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A scaling law for random walks on networks
Theodore J. Perkins1, Eric Foxall2, Leon Glass3 & Roderick Edwards2

The dynamics of many natural and artificial systems are well described as random walks on a

network: the stochastic behaviour of molecules, traffic patterns on the internet, fluctuations in

stock prices and so on. The vast literature on random walks provides many tools for com-

puting properties such as steady-state probabilities or expected hitting times. Previously,

however, there has been no general theory describing the distribution of possible paths

followed by a random walk. Here, we show that for any random walk on a finite network, there

are precisely three mutually exclusive possibilities for the form of the path distribution: finite,

stretched exponential and power law. The form of the distribution depends only on the

structure of the network, while the stepping probabilities control the parameters of the

distribution. We use our theory to explain path distributions in domains such as sports,

music, nonlinear dynamics and stochastic chemical kinetics.
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T
he dynamics of many natural and artificial systems are
well described as random walks on a network: protein
folding1–3, the motions of molecules in rarified gases4,

information flow in social networks5,6, traffic and mobility
patterns7,8 and the behaviour of stochastic search algorithms9,10,
to name a few. In the past decade, there has been considerable
progress in characterizing first passage times, or the amount of
time it takes a random walker to reach a target11–13. In contrast,
work on characterizing the probability distribution over possible
paths has been limited to special types of walks14–17. The path
distribution is important because it describes how the walker
moves and not just when it arrives. While previous work has
largely emphasized the possibility of power law path distributions,
other distributions are possible as well.

To see that different types of path distributions may arise from
random walks on networks, consider the three networks shown in
Fig. 1a–c. Walk A allows only four paths from start node S to end
node E. The other networks, which allow a walk to loop back to a
node that it has visited before, allow for infinitely many possible
paths. For walks B and C, longer paths generally have a lower
probability than shorter ones, but there is no strict relationship
between path length and path probability, because different steps
occur with different probabilities. Suppose we rank the paths in
order of decreasing probability, P1, P2, P3,..., where Pr is the
probability of the rth most probable path. Figure 1d shows how
the probabilities Pr relate to the ranks r for the three walks.
For walk C, the relationship is approximately linear on the log–
log plot, implying that the path distribution is approximately
power law: log PrEaþ b log r or PrEcrb. However, for walk B,
the relationship is clearly curvilinear on the log–log plot,
inconsistent with a power law path probability distribution.
Instead, the approximately linear relationship between the
logarithm of Pr and the square root of r for walk B (Fig. 1e)
indicates a stretched exponential path distribution:
logPr � aþ b

ffiffi
r

p
, or Pr � ceb

ffiffi
r

p
.

Why are the path distributions of these walks so different? Are
there other possibilities for the form of the path distribution?
How do the form and parameters of the path distribution depend
on the structure and transition probabilities of the walk? To date,
understanding of these questions has been limited. In the special
case of a uniform, memoryless random walk, where each step is
equally likely to arrive at any node of the network, the path
distribution is known to be power law with PrEcr� log(N)/
log(N� 1) for an N-node network14–16,18,19. This fact first arose
in discussions of Zipf’s law for natural language20, although the

relevance of random walk models to human language remains a
point of contention21. Mandelbrot14 also argued that, under
certain conditions, power law scaling holds for correlated symbol
sequences—or, equivalently, random walks on networks, or
Markov chains. Still, this left open the questions of whether
other types of scaling are possible, and how one might compute
the scaling parameters for a given walk.

Here, we state a new scaling law that characterizes the path
distribution of any possible random walk on a finite network. We
find that there are only three possible forms for the path
distribution: finite, stretched exponential and power law. The
form of the path distribution depends only on the structure of the
network on which the walk takes place, and not on the details of
the stepping probabilities. Those probabilities, however, affect the
parameters of the distribution. We then use this law to predict
path distributions in a variety of domains, finding that both the
form and parameters of the empirical path distributions are well
explained by our theory.

Results
A scaling law for walks on finite networks. Our central result is
that if we consider any random walk on a finite network,
beginning at a designated start node, ending when it reaches a
designated end node (if ever), and if we let Pr denote the prob-
ability of the rth most probable path from start to end, with ties
broken arbitrarily, then there are only three, easily distinguished
possibilities for the path probability distribution (see
Supplementary Note 1 and ref. 22 for justification):

Distribution of Pr is

Finite
Stretched exponential Pr � cebr

1=k
� �

Power law Pr � crb
� �

for acyclic networks
for monocyclic networks
for multicyclic networks

8<
:

In our categorization, an acyclic network means that there is no
path from a live node back to itself, where a live node is one that is
reachable from the start node and from which the end node is
reachable. We permit cycles (loops) in the non-live part of the
network, if any, although these obviously cannot contribute to the
path distribution. A monocyclic network has at least one live node
participating in a cycle in the network, but no live nodes
participating in more than one cycle. In a multicyclic network, at
least one live node participates in multiple cycles. Equivalently, the
three cases can be discriminated based on the largest eigenvalue l1
of the adjacency matrix among the live network nodes, which is less
than, equal to, or greater than one, for the acyclic, monocyclic and
multicyclic cases, respectively. In the monocyclic case, the
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Figure 1 | The path distribution for a random walk on a network may be finite, stretched exponential or power law. (a–c) Graphical depiction of three

different random walks on networks, all having the same set of nodes and transitions probabilities, but with some arcs having different endpoints.

Arcs without numbers are probablity-one transitions. (d) A log–log plot of the probabilities of different paths from S to E, under the walks shown in a–c,

where Pr denotes the probability of the rth most probable path from S to E. Walk A allows only four possible paths from S to E, so its distribution is finite.

For walk C, the approximate linearity of Pr with r on the log–log plot suggests that the path distribution is power law. The curvature of the points for

walk B is inconsistent with a power law path probability distribution. (e) When log probabilities are plotted against the square root of rank, the points for

walk B are approximately collinear, indicating a stretched exponential path probability distribution.
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parameter k equals the maximum number of distinct cycles that
may be visited on any path from start to end. In Supplementary
Note 2, we describe how to compute the parameter b, which is the
asymptotic slope of the points on a log Pr versus r1/k plot for
monocyclic networks, or a log Pr versus log r plot for multicyclic
networks. Despite numerous observations that power law distribu-
tions often have b near to � 1 (ref. 17), one can construct
monocyclic walks with any value of bo0 and multicyclic walks with
any value of bo� 1 (Supplementary Note 3). Nor is there any
necessary connection between the form or parameters of the path
distribution and other well-known random walk parameters, such
as first passage times or mixing times (Supplementary Note 3).
Rather, the path distribution provides a distinct and complementary
characterization of the random walk.

Examples of stretched exponential scaling. To demonstrate the
use of our theory in understanding path distributions in real
systems, and in particular the largely overlooked case of stretched
exponential scaling, we turn first to the game of American
baseball. Each baseball game has nine innings, and each inning
has two halves: one in which the visiting team is ‘at-bat’ and the
home team is in the field, and one in which the home team is
at-bat and the visiting team is in the field. Each half-inning begins
with the batting team at zero ‘outs’ and concludes when the team
reaches three outs. Each time an individual player comes up to
bat, his actions, and the actions of the players on the field, result
in zero or more outs. For instance, if the first batter generated an
out, the second batter did not and the third batter generated two
outs, as happened twice during the first 2012-season game

between the Kansas City Athletics and the Anaheim Angels, then
the sequence of total outs would be 0113 (see Fig. 2a for this and
other example trajectories). Reasoning about outs sequences is
part of the strategy of the game, including the order in which
players are selected to bat and the batting instructions they
receive. Thus understanding outs sequences in strategically
important.

We analysed the observed outs sequences in all 2012-season
Major League games available on http://www.retrosheet.org,
comprising a total of 30,602 half-innings of baseball, or roughly
1,700 games. We counted the empirical frequencies of different
outs sequences and found that they are not consistent with power
law scaling (Fig. 2b). We then investigated whether a random
walk model could explain the outs sequence distribution. Because
each at-bat either leaves the number of outs the same or increases
it up to a maximum of three, we chose a walk structured as shown
in Fig. 2c. We estimated stepping probabilities from the same
2012 data and computed the scaling predicted by our theory. By
the structure of the random walk model, the probabilities should
scale as Prpexp(br1/3). Figure 2d, which shows the empirical
path probabilities (on a logarithmic scale) versus their ranks (on a
cube root scale), confirms that this scaling is observed. The
predicted slope of bthry¼ � 0.8610 on that plot is close to, though
mildly steeper than, the empirical slope of bemp¼ � 0.7343. Thus,
we conclude that outs sequences in American Baseball are not
power law distributed, but rather follow a stretched exponential
distribution, and that a simple random walk model, in
conjunction with our scaling theory, is sufficient to explain their
observed distribution.
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Figure 2 | Stretched exponential path distributions explained by random walks on networks: sequences of outs in American baseball and

symbolic dynamics of the Lorenz attractor. (a) Outs sequences from the half-innings in the first game of the 2012 season between the Kansas City

Athletics and the Anaheim Angels (coordinates perturbed slightly for visibility). (b) The empirical frequencies of outs sequences from all 2012 Major

League baseball games (blue) do not conform to a power law, as shown by the poor fit of a least-squares regression line (cyan). (c) A random walk model,

with stepping probabilities estimated from the same 2012 data. (d) The empirical path probabilities (blue) scale as the third root of rank, with slope

close to that predicted by our theory (red). (e) xy projection of a trajectory of the Lorenz system. Any trajectory can be divided into return paths to the

plane x¼0 travelling in the _x40 direction. Qualitatively, each path comprises one or more loops in the right halfspace (R, or x40), followed by one or

more loops in the left halfspace (L, or xo0). (f) The empirical frequencies of different qualitative paths in a very long simulated trajectory (blue) are not

power law. (g) A random walk model of the qualitative dynamics with stepping probabilities estimated from the simulated trajectory. (h) The empirical

frequencies scale as the square root of rank, with slope very close to that predicted by our theory (red).
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As a second example, we present a symbolic dynamics analysis
of the Lorenz attractor. Originally devised to model atmospheric
convection, the Lorenz dynamics are given by a system of three
differential equations23:

_x ¼ sðy� xÞ _y ¼ xðr� zÞ� y _z ¼ xy� bz ð1Þ
where x, y and z are the variables, and s, r and b are parameters
controlling the dynamics. Lorenz’s observations of the complexity
of its dynamics, which are neither periodic nor stable, lead to the
birth of chaos theory24. Figure 2e shows a trajectory of the system
projected onto the xy plane, where two main loops in the
trajectory are easily seen: a loop in the positive-x or right halfspace
(R) and a loop in the negative-x or left halfspace (L). The field of
symbolic dynamics25 includes widely used techniques for the
qualitative description of continuous dynamical systems, including
enumeration of possible paths and quantification of system
complexity or entropy. As an example of a symbolic dynamics
analysis, we numerically simulated a single very long trajectory
of the Lorenz system, such that there were a total of 107 halfspace
loops (either R or L). We then divided that trajectory into
segments based on every time it passed through the region x¼ 0,
yo0, where the Lorenz system is just entering the right halfspace
R. Each segment thus involves one or more loops around the
right halfspace, a transition from the right to left halfspaces
(through the region x¼ 0, y40), and then one or more loops
around the left halfspace, before returning to x¼ 0, y40. Thus, a
symbolic sequence describing a segment can be written as RmLn

where m, nZ1 indicate the number of right halfspace and left
halfspace loops. We then analysed the empirical frequencies of
different sequences. As shown in Fig. 2f, the empirical frequencies
are not consistent with power law scaling. As in the baseball
example, we asked whether a simple random walk model could
explain the observed scaling. We posed the model shown in
Fig. 2g, estimating the transition probabilities from our long
simulated trajectory. Our theory predicts that the probabilities
should scale as Prpexp(br1/2), which is borne out by the plot in
Fig. 2h. Moreover, the empirical slope of bemp¼ � 0.3106 is quite
close to our theoretical slope of bthry¼ � 0.3443. Thus, we
conclude that a simple random walk model can explain
the observed distribution of qualitative dynamical sequences of
the Lorenz system.

Quantitative analysis of power law scaling. Our theory also
leads to a more detailed and quantitative understanding in cases
of power law scaling. As mentioned above, the most widely
known previous result is that constructing paths by, at each step,
choosing uniformly randomly from N nodes produces a power
law path distribution with slope bunif¼ � log(N)/log(N� 1)
(ref. 16). However, are real-world examples of power law scaling
quantitatively consistent with a uniform random walk model?
To test this, we turned to the field of music. Like natural language,
where the uniform N-node model originated, music contains
considerable long-range correlations26–28 and complex
structures29. Moreover, several recent analyses have uncovered
various forms of power law scaling in large music corpora27,28.
We downloaded the ‘Essen’ collection of 8,473 folk songs,
primarily of European and Chinese origins, from the Humdrum
online musical archive (http://kern.humdrum.org). After omitting
seven songs with unclear notations, we transposed the remaining
8,466 songs into the key of C. Notes such as C# and Dw were
considered as one, so that we had 13 distinct symbols: A, A#/Bw,
B, C, C#/Dw, D, D#/Ew, E, F, F#/Gw, G, G#/Aw and R (for rest).
We divided each song into segments based on every occurrence of
the note C, resulting in 83,436 song segments departing from and
returning to the natural (tonic) tone (Fig. 3a). The empirical
probabilities of the 19,449 distinct musical segments are shown

plotted against their ranks in Fig. 3b, which clearly indicates
power law scaling. However, the slope of the relationship is not at
all consistent with a uniform-probability model. With N¼ 13
distinct symbols, the predicted slope would be bunif¼ � 1.0322,
whereas the empirical best-fit line has a much steeper slope of
bemp¼ � 1.1515.

To determine whether the empirical scaling is consistent with
that of a random walk, we first constructed the random walk
model shown in Fig. 3c. It predicted power law scaling, but with a
still-too-shallow slope of � 1.1088. Reasoning that the longer-
range correlations in note sequences might be a factor, we built a
set of random walk models of different orders K¼ 0 to 7. In an
order-K model, the probability of the next note/rest depends on
the previous K notes/rests in the segment. All models predicted a
power law path distribution, but the predicted slopes ranged from
� 1.0848 to � 1.2817 (Fig. 3d). Intriguingly, the predicted slopes
are decreasing in the model order K, with the fifth-order model
showing the highest consistency with the empirical slope. This
finding is broadly consistent with maximum-likelihood cross-
validation analysis, which favours a model of at least order 3, and
equal-symbol autocorrelation analysis30, which favours a model
of at most order 7 or 8 (see Supplementary Note 4). Thus, we
conclude that the empirical scaling of these musical segments is
power law and is well explained by a random walk model, but
that the walk requires an approximately five-step history
dependence.

As a second example, we looked at a stochastic model of
G-protein folding31. Proper folding of proteins2 is crucial to their
biological functions, and indeed, some proteins carry out their
functions by altering their conformations under different
circumstances. Conversely, a number of serious diseases involve
protein misfolding, including cystic fibrosis, Alzheimer’s disease
and Parkinson’s disease32. Protein folding can be conceptualized
as a random walk on a network of possible conformations, with
the relative energies of different conformations determining the
probability of transitioning between them1–3,33–35. Using fine-
grained molecular dynamics simulations, Scalco and Caflisch31

constructed a G-protein-folding model comprising 3,683 states
and 27,742 possible transitions (Fig. 3e).

Transitions between basins or ‘attractors’ of the energy
landscape signify important qualitative changes in the protein
conformation. We used the cut-based free-energy approach to
identify energy basins of the network (Fig. 3f, and colours in
panel e)31,36. Then, to study the paths by which such transitions
occur, for each basin we found the node with highest steady-state
probability, and we calculated the 10,000 most probable
paths that leave the basin (entering any other basin). All path
distributions appeared power law (see Supplementary Note 5),
as was also predicted by our theory based on the connectivity of
transitions within basins. The predicted slopes are all close to
� 1, varying from � 1.000047 to � 1.0056. As small as that
variation my seem, we wondered whether the differences might
correlate to other features of the network or transition
probabilities. As stated above, there is no necessary connection
between the scaling slope and first passage times, mixing times
and so on. However, we tried computing the free energies of
activation of each basin—the negative logarithm of the steady-
state flux across the basin boundary divided by the steady-state
probability of the basin. Plotting those activation energies against
the power law slopes for each basin, we found a nearly monotone
relationship—indeed, a nearly linear relationship when the slope
minus one is plotted on a logarithmic scale. To our knowledge,
this is the first time that a connection has been made between the
slope of a power law scaling relationship—well known from
linguistics, physics, biology and so on—and activation energies—
a central concept in chemical theory.
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Discussion
We have presented a new theory of the scaling of path
probabilities generated by random walks on networks. Our
theory implies that the distribution of path probabilities is either
finite, stretched exponential or power law, depending on the
connectivity of the network. This result closes a long-open
question in the scaling behaviour of random sequences of
symbols14–16, finally clarifying and characterizing the full set of
possibilities. Moreover, our theory allows computation of the
parameters of the distribution, as we demonstrated in examples
drawn from sports, nonlinear dynamics, stochastic chemical
kinetics and the analysis of music.

Our analyses of baseball and of the Lorenz attractor are but two
examples of what we expect to be a widespread, if often
overlooked, phenomenon of stretched exponential scaling. In
the realm of games, there are many quantities (outs, fouls, scores
and so on) that either remain the same or increase on each play;
thus, we would expect their observed sequences to obey stretched

exponential scaling. Similar systems also abound in epidemiology,
such as the susceptible-infected-removed model of the stages of
infection37 and many other progressive disease models; in
manufacturing and logistics, where products are created or
transported in a series of stages38; in many kinds of dissipative
systems, where ‘items’ such as molecules or people survive for a
limited period39; and so on. Thus, we expect that many instances
of stretched exponential scaling can be found and will be
explicable based on random walk models.

In our analysis of musical sequences, we showed that the match
between empirical and theoretical scaling can be used to
determine the complexity of the model, in terms of the degree
of history dependence in the random walk model. In the analysis
of G-protein folding, we uncovered an unsuspected connection
between the exponent of power law scaling in escape paths from
energy basins and the activation free energy. Because so many
systems are well described by random walks on networks, from
the actions of molecules1,2,4,40,41 to human behaviour5–8, our
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Figure 3 | Quantitative analyses of power law scaling in folk songs and in protein-folding dynamics. (a) First line of the song ‘Gedenk Mit Hochgefuehl

An Jene’ with accession code ‘elsass15’. Names of notes are underneath, along with the division into segments based on every occurrence on the

note C. (b) Empirical frequencies of different segments showing clear evidence of power law scaling along with the theoretical slope predicted by a

fifth-order random walk model. (c) Diagram of a first order random walk model built based on all 8,466 songs. Grey lines indicate possible transitions, while

the lengths of outgoing arrows are proportional to transition probabilities. The notes and rest are also labelled with their overall frequencies in the data.

(d) Predicted slope of the scaling relationship according to random walk models of different orders. An order-five model provides the best match to the

empirical slope of the relationship, as obtained by linear regression. (e) Diagram of a 3,683-node random walk model of G-protein folding31. Nodes

represent protein conformations and links are possible transitions, with stepping probabilities estimated by molecular dynamics simulations. Colours

indicate different basins of the energy landscape (see next panel). (f) Nodes are ranked by their mean first passage time to the native state, and the

cut-based free energy is calculated. These were manually separated into seven different energy basins (red, orange,..., grey) between which there is

a sharp increase in free energy. (g) Although all seven power law distributions have slopes close to � 1, they are not all the same. Intriguingly, the slopes

appear strongly related to the activation free energies of each basin.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6121 ARTICLE

NATURE COMMUNICATIONS | 5:5121 | DOI: 10.1038/ncomms6121 | www.nature.com/naturecommunications 5

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


theory has broad potential to explain scaling phenomena. Our
theory could also be used predictively to anticipate the type and
possibly parameters of the path distribution based on a random
walk model—potentially, even before sufficient data has
accumulated to empirically observe how path probabilities scale.

Methods
Calculation of path distribution type and scaling parameters. To carry out the
analyses in this paper, we developed a general MATLAB code that takes as input a
specification of a random walk on a network. That specification includes the
number of nodes in the network, identification of START and END nodes and
the stepping probabilities between nodes. Our code, which is available at http://
www.perkinslab.ca/Software.html, computes both the form of the path distribution
and its parameters. Pseudocode for the algorithms embodied by the code are
available in Supplementary Note 2.

American baseball. We downloaded all data files describing 2012-season
American Major League Baseball games from the website http://www.
retrosheet.org, as a bulk zip file in late November/early December 2013. At that
time, it was the most recent complete season for which data was available. We used
the ‘bevent’ programme, also available at that website, to parse the data files and to
output the outs sequences for each inning. To count the number of times each
distinct sequence of outs occurred, we converted each outs sequence into a string,
and then used the ‘unique’ function of MATLAB to count occurrences. The
stepping probabilities of the Markov model in Fig. 2c are the maximum-likelihood
estimates. That is, to estimate the stepping probability from i outs to j outs, we
simply counted the total number n of at-bats that started at i outs and the total
number of times m that the next at-bat started at j outs. The empirical ratio m/n is
the maximum-likelihood stepping probability estimate.

Symbolic dynamics of the Lorenz system. In analysing the Lorenz dynamics, we
employed the parameters s¼ 10, r¼ 28 and b¼ 8/3, which are the standard
choices for which the dynamics are known to be chaotic. We simulated one very
long trajectory from the inital condition x¼ y¼ z¼ 1, using the ‘ode45’ function of
MATLAB, with default parameters. That trajectory was long enough to yield 107

total qualitative states (left L or right R halfspace). These were then divided into
segments at every L-R transition, constituting the paths from START to END in
our symbolic dynamics analysis. The long trajectory provided 2,145,793 paths,
ranging in length from just two steps (RL) to 35 steps (R18L17). As with the baseball
example, we estimated the stepping probabilities of our random walk model simply
by counting the empirical frequencies of different transitions in the data.

Essen folk songs collection. We downloaded the ‘Essen’ folk song collection in
the form of ‘kern’ files. The kern format gives a key signature for each song, as well
as the sequence of notes (pitch and duration) or rests. Seven songs had unclear
notations in their kern files and were omitted from the analysis: china01, china07,
deut1328, han0089, han0351, han0404 and han0953. After transposition to the key
of C, we did not discriminate between notes in different octaves. For instance,
middle C, high C and indeed any other C, were all coded just as C. As stated above,
the paths for our analysis were obtained by dividing the song based on every
occurrence of the note C.

To estimate a K-order random walk model for a specific value of K, we first
identified all the unique K tuples occurring in paths, along with the note sequences
in paths less than K notes long. So, for instance, suppose K¼ 5. A song segment
such as CEGECEGC contains the K tuples CEGEG, EGECE, GECEG and ECEGC.
A shorter segment like CEC would be considered to generate the single K-tuple
CEC, even though this is really shorter the K notes long. The nodes of the network
correspond to all the unique K tuples thus identified, along with special START and
END nodes. The stepping probabilities among these nodes are then computed to be
proportional to the empirical frequency of observed transitions. For instance, the
segment CEGECEGC contains the transitions START-CEGEC, CEGEC-
EGECE, EGECE-GECEG, GECEG-ECEGC and ECEGC-END. The short
segment CEC contains the transitions START-CEC and CEC-END. Such short
segments cannot participate in cycles, and thus do not end up affecting the
asymptotic scaling. Nevertheless, we included them in our model for completeness.

G-protein-folding model. Scalco and Caflisch31 provided us their G-protein
random walk model based on molecular dynamics computations described in their
paper. All links in the model are bidirectional because protein conformational
changes are reversible. However, the probability of stepping from node i to j is not
generally the same as the probability of stepping from node j to i. The network
comprises a single, strongly connected component and the random walk posesses a
unique well-defined steady-state distribution. Following the lead of Scalco and
Caflisch, we computed the steady-state distribution for the walk and designated the
single most probable node under that distribution as the ‘native’ or folded state.

The cut-based free-energy approach for identifying approximate ‘energy basins’
of the network31,36 works as follows. First, we compute the mean first passage time

from each node ia1 to node 1 (the native state)—that is, the expected time it takes
for the random walk, if it starts at node i, to reach the native state. This can be
computed by a relatively efficient and simple dynamic programme. Next, we sort
the nodes by increasing mean first passage time. Intuitively, nodes with higher
mean first passage time are ‘farther’ from the native state, at least in terms of the
random walk. Closely connected nodes are expected to have similar mean first
passage times. Then, for each node ia1, we imagine dividing, or cutting, the
network into two parts: on one side are the nodes with first passage time smaller
than i’s, on the other side are nodes with first passage time greater than or equal to
i’s. We compute the steady-state flux across this cut. (The steady-state flux across
an arc i-j is the steady-state probability of i times the transition probability from i
to j. The steady-state flux across the cut is the sum of the steady-state fluxes of all
arcs from one side to the other.) Then, for all nodes ia1, we plot the negative
logarithm of the steady-state flux, which is also called the cut-based free energy,
against the rank of node i in order of increasing mean first passage time. We
visually inspect that plot to separate the nodes into energy basins, by looking for
local free-energy maxima separating broad regions of lower free energy. Carrying
out this procedure for the G-protein model, we were able to divide the network into
seven major energy basins, with a relatively small number of extra nodes that did
not clearly comprise a basin. Although the ‘extra’ nodes are closely connected in
the network, the cut-based free-energy analysis did not indicate a cohesive basin.

For each basin, we then analysed the exit dynamics in the following way. First,
we created a new random walk by selecting as nodes only those within the basin,
plus an additional END node. A step from from node i to node j within the basin
was assigned the same probability as in the original walk. If, in the original walk,
node i allowed steps outside of the basin, then we added an arc from i to END with
stepping probability equal to the sum of those original outside steps. The node in
the basin with highest steady-state probability (under the original walk) was
designated as the START node. We then analysed paths from START to END as in
all other examples.
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