results from the resonance points (closed circles).

(b) Due to its sensitivity to charge fluctuations, the metamaterial possesses two stable states over time. Here, the parameters of the qubit system in the

state of two resonant modes are extracted. (c) Quantitative analysis of the resonant mode between the qubits and the third harmonic mode of the

resonator. The solid line shows a fit according to equation (2), which shows that ensemble S constitutes eight qubits. (d) The best fit for ensembles A and B

yields four qubits each.
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resonator dij is always higher than the dephasing Gj, which can
be neglected. Figure 3 shows the dispersive shift measured at the
fundamental mode frequency o1=2p. The expected shift induced
by a single qubit is much weaker than the one actually observed.
The theoretical dispersive shift for ensemble S does not account
for the full magnitude of the shift. When fitted to equation (2)
with the ensemble parameters S and n as a free parameter, the
best fit is obtained for 10 qubits. The dominating influence on the
dispersive shift arises from the qubits in the resonant modes,
which possess a minimal detuning relative to the fundamental
mode. The remaining qubits can have a higher minimal energy-
level spacing resulting in a small contribution to the dispersive
shift, which is proportional to 1/Ei3. Another explanation for their
weak influence may be a very low persistent current or a very
small gap, both resulting in a small coupling and therefore a small
contribution to the dispersive shift. Nonetheless, the full extent of
the dispersive shift is induced by all qubits in the metamaterial.

Tunability by a coherent drive. Finally, to provide an evidence of
the quantum nature of our system, we demonstrate the tunability of
the dispersive shift by a photon number Nj. By driving the
metamaterial in an additional off-resonant mode j, its transition
frequencies acquire a constant pull comparable to the AC-Zeeman
shift occurring, for example, in natural spin ensembles. The shift is
opposed on each qubit individually, the qubit frequencies are
shifted in dependence on the sign of the qubit-resonator detuning
dij to either higher or lower frequencies. The system under drive by
Nj photons follows ~Ei ¼ Ei þ 2Njg2E;ij=dij (ref. 19). Figure 4a shows
the transition from the dispersive regime to the resonant regime in
the second harmonic mode. For a weak driving strength at a
frequency of o3=2p, ensemble A remains still above leaving
the system in the fully dispersive regime (see Fig. 1b) from which
the coupling is extracted to be gi2¼ 0.4MHz (see Supplementary
Note 2 and Supplementary Fig. 3). The resonant mode appearing at
a photon number N3¼ 85� 103 is in good agreement with the
theoretically expected one (see Fig. 4c), showing that the parameters
extracted are fully consistent with our expectations.

Discussion
In conclusion, we have reported experiments and analysis of a
prototype quantum metamaterial formed by 20 superconducting
flux qubits. The studied system constitutes the implementation of
a basic quantum metamaterial in the sense that many artificial
atoms are coupled collectively to the quantized mode of a photon
field. Despite the expected relatively large spread of the qubit
parameters given by the exponential dependence on the energy
gap D and the persistent current I of the qubits, the collective
behaviour of the qubits is observed clearly. While all qubits
give rise to a dispersive shift of the resonator frequency, the
parameters of three different resonant ensembles of qubits are
reconstructed by using their level crossing with the higher
harmonics of the resonator. The quantitative analysis of the
resonant modes reveals that two ensembles are formed by the
collective interaction of four qubits each and the third ensemble is
formed by eight qubits. The tunability of the ensembles by the
AC-Zeeman shift has been demonstrated.

Methods
Derivation of the qubit-resonator coupling. The mutual inductance
Mqr¼ 0.51±0.02 pH between a single qubit and the resonator and the inductance
of the resonator Lr¼ (11±0.4) nH are derived from the geometry of the sample.
The uncertainty for the mutual inductance results from resolution of the micro-
graph from which the exact position and size of the qubit are extracted. The mutual
inductance between qubits and resonator can also be easily estimated by the
assumption of a rectangular loop with height h and length l placed at a distance x
next to an infinite wire

M ¼ m0l
2p

ln
xþ h
x

� �
: ð3Þ

The qubit’s dimensions are l¼ 1.6 mm and h¼ 4.3 mm. Its distance to the central
line of the resonator is 1.1 mm. This results in an inductance of Mqr,e¼ 0.51pH,
which is identical to numerical calculations.

In addition, our method has been experimentally validated using a single qubit
embedded into an identical resonator with o3=2p ¼ 7:77GHz and k3¼ 0.46MHz.
The dimension and location of the qubit differs from the ones used in the
metamaterial, the size of the qubit is l¼ 4.6 mm and h¼ 2.6 mm. It is placed at a
distance x¼ 1.8 mm, which results in a slightly higher mutual inductance
Mqr¼ (0.91±0.02) pH. The gap and the persistent current are D¼ 3GHz and
I¼ (158±1) nA, determined in a two-tone spectroscopy experiment. The expected
coupling is gqr/2p¼ (4.7±0.3)MHz. Supplementary Figure 3 shows the
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transmission through the third harmonic of the resonator. As in the case for the
metamaterial, two symmetric resonance points occur. The solid line shows a two-
parameter fit with gqr and Gj as free parameters using equation (2) for n¼ 1. The
best fit is obtained for ~gqr=2p ¼ 4:9MHz and Gj¼ 2p� 141MHz. The
experimental and theoretical values for the bare coupling are in very good
agreement. The higher dephasing compared with the qubits in the metamaterial
results from the larger detuning of the flux qubit from its degeneracy point.

Quasiclassical equations of motion. In this section, we will derive the equation of
motion (1) for the radiation field of the oscillator mode. For the derivation, we will
also allow qubit–qubit coupling, and show that as long as it is smaller than the
dephasing rate Gj, it is of no relevance.

The total Hamiltonian of the system is given by HT¼HþHqq, where H is the
Tavis–Cummings Hamiltonian, shown above, and Hqq is the qubit–qubit coupling
of the form

Hqq ¼ ‘ gqq
Xn
i

ðsiþ siþ 1
� þ si� siþ 1

þ Þ:

We consider here nearest-neighbour coupling, with a coupling strength gqq. This
gives us the following equations of motion

d
dt

hai ¼� kj
2
hai� ig

Xn
i

hsi� iþ i
f
2
;

d
dt

hsi� i ¼� Gj þ idij
� �

hsiþ iþ ighsizai

þ igqqðhsi� 1
� siziþ hsiþ 1

� siziÞ;
d
dt

hsizi ¼� 2ig hsiþ ai� hsi� ayi
� �

�G1 hsiziþ 1
� �

� 2igqqðhsiþ si� 1
� i� hsi� si� 1

þ iÞ
� 2igqqðhsiþ siþ 1

� i� hsi� siþ 1
þ iÞ

ð5Þ

with the qubit decay rate G1 and the dephasing rate Gj ¼ G1=2þG�
j , where G

�
j is

the pure dephasing rate. We seek the solution of the equations of motion in
the stationary limit, h _ai ¼ h _si� i ¼ h _sizi ¼ 0, and the semiclassical approximation
/ski aS¼/skiS/aS. In the zeroth order of gqq, we get

hsizi ¼ � 1= 1þ 4g2

G1

Gj j hai j 2
G2
j þ d2ij

" #
; ð6Þ

hsi� i ¼ ighsizihai
Gj þ idij

:

Since the driving is very weak and |/aS|2oo1, we can neglect all terms of that
order. This directly leads to the equation of motion (1), which we use to analyse the
experiment. If we now try to understand the effect of the coupling terms, we see
that in the semiclassical approximation we have

hsiþ siþ 1
� i ¼ hsiþ ihsiþ 1

� i / j hai j 2 ; ð7Þ
and these terms can be neglected. Therefore, even with qubit–qubit coupling, we
can assume /szS¼ � 1. Using this assumption, we get the equation of motion

d
dt

hsi� i ¼� Gj þ idij
� �

hsi� i� ighai

� igqqðhsi� 1
� iþ hsiþ 1

� iÞ:
ð8Þ

From this, we get in first order of gqq

hsi� i ¼ � ighai
Gj þ idij

� 2gqqghai
Gj þ idij
� �2 þOðg2qqÞ ð9Þ

Since Gj44gqq, we see that the effect of qubit–qubit coupling can be neglected.
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