
ARTICLE

Received 29 Aug 2013 | Accepted 28 Jul 2014 | Published 19 Nov 2014

Widespread genetic epistasis among cancer genes
Xiaoyue Wang1,2,*,w, Audrey Q. Fu1,2,*, Megan E. McNerney1,3 & Kevin P. White1,2

Quantitative genetic epistasis has been hypothesized to be an important factor in the

development and progression of complex diseases. Cancers in particular are driven by the

accumulation of mutations that may act epistatically during the course of the disease.

However, as cancer mutations are uncovered at an unprecedented rate, determining which

combinations of genetic alterations interact to produce cancer phenotypes remains a chal-

lenge. Here we show that by using combinatorial RNAi screening in cell culture, dense and

often previously undetermined interactions among cancer genes were revealed by assessing

gene pairs that are frequently co-altered in primary breast cancers. These interacting gene

pairs are significantly associated with survival time when co-altered in patients, indicating

that genetic interaction mapping may be leveraged to improve risk assessment. As many of

these interacting gene pairs involve known drug targets, personalized treatment regimens

may be improved by overlaying genetic interactions with mutational profiling.
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T
umour cells may harbour many hundreds of alterations
in their genomes, including amplifications, deletions,
point mutations, loss of heterozygosity and epigenetic

changes1–3. The most intensively studied genetic changes have
been shown to interact during the complex process of tumour
formation and progression4. For example, oncogenes such as
MYC and RAS have long been recognized to cooperate in
the processes of transformation and immortalization5. With
the growing lists of genetic mutations generated by genome
sequencing projects, it remains a significant challenge to
determine which of these genetic alterations interact and
whether those interactions are clinically relevant. Furthermore,
it is unknown whether there are a few key commonly mutated
factors such as RAS and P53 that interact with large numbers of
other factors (as hubs in oncogenic networks) or whether genetic
interactions (GIs) are more widespread and common among even
less frequently mutated genes.

The observation of an unexpected (for example, non-additive
or non-multiplicative) phenotypic outcome when combining two
genetic alleles is referred to as a GI or epistasis. Pairwise GIs for
thousands of genes have been systematically mapped in yeast by
using a large collection of deletion strains6–10. In higher
organisms, combinatorial RNA interference (RNAi) methods
have been used in cell culture to generate GI maps for genes
involved in kinase signalling, chromatin regulation and ricin
susceptibility11–14. Such analyses of large-scale GI maps have
successfully identified functionally connected pathways and
genetic networks, allowed functional prediction for
uncharacterized genes and revealed changes in the interaction
landscape upon stimulus11–14.

Therefore, a comprehensive mapping of epistasis among cancer
genes could be tremendously useful for understanding the genetic
network that underlies tumorigenesis, and for identifying new
tumour suppressors or oncogenes, thus facilitating design of
cancer therapies. For example, screens for ‘synthetic lethal’
partners of the RAS oncogene have uncovered genes that could
be used as drug targets to specifically eliminate cancer cells with
RAS mutation15,16. Studies using PARP1 inhibitors have also
demonstrated the potential for utilizing ‘synthetic lethality’ in
treating BRCA-deficient patients17.

In this study, using combinatorial RNAi in human breast
epithelial cells, we produce a quantitative GI map for 67 genes
that are frequently altered in breast cancer as well as in many
other cancer types. We find hundreds of previously unreported
GIs among these genes. Our analysis of the GI map in the context
of gene expression and genome-wide transcriptional factor
binding data also reveals potential mechanisms of expression
regulation in tumorigenesis. Most strikingly, GIs are enriched in
gene pairs that synergistically impact patient survival when
mutated, indicating that the GI maps produced in cell lines can
have biological relevance in tumours.

Results
Combinatorial RNAi for co-altered breast cancer genes. To
study GIs among cancer genes, we began by using diverse
genomic data in The Cancer Genome Atlas (TCGA)18 to identify
frequently altered genes in breast cancer. By combining somatic
mutations, gene expression and copy number variation data from
849 invasive breast cancer samples, we identified 67 genes that
are involved in these frequent alterations. These genes span
a range of biological functions, including chromatin regulators,
transcription factors, signal transduction molecules and metabolic
enzymes (Supplementary Data 1).

To build a GI map from these 67 genes, we performed a
combinatorial RNAi screen in MCF10A cells by using 66 of the

67 genes as template genes and 29 of the 67 genes as query genes
(Fig. 1a,d and Supplementary Data 1). Among the 1,508 gene
pairs we assayed, 248 gene pairs corresponded to significantly co-
occurring genetic alterations in primary breast tumours
(Supplementary Fig. 1). We chose the MCF10A breast epithelial
cell line19,20 because these cells are diploid and lack alterations in
most cancer genes.

To minimize the influence of short interfering RNA (siRNA)
off-target effects on GI detection, for each gene we tested multiple
siRNAs and selected two independent siRNAs that yielded
quantitatively similar phenotypes for the screen (Supplementary
Fig. 2; see Methods section). To validate the on-target knockdown
efficiency of the selected siRNAs, we measured target transcripts
levels by quantitative reverse transcription–polymerase chain
reaction (qRT–PCR) for 48 selected siRNAs targeting 24 of the 67
genes (Supplementary Fig. 3 and Supplementary Data 2). The
siRNAs exhibited various degrees of knockdown efficiency, with
the percentage reduction of targeted transcript levels ranging
from 18% to B100% with a median of 69% and an interquartile
range of 45–85%. In addition, 28 of the 48 siRNAs were able to
reduce the targeted transcript levels by 460%, including 10 that
reduced the transcripts levels by 490%. These results on siRNA
efficiency are consistent with previous reports13. For six genes
where o40% silencing was observed at 24 h, an enhanced
reduction in mRNA levels was observed at 72 h, the time point
when the phenotypic assays were performed (Supplementary
Fig. 3b and Supplementary Data 2). Ten of the 24 genes have two
siRNAs that are different in knockdown efficiencies at 24 h
(Student’s t-test, Po0.05; Supplementary Data 2). Although the
siRNA knockdown efficiencies varied and sometimes resulted in
partial knockdown, in our assay they generated consistent
phenotypes in single knockdowns, as well as reproducible and
statistically significant quantitative phenotypic changes in double
knockdowns. Overall each gene pair was assayed by four different
combinations of siRNA pairs (6,032 siRNA pairs in total; Fig. 1a).
Two to three replicates were performed for each siRNA pair,
yielding a total of 18,623 measurements.

We used automated fluorescence microscopy to record cell
morphology in images and extracted 10 quantitative features
from each image. The three most reproducible and non-
redundant features were used for further analysis: the number
of cells per image, the mean nucleus size and the mean cell size
(Supplementary Fig. 4). Although the features we measured in
our screen do not necessarily correspond to pathological
phenotypes, they are complex traits influenced by many cancer-
relevant pathways. For example, the number of cells is a reflection
of the cell proliferation capacity that tends to change significantly
in tumours. Furthermore, the quantitative nature of these features
allows us to detect subtle deviations from the expected effects of
each pair of genes. The multitude and quantitative nature of the
phenotypes thus increase the likelihood of ascertaining whether
the two genes can interact at all, regardless of the type of
alteration (amplifications, deletions or point mutations) seen in
patients. Our RNAi assay can still detect a loss-of-function
interaction, even when the pair of gene alterations includes a gain
in copy number or an activating mutation in primary tumours.

To calculate the GI scores, we adopted the regression
framework, comparing the observed and predicted phenotypes
after double knockdowns in a single linear model, similar to the p
score method11,12 (see Methods section). However, since the
three phenotypes in our assay are correlated (Supplementary
Fig. 5), we developed a seemingly unrelated regression (SUR)
model21, which computes the GI scores of a gene pair for each
phenotype while accounting for the correlation among the
phenotypes. Our model also accounts for batch effects (see
Methods section). The statistical significance of a GI score, which
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is the coefficient of the interaction term in the SUR model, is
determined by a t-test following the standard approach for
assessing the significance of a coefficient in a linear model. We
further adjusted the P values of the GI scores in order to control
the false discovery rate (FDR; see Methods section).

Topology of the inferred GI map. In total, 847 significant gene
pair interactions were identified at an FDR of 0.05 (Fig. 1b and
Supplementary Data 3, heat maps in Fig. 1a and Supplementary
Figs 6–8), demonstrating widespread epistasis among cancer
genes. Out of the 67 genes assayed, 66 have at least one significant
interaction; PTPN13 being the only gene for which our data do
not support interaction with any other gene (Supplementary
Data 3). This result is robust even with an FDR of 0.01 (579 GIs
identified across 65 genes).

The inferred GI map has a high median connectivity of 62% for
each gene (accounting for different numbers of probed interac-
tions for each gene, Fig. 1e; Supplementary Data 5 and
Supplementary Figs 9 and 10), and exhibits small-worldness22

(S¼ 1.5, higher than 1.1, which is the small-worldness of all the
probed interactions; see Methods section).

GI profiles identify functional clusters of genes. We compiled
the interaction profiles for each gene with respect to all three
phenotypes and calculated the pairwise correlation matrix of
interaction profiles (Fig. 1c). As expected, if our approach is
identifying biologically relevant interactions12,13, unsupervised
clustering of genes based on the correlation of their GI profiles
revealed genes with previously described functional connections.
For example, four genes (CCND2, BRCA2, NDRG1 and FHIT)
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Figure 1 | GI mapping of 67 breast cancer genes. (a) A schematic representation of the combinatorial RNAi screen. Heat maps of GI scores for three

phenotypes are shown. (b) Overlap of significant GIs within the three phenotypes. (c) Unsupervised clustering of the Pearson correlations of GI

profiles across all three phenotypes between the 66 genes (left), and clusters of genes in cell cycle checkpoint (right; module I) and cytoskeleton regulation

(right; module II). (d) The design map showing the 67 genes (nodes with yellow labels) and 1,508 interactions (grey lines) assayed in the RNAi

screen. Twenty-nine genes (at the centre) were each assayed for interaction with all the other 66 genes, and the other 38 genes (in the outer circle) each

for interaction with the 29 genes at the centre. (e) The inferred GI map of 847 significant interactions (FDR: 0.05) across 66 genes in all three phenotypes.

One of the 67 genes did not show significant interaction with any other gene, and is therefore absent from the map. A gene with fewer significant

interactions than the assayed interactions tends to move away from the centre in comparison with the design graph in d.
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shown in subcluster I (Fig. 1c) are involved in DNA damage
checkpoint pathways for cell cycle progression23–26. Subcluster II
(Fig. 1c) highlights genes (MEN1, CCT2, FBN1 and TSC1) with
roles in the regulation of focal adhesion and cell migration27–31.
Overall, this clustering reveals that there are distinct subsets of
correlated genes, and that at least some of these correlated gene
sets represent functional relationships.

The majority of GIs exhibit epistatic masking effects. The
magnitude of the interaction effect size may have functional
implications, especially when compared with the effect sizes of
single knockdowns. We classified epistasis into three broad
classes: epistatic masking, synthetic suppression and synthetic
enhancement (Fig. 2 and Methods section). Surprisingly, over half
of significantly interacting gene pairs exhibited masking effects
(epistasis as first described by Bateson and Mendel32), where the
effects of double knockdown are indistinguishable from the
effects of one of the two single knockdowns (Fig. 2). Further
examination of these pairs may generate useful information for
personalized cancer therapy. For example, if inhibiting gene A
masks the phenotype of gene B, gene A might be an alternate

drug target for treating cancers caused by gene B activation.
Indeed, largely because we focused the study on known cancer
genes, B20% of gene pairs we selected included a potential drug
target.

Epistatic masking is not an artefact due to differences in
transcript abundance or knockdown efficiencies. We could
identify which gene is masked if the two single-gene effects are
different and the double-knockdown effect is equal to one of
them. In 188 of the 403 epistatic masking gene pairs identified for
the cell number, the masked gene in these pairs had lower
transcript abundance (measured by FPKM (fragments per
kilobase per million mapped reads) in RNA-sequencing (RNA-
seq) data), which gives an insignificant P value of 0.18 by a w2-
test. In addition, in 40 of the 88 epistatic masking gene pairs, for
which we have qRT–PCR knockdown efficiency data, the masked
gene had a lower remaining transcript level (measured as the
percentage of untreated), which also gives an insignificant P value
of 0.66 by a w2-test.

Most inferred GIs are novel. Using the STRING 9.0 database, we
identified significant enrichment of gene pairs previously shown
to be involved in the same pathways or complexes (Fisher’s exact
test P¼ 0.05; Supplementary Fig. 11a). These interactions inclu-
ded direct protein–protein interactions (for example, BRCA2 and
MCPH1; Fig. 3a)33, interactions between genes in kinase
signalling pathways (for example, MAP2K4 and MAP3K1;
Fig. 3b)34, interactions between genes encoding factors that
compete for substrate binding (for example, CREBBP and MEN1;
Fig. 3c)35 and interactions that are likely explained by
transcriptional regulatory relationships (for example, BIRC3 and
NFKB2; Fig. 3d)36.

However, the majority of GIs are not annotated by protein
interaction databases, and yet extensive cross talk between
pathways was revealed. We define cross talk as the interactions
between one or more components of two pathways defined in the
literature. For example, as shown in Fig. 3e, we found 12 GIs
between the DNA damage repair pathway and the mitogen-
activated protein kinase (MAPK) pathway. In this case, MAP2K4
is upstream of the Jun N-terminal kinase (JNK) pathway, which is
also activated by DNA damage through JNK phosphatase37,38,
perhaps explaining the observed cross talk. In total, 45 of the
inter-pathway GIs are supported by published results (Fig. 3f and
Supplementary Data 3). We classify another 78 GIs as potential
inter-pathway interactions, because the two genes in each pair
each interact either with another gene that is known to have a role
in pathway cross talk or with other genes that have inter-pathway
interactions (Supplementary Data 3). An overview of the cross
talk between different biological processes (Supplementary Data
4) is plotted in Supplementary Fig. 11b.

Integrative network analysis reveals transcriptional modules.
We also identified several potential transcriptional regulatory
modules by overlaying the GI network with a co-expression
network built from TCGA RNA-seq data (see Methods section).
One such module is centred on the transcription factor GATA3
(Fig. 4a). GATA3 is an important transcriptional regulator
in both normal mammary gland development and breast
cancer39–41, and low expression levels of GATA3 are associated
with a poor prognosis42. Three genes, PTCH1, PPARA and NFIB,
exhibit epistatic interactions with GATA3 and also display
negatively correlated expression levels with GATA3 (Fig. 4a).
According to the published ENCODE data43, GATA3 binds to
gene regions near NFIB, PTCH1 and PPARA in T47-D cells, a
human ductal breast epithelial tumour cell line (Fig. 4b–d).
These peaks of GATA3 binding also overlap with DNaseI
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hypersensitivity clusters, indicating that GATA3 may actively
regulate the expression of these three genes in breast cancer cells.

Another transcriptional module consists of FLI1, JAK2 and
CCND2 (Fig. 4e). The expression levels of the three genes are all
positively correlated (red dashed lines in Fig. 4e). In addition,
JAK2 and FLI1 have correlated interaction profiles (Fig. 1c and
Supplementary Fig. 6). We found that knockdown of FLI1 in
MCF10A cells reduced the expression levels of JAK2
(Supplementary Fig. 12). It has also been reported that FLI1
modulates CCND2 expression44. While FLI1 expression levels
have been associated with the clinical outcome in acute myeloid
leukaemia45, to our knowledge, this module has not been
previously associated with breast cancer patient outcome. To
test this association, we examined TCGA breast cancer patient
survival data and found that low expression or mutation in one or
more members of the FLI1-JAK2-CCND2 module is associated
with reduced overall survival time in all patients (Fig. 4f) as well
as in estrogen receptor-positive patients (Supplementary Fig. 13).
These results indicate that this module may have a previously
unappreciated role in breast cancer.

GIs are associated with patient survival. To more broadly
investigate the role of GIs in cancer progression, we performed
patient survival analysis to assess the potential impact of co-
alterations in gene pairs. We used TCGA genomic data to define
the alteration of a gene in a given sample, similar to the approach
we took to selecting significantly co-altered gene pairs (see
Methods section). Each gene has one of the three states: ‘gain’ if
the gene in the sample is amplified and expressed at a high level
relative to the average level of the gene in samples that are diploid
for the gene, or if the gene has previously identified gain-of-
function point mutations; ‘loss’ if the gene is deleted and

expressed at a low level, or if the gene has (putative) loss-of-
function mutations; or ‘no alteration’ (see Methods section). For
each gene pair, we examined each of the four co-alteration sce-
narios, namely, ‘gain–gain’, ‘loss–loss’, ‘gain–loss’ and ‘loss–gain’.

By comparing the survival time of patients with both genes
altered to survival time of patients with only one gene altered, we
found 51 gene pairs, spanning 43 genes, whose co-alterations
were associated with worse outcome for breast cancer patients
(Fig. 5a and Supplementary Data 6). Interestingly, GIs are
significantly enriched in those gene pairs (P¼ 0.023, Fisher’s
exact test), indicating that GIs indeed have effects on patient
survival. For example, in the case of SS18L1 gain and MAP2K4
loss (Fig. 5b), patients with both alterations have shorter survival
time than those with only one alteration (Fig. 5c). This property is
independent of the ER status since the association was also
discovered in ER-positive patients (Fig. 5d). In addition, this
property is independent of TP53 status, which is located in the
same chromosome region as MAP2K4 (Supplementary Fig. 14).
For the overall association between GIs and patient survival, the
instability of tumour genomes was not a confounding factor
(P40.1 for both survival time and survival status; see Methods
section). These data indicate that information on GIs can be
useful for risk assessment and outcome prediction.

Discussion
Although GIs are thought to be pervasive in cancer, quantitative
large-scale mapping of GIs have not been performed among
cancer genes. In this study, we systematically profiled GIs among
67 cancer-related genes in human cells by using combinatorial
RNAi and found over 800 significant GIs across 66 genes. Our
results strongly indicate that epistatic effects of somatic mutations
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are widespread, revealing a highly connected and complicated
genetic architecture associated with breast cancer.

Our GI mapping strategy is similar to those developed in flies
and mammalian systems11–13, using combinatorial RNAi and
high-content imaging. In all of these studies, epistasis is
commonly defined as deviation from the expected phenotype
of combining two alleles. However, there are several choices
for quantitative definitions of GI scores46–49. For example,
additive models examine the difference from the sum of the
two single-gene phenotypes, whereas multiplicative models
examine the fold change over the product of the two single-
gene phenotypes (see Methods section). Here, we adopted a
regression framework, following the definition in classical
quantitative genetics50 and similar to previous approaches11,12.
In this case, we used SUR to provide a unified framework for both
additive and multiplicative models. This unified SUR framework
is particularly relevant for our analysis as we considered
three related but non-redundant features. It enables us to used
multiplicative models and additive models for different features
based on the scales and distributions of the raw data, while
accounting for any correlation among the phenotypes and
for confounding factors as covariates (for example, the batches
in our model).

Our results systematically specify, and for the first time
quantify, the genetic architecture that underlie cancer gene
interactions. It is very likely that our GI mapping results will
generalize to other cancer types, since the genes we studied are
mutated in many different types of tumours and are involved in
known cancer-related pathways. The high connectivity for our
gene set is most likely owing to the fact that cancer genes often
have pleiotropic effects, and pleiotropy is characteristic for hub
genes in networks8,9. Therefore, the genes we selected based on
tumour mutation data are more likely to be hubs in the overall
genetic network and mediate cross talk between multiple
pathways. Consistent with our results, in a recent study of
cancer driver genes, genes significantly altered in cancer patients
are found to have a high connectivity in the BioGRID human
protein–protein interaction network51, as well as more likely to be
in protein complexes than a typical protein in the CORUM
database of experimentally validated human protein complexes.
Interestingly, haploinsufficiency appears to be common in
cancer51, which is consistent with our observation that a partial
knockdown of 40–50% by siRNAs was sufficient to generate
reproducible phenotypic changes in cells.

The extensive interactions among cancer genes could be a
critical component for explaining nonlinear cumulative effects of
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probabilities in patients with and without alterations in the FLI1 module. Each tick mark indicates a patient with censored survival time. Lower expression of

at least one of the three genes in FLI1 module is associated with shorter average survival time in breast cancer patients (P¼0.03; two-sided log rank test).
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mutations in cancer. Our results strongly indicate that epistatic
effects of somatic mutations are likely critical for breast cancer
development and progression. By combining GI information with
publically available genomic and survival data for breast cancer
patients, we found that the identified GIs are dominantly present
in gene pairs whose co-alteration is associated with reduced
survival time of breast cancer patients. Current models of cancer
progression usually do not account for GIs. Therefore, more
comprehensive quantitative mapping of GIs among cancer genes
will facilitate the modelling of complex effects that result from
multiple mutations. Finally, our results indicate that patients with
certain combinations of mutations have poorer prognosis as a
result of epistasis, suggesting that therapeutic interventions
counteracting these epistatic interactions may hold promise.

Methods
TCGA data acquisition. TCGA breast cancer data was downloaded through cBio
Cancer Genomics Portal52 (http://cbioportal.org) on 27th December, 2012. These
data include copy number variation (GISTIC score), somatic mutation, mRNA
expression (RNA-seq z score) and survival data.

Detection of significantly co-altered gene pairs. To identify genetic aberrations
that co-occur non-randomly, we used data sets generated by TCGA18. By
combining somatic mutations, gene expression and copy number variation data
from 849 invasive breast cancer samples, we generated a gene-by-sample matrix. In
this matrix, each gene-sample pair has one of the three states: (i) no alteration,
denoted by 0; (ii) gain, denoted by 1, which is defined by either a higher copy
number (GISTIC score 40) with high gene expression (z score 40.5), or gain-of-
function mutations (from manually curated literature); or (iii) loss, denoted by
� 1, which is defined either as a lower copy number (GISTIC score o0) and low
gene expression (z score o� 0.5), or loss-of-function mutations. For a pair of
genes A and B, co-occurrence of alterations corresponds to the number of tumour
samples containing both genes being altered (this number is denoted C11; Table 1).
Within the tumour samples, these counts each follow a binomial distribution, with
the ‘success’ probability computed under the null hypothesis that the two genes are
altered independently (Table 1). We conducted three one-sided binomial tests for
each gene pair, corresponding to the three possible scenarios: both genes being
‘gain’, both being ‘loss’, and one being ‘loss’ and the other ‘gain’). Binomial tests are
exact tests, thus alleviating the problems with small counts. We further computed
the Q values for the binomial P values by using the R function Q value from
package Q value.

Human tissue culture. Human MCF10A cells were obtained from American Type
Culture Collection (number: CRL-10317, LOT: 7635052). The cells were main-
tained in DMEM/F12 medium containing 5% horse serum and supplemented with
epidermal growth factor (EGF) (20 ngml� 1), hydrocortisone (0.5 ngml� 1), cho-
lera toxin (100 ngml� 1), penicillin (100Uml� 1) and streptomycin
(100 mgml� 1). Cells were cultured at 37 �C and in 5% CO2.

RNA-seq of MCF10A cells. A quantity of 2 mg of RNA was extracted from
MCF10A cells by using the AllPrep RNA mini kit (Qiagen). The RNA integrity
number of the sample was over 7.5 (Bioanalyzer, Agilent). A single-end library was
prepared following the Illumina TruSeq RNA sample preparation protocol. The
library was indexed with one of the Illumina barcodes and sequenced in 1/4 lane on
an Illumina Hiseq 2000. Single-end reads (37,386,273 in total) of length 44 bp were
generated. Sequence files were parsed and low-quality reads (average Phred-scaled
quality score o15) were removed by using custom perl scripts. The remaining
reads were then mapped to hg18 by using TopHat and output in BAM format.
Unmapped reads were removed from further analysis. Cufflinks was used to
estimate transcript abundance using RefSeq gene models and output as FPKM.
Genes (12,332) with FPKM 41 were considered as expressed in MCF10A cells.

Transfection. Transfection was performed in 384-well plates. Each well contains
0.25 pmol of both siRNAs in 5 ml Opti-MEM (Life Technologies) and 0.03 ml
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Figure 5 | Co-alterations of GI gene pairs are significantly associated with clinical outcome in breast cancer patients. (a). GIs are enriched within gene

pairs that impact overall survival when co-altered in breast patient samples. One-sided Fisher’s exact test was used. (b). Frequent co-occurrence of

MA2K4 loss and SS18L1 gain in 822 breast cancer patients. (c) Kaplan–Meier curves of overall survival in patients with MAP2K4 loss, SS18L1 gain or both

alterations (P¼0.00098; two-sided log rank test). (d) Kaplan–Meier curves of overall survival in ER-positive patients with MAP2K4 loss, SS18L1

gain or both changes (P¼0.0074; two-sided log rank test).

Table 1 | Observed count and expected frequency of the
mutation pattern of two genes.

Gene B

0 (WT) 1 or � 1 (altered)

Gene A
0 (WT) C00 C01
1 or � 1 (altered) C10 C11

Gene A
0 (WT) (1� pA)(1� pB) (1� pA)pB
1 or � 1 (altered) (1� pB)pA pApB

WT, wild type.
Top: the observed count of cases in each combination of the mutation pattern. Bottom: the
expected frequencies under the null hypothesis of two genes being altered independently.
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RNAiMAX (Life Technologies) diluted in 5 ml Opti-MEM. For assaying single
siRNA knockdown phenotypes, negative control siRNAs were combined with the
targeting siRNAs. Five-hundred cells were seeded in 40 ml MCF10A growth med-
ium with no antibiotics by using a Multidrop Nano reagent dispenser (Thermo
Scientific). Cells were incubated at 37 �C and in 5% CO2 for 72 h before fixation
and staining.

Cell staining. All steps of staining and imaging were performed at room tem-
perature. Cells were fixed in 5% paraformaldehyde (Electron Microscopy Sciences)
in PBS for 20min., followed by permeabilization with 0.2% Triton X-100 in PBS.
Cells were then washed with 0.05% Triton X-100 and blocked in 3% BSA PBS for
1 h. Cells were incubated in anti-alpha-tubulin (Clone B-5-1-2, Sigma, 1:1,000) for
2 h followed by three washes with PBS. Secondary antibody staining was performed
with Alexa 488 goat anti-mouse immunoglobulin G (Invitrogen, 1:500), Hoechst
33342 (Invitrogen, 13 ngml� 1) and rhodamine phalloidin (Invitrogen, 1:50) for
45min, followed by three PBS washes. The plates were then stored in PBS at 4 �C
before imaging.

Automated image acquisition. Images were acquired on a Beckman ImageXpress
Micro by using a � 10 objective lens in a 12-bit tiff format. Images from four
different sites were collected for each well of a 384-well plate. Each site typically
contains 200–600 cells. Channels for Hoechst 33342 (DNA), Alexa 488 (tubulin)
and rhodamine were imaged. The total number of images acquired was 58,212.

Image analysis. The image analysis pipeline was built upon the EBImage pack-
age53 in R. Images of 12-bit tiff were first converted to 16-bit tiff and then to JPEG
format for display and storage. The illumination non-uniformity across the field of
view was corrected by using background subtraction before analysis. Artefacts were
removed from all channels by a thresholding method. Connected regions that are
larger than 4,000 pixels in the nucleus channel were removed from subsequent
processing in all three channels.

Nuclei and cell segmentations were performed following the protocols described
in Fuchs et al.54 The images were first normalized for better segmentation while the
raw images were kept for raw intensity calculation. Nuclei were segmented by
adaptive thresholding of the DNA channel with the threshold set to 0.01. Objects
that were too dark (average intensity o0.01), too large (42,000 pixels) or too
small (o75 pixels) were treated as artefacts and removed. Cell masks were
calculated by using the summation of the actin, tubulin and DNA channel signals.
Cell boundaries were then separated by location of the nucleus by using the
Voronoi segmentation algorithm through the ‘propagate’ function incorporated in
EBImage54. Cells that were too large (4145,000 pixels), too small (o150 pixels),
too dark (average intensityo0.1) or too close to the border (edge/peripheral length
40.3) were removed as artefacts. Each cell was characterized by eight
morphological features for further analysis: cell number, cell size, nucleus size, cell
eccentricity, nucleus eccentricity, nucleus fluorescence intensity, actin intensity and
tubulin intensity.

siRNA selection. 366 Silencer Select siRNA targeting 122 genes were obtained
from Ambion Applied Biosystems (Life Technologies). To identify high-quality
siRNAs, we screened three siRNAs for each of the 122 genes and selected the two
siRNAs with the most consistent phenotype. Each siRNA was arrayed twice in 384-
well plates and cells were transfected by using RNAiMAX (Life Technologies)
following the manufacturer’s instructions on reverse transfection. After staining,
images were obtained and ten cell features were extracted. Euclidean distances
between two feature vectors were calculated. Two siRNAs with distances not larger
than the mean distance between technical replicates were selected for 67 genes. The
sequences of the 134 siRNAs used in combinatorial screen are listed in
Supplementary Data 1.

Combinatorial RNAi screen. For the combinatorial RNAi screen, a template-
query design was used similar to the one described in Horn et al.11 A quantity of
100 nM each of the 132 template siRNAs stocks were arrayed twice in a 384-well
plate (Beckman), and aliquoted to 63 plates. Each plate also contained 16 empty
wells, five positive controls (PLK2) and eight negative controls (non-targeted cells),
all randomly arrayed on the plate. Each template plate was then combined with one
of the 29 query siRNAs or Opti-MEM medium. In this way, each pair of genes was
assayed four times through four different combinations of siRNA within one plate.
Liquid handling was performed by the automated liquid handlers Evolution
Precision Pipetting Platform (PerkinElmer) and Freedom EVO100 (Tecan). Cells
were then plated and stained as described above.

Validation of RNAi knockdown using qRT–PCR. siRNA transfections were car-
ried out in the same conditions as in the primary screen. Twenty-four hours later,
siRNA-transfected cells were lysed by using the Cells-to-ct Kit (Life Technologies),
followed by reverse transcription and real-time PCRs according to the manu-
facturer’s instructions. PCRs were performed on a Step One Plus (Applied Bio-
systems). Percent mRNA remaining was calculated by using the Step One software.

Expression data were first normalized to a house keeping gene (GAPDH), and
expression fold changes were calculated by comparison with cells treated with non-
targeting control siRNA. For selected genes, remaining mRNA levels after 48 or
72 h were assayed. The low abundance of templates in our assay may result in high
variances between technical replicates for some of the genes. The primers used for
qRT–PCRs are listed in Supplementary Data 2.

SUR for interaction analysis. We focused on three phenotypes in the RNAi
screen: the cell number, cell size and nucleus size, which are correlated among each
other, with the correlation between cell size and nucleus size being stronger. To
identify significant GIs for each phenotype while accounting for the correlation
among the phenotypes, we adopted a SUR framework21. That is,

ytkijr¼b0 þb1k þb2Gi þ b3Gj þ b4ðGi�GjÞþ etkijr ð1Þ

etkijr � MVN 0;Oð Þ; ð2Þ

where t represents indexes phenotypes, k batches, i and j genes, and r replicates. Gi

(or Gj) takes value 1 if the i-th (or j-th) gene is knocked down, and etkijr denotes the
error term, which follows a multivariate normal distribution with mean 0 and
covariance matrix O. Furthermore, b0 indicates the baseline level, b1k the impact of
the k-th batch, b2 and b3 the single-gene effect size, and b4 the interaction effect
size (or score). The SUR accounts for dependence among phenotypes through the
covariance matrix O of the error term etkijr. Specifically, if S is the covariance
matrix of 3 by 3 for the phenotypes, the covariance matrix O of the error term in
the above regression is,

O¼� � IN ð3Þ

where IN is an N by N matrix with 1 along the diagonal and 0 off the diagonal, N is
the total number of observations for each phenotype and # represents the
Kronecker product.

Since the cell number grows exponentially, we log2-transformed this phenotype
in regression. We also log2-transformed the cell size, as the transformed data were
closer to a normal distribution (Supplementary Fig. 5). The data on the nucleus size
followed roughly a normal distribution (Supplementary Fig. 5), so we did not
transform these data. In terms of their implications on the interaction, these
strategies mean that we examine a multiplicative model of GIs on the cell number
and nucleus size, and an additive mode on the cell size (see the description of the
additive and multiplicative models in next section).

We carried out the linear regression for each phenotype by using the R function
lm and performed SUR with the function systemfit in the R package systemfit55,56.
To assess the statistical significance of the P values for the estimated coefficients of
the interactions, we computed the Q values for the P values of the estimated
coefficients of the interactions for each phenotype, using the function Q value in
the R package Q value.

In addition, we pooled the interaction effect sizes across the three phenotypes
that generated the overall GI profile for each gene. We computed the Pearson
correlation for all gene pairs and applied hierarchical clustering to the resulting
correlation matrix.

Notes on additive and multiplicative model for epistasis. Ignoring the noise in
the data and assuming that the single-gene and double-knockdown phenotypes can
be estimated perfectly, we can describe epistasis through the models below:

Additive model:

b¼xij � xi þ xj
� �

; ð4Þ

Multiplicative model (raw scale):

b¼xij= xixj
� �

; ð5Þ

Multiplicative model (log transformed):

log b¼ log xij � log xi þ log xj
� �

: ð6Þ
In the models above, b is the GI score, xij is the observed phenotype of double

knockdown, xi and xj each are the phenotype of single knockdowns. Both xi þ xj
and xixj (log xiþ log xj on the log scale) are the expected phenotype from the
double knockdown. In the additive model, the GI score b is the (mathematical)
difference between observed and the expected phenotypes. In the multiplicative
model, b is the ratio between observed and the expected phenotypes.

Both multiplicative and additive models are commonly used when assessing
epistasis46–49. The practical choice of model often depends on the particular
phenotype and scale of measurement57. Whereas additive models are suitable for
phenotypes that change linearly, multiplicative models are intuitively suitable for
growth-related phenotypes, such as yeast fitness or cell growth, because the cells are
known to grow nonlinearly.

Network analysis of the inferred GI map. For a graph, g, with n nodes and m
edges, the metric of the small-worldness, denoted S, is largely based on the
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definition proposed in Humphries and Gurney22:

S¼ Cg

Crand

� ��
Lg
Lrand

� �
ð7Þ

where Cg and Crand are the clustering coefficient of the graph g and that of a
random graph with the same number of nodes and edges, and Lg and Lrand are the
mean shortest path length of g and that of a random graph. To estimate Crand and
Lrand, however, we generated a large number of random graphs with n nodes and m
edges under the Erdos–Renyi model58, such that each edge is created with the same
probability. We computed C and L for each random graph, and used the average as
the estimate for Crand and Lrand. We used functions erdos.renyi.game, transitivity
and average.path.length in the R package igraph3 for the computation.

We used this method to compute the small-worldness for the ‘prior’ graph of all
67 genes and 1,508 edges assayed in the RNAi screen, and for the GI map of 66
genes and 847 edges (significant GIs at FDR of 0.05). The small-worldness is 1.1 for
the ‘prior’ graph and 1.5 for the GI map, suggesting that the GI map has a strong
level of small-worldness, not an artefact of the experimental design.

To compute the connectivity of each gene in the GI map, we first computed the
unadjusted connectivity, which is the number of edges (or signification GIs) a gene
has, and then divided it by the number of interactions probed (66 or 29 in our
experimental design) to obtain the proportion of significant GIs as the adjusted
connectivity.

We computed the betweenness59 under the canonical definition (using function
betweenness in the R package igraph59), rescaled it for the nodes with 29 ‘prior’
edges and normalized for all nodes to obtain a value between 0 and 1. Specifically,
there exists a log-linear relationship between the canonical betweenness and
adjusted connectivity in each node group. For nodes with 29 ‘prior’ edges, log
(betweenness)¼ � 3.5þ 5.2� (adj connectivity). For nodes with 66 ‘prior’ edges,
log (betweenness)¼ � 0.7þ 6.3� (adj connectivity). Note that the slope is roughly
the same, whereas the intercept differs by 2.8. We therefore multiplied the
canonical betweenness for nodes with 29 ‘prior’ edges by e2.8, such that the values
are comparable to that of the other node group. We then divided all the
betweenness values by the maximum (Supplementary Data 4).

Modes of interaction. We compared the effect size of a double knockdown (DAB)
with that of single knockdowns (DA or DB) and the expected effect size of the
double knockdown (DAþDB), and defined three broad types of epistasis:
(i) epistatic masking, when DAB¼DA or DAB¼DB. In other words, the effect of
one gene is completely masked (or dominated) by the other gene; (ii) synthetic
suppression, when DABo(DAþDB); (iii) synthetic enhancement, when
DAB4(DAþDB). To infer these types of epistasis from the RNAi data, we used
the estimated effect sizes of single and double knockdowns from the linear
regression, and allowed deviation of 1 s.e. in the comparisons in order to account
for the estimation uncertainty. For example, if the estimated effect size of the
double knockdown is within 1 s.e. of the estimated effect size of the single
knockdown of gene A, then we categorize genes A and B as in epistatic masking.

Co-expression network from TCGA data. We calculated the pairwise Pearson
correlation of gene expression z scores of the 67 genes in samples where both genes
had a neutral copy number.

Survival analysis. Gene alterations used in the survival analysis here are the same
as defined in ‘Detection of significantly co-altered gene pairs’ section. For a pair of
genes, we examined the following three questions: (i) Are single-gene alterations
(alteration of either gene) and double gene alterations associated with different
survival prospects? (ii) Does this association hold after accounting for commonly
mutated genes in cancers? (iii) Does this association hold after accounting for
tumour subtypes? We further examined whether genome instability is a con-
founding factor in the above analysis.

At the core of the analysis to address these questions is survival analysis, which
estimates the survival curves (that is, the survival probability as a function of the
survival time) for groups with different alteration patterns (such as single alteration
versus double alteration), and compares the statistical significance between the
estimated survival curves. A log rank test based on a w2-distribution was used for
the comparison. We used functions survfit and survdiff in the R package survival
for this analysis. Similar to the detection of significant interactions, we computed
the Q values by using the R function Q value from package Q value. Q values
o0.05 were considered significant. In each of the three analyses, we further
considered three cases of alteration patterns: gain–gain, gain–loss and loss–loss,
and required that there are at least five cases with double alteration for a gene pair
in any of the three cases.

To address question (ii), we extracted patient samples with TP53 deletion, and
performed survival analysis in these samples.

To address question (iii), we extracted breast cancer patients diagnosed as
ER-positive or ER-negative and compared single and double alterations in each of
the two cases.

To examine the impact of genomic instability, we measured genomic instability
in two ways: one is the metric defined by TCGA, which is the fraction of the
genome being altered and is based on copy number changes, and the other is our

own metric, which is the total number of alterations in the genome. We performed
beta regression60 for the fraction, and quasi Poisson61,62 regression for our own
metric, using the overall survival months and survival status as covariates. We used
the R function glm for parameter estimation and P value calculation.

Data availability. The analyses in this paper are implemented in the R package
cancerGI, which will be available on CRAN (http://cran.r-project.org).
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