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Microwave transitions as a signature of coherent
parity mixing effects in the Majorana-transmon
qubit
Eran Ginossar1,* & Eytan Grosfeld2,*

Solid-state Majorana fermions are generating intensive interest because of their unique

properties and possible applications in fault tolerant quantum memory devices. Here we

propose a method to detect signatures of Majorana fermions in hybrid devices by employing

the sensitive apparatus of the superconducting charge-qubit architecture and its efficient

coupling to microwave photons. In the charge and transmon regimes of this device, we find

robust signatures of the underlying Majorana fermions that are, remarkably, not washed out

by the smallness of the Majorana contribution to the Josephson current. It is predicted that

at special gate bias points the photon-qubit coupling can be switched off via quantum

interference, and in other points it is exponentially dependent on the control parameter EJ/EC.

We propose that this device could be used to manipulate the quantum state of the Majorana

fermion and realize a tunable high coherence four-level system in the superconducting-circuit

architecture.
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P
hotons are used to control and measure qubits in a diverse
range of qubit systems from natural atoms to semiconduct-
ing and superconducting solid-state architectures1–8. The

properties of solid-state qubits and resonators and coupling to
photons can be engineered to some degree by design and this
enables the combination of several different subsystems to form
hybrid devices that take advantage of their relative strengths9,10.
In turn, this leads to new methods of probing physical systems
and, where highly quantum coherent subsystems are involved, to
establishing control over their quantum variables.

Of particular interest is the application of this approach to
topological superconducting nanowires, as theoretical predic-
tions11–13 supported by experimental progress14,15 indicate the
presence of the highly sought-after Majorana zero-energy
modes16,17 localized on the wire around its end points. When
the nanowire bridges a Josephson junction, the presence of
Majorana zero modes was predicted to lead to several observable
effects18–24, of which first experimental signatures were recently
observed25 and explained theoretically26. Even more intriguing is
the case of an isolated mesoscopic Josephson junction, which in
the absence of the nanowire is known as a Cooper–Pair–Box
(CPB), embedded within an optical cavity. In addition to the
Josephson coupling, charging effects and light-matter interactions
play a pivotal role in this device. Using state of the art
experimental progress the device can be engineered so that its
charging energy is small compared with the Josephson energy,
forming a highly coherent system known as the transmon27.
When the nanowire is added, the presence of the Majorana zero
modes modifies the properties of the device considerably;
however, its high coherence should persist. The device can
therefore be used as an alternative superconducting qubit. Its
minimal quantum description involves two effective fermion
degrees of freedom that arise from the Majorana zero modes
and represent the parity state of the low-energy unpaired
charges residing on the two sides of the Josephson junction.
Similar set-ups were proposed as a basis for topological
qubit construction28–30. Generically, the two fermions can
couple and split through a Majorana coupling term generated
by coherent single-electron tunnelling processes across the
junction. In this likely relevant experimental scenario, a central
question that needs to be addressed is what is the unique
spectroscopic signature of the charge-neutral Majorana zero
modes in such devices? In addition, can one establish control over
the parity state, demonstrating its relevance for quantum
information processing?

To answer these questions, in this article we explore the
microwave coupling in this device as compared with the
traditional CPB. We discover a remarkable spectroscopic pattern
consisting of two to four resonant frequencies whose number and
intensities are tunable via a gate offset ng. This spectroscopic
pattern is very different from the traditional transmon that admits
exactly two resonant frequencies with non-tunable intensities. The
excitation spectrum consists of multiple doublets inherited from
the parity states. In the rest of this article we shall refer to the
ground state doublet as the ‘Majorana-transmon (MT) qubit’. The
combination of these properties allows: (i) spectroscopic detection
of the parity state strengthening currently available transport
signatures of Majorana fermions in a setting that avoids
complications stemming from the need to attach leads and
perform transport measurements, including weak antilocaliza-
tion14,31, reflectionless tunnelling32 and Kondo effects33; and, (ii)
coherent and tunable control over the parity state made possible
by the highly anharmonic level structure and the tunability of
transitions. As we demonstrate below, the coupling strengths for
the different transitions are determined by a quantum interference
of charge parities and reveal their presence. Such tunable control

allows state manipulation of the MT qubit via the upper
levels of what we will show to be a superconducting coherent
double-L system. These properties are highly desirable for
quantum-information processing in the superconducting qubit
architecture, which is currently based on a very weakly
anharmonic level structure that limits the speed and fidelity of
gate operations. The source of weak anharmonicity, being the
difference between adjacent transition frequencies, stems directly
from the form and dominance of the Josephson energy in varieties
of qubits that resist well to charge noise fluctuations34.

Results
Proposed set-up and description of the model. The proposed
hybrid device contains a nanowire that is placed in proximity to the
Josephson junction of a CPB (see Fig. 1), the latter being a pro-
totypical charge qubit (realized as either a two-dimensional (2D) or
three-dimensional (3D) transmon). A combination of strong spin-
orbit coupling and a Zeeman gap can be used to push the wire into
its topological state, provided that the chemical potential is tuned
within the wire’s gap. In this phase, Majorana zero modes with
operators g2 and g3 are localized near the junction. Two additional
distant Majorana modes are present within the superconductors,
g1 and g4 (see Fig. 1). The operators satisfy g

y
i ¼ gi and {gi,gj}¼ dij.

The properties of the device are determined by the interplay of the
Josephson coupling EJ, the charging energy EC, the coupling EM
between the Majorana excitations and the superconducting phase
difference j18,20,35–40. The Hamiltonian for the hybrid junction is
H¼HTþHM where

HT½ng� ¼ 4EC
1
i
@j � ng

� �2

�EJ cosj;

HM ¼ 2iEMg2g3cosðj=2Þ:

Here ng describes the total offset charge that represents an
external electrostatic gate control. The anomalous term HM is
generated by coherent single-electron tunnelling processes
between the two superconductors facilitated by the overlap
of the zero-energy Majorana modes across an electrostatic
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Figure 1 | The proposed experimental set-up. Two superconductors

(yellow) form a Josephson junction and are capacitively coupled to control

gates (grey). A topological nanowire (silver) lying in close proximity carries

four Majorana zero modes. Two of the zero modes (green), g2 and g3,
hybridize across the junction, owing to coherent single-electron tunnelling

processes, with strength EM. The bottom gates control the density

in the wire and the strength of the potential barrier between the two sides

of the wire, tuning the value of EM. The electrostatic offset charge, ng, is

controlled via the side gates.
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potential barrier. In our context, it allows coherent Rabi
oscillations of unpaired electrons. We focus on the MT regime,
which we define as EMooECooEJ, where the influence of charge
noise is exponentially suppressed, and explore the dependence of
the eigen state and eigen energy spectrum on ng. When EM is
non-zero, we find a spectrum that is composed of closely spaced
doublets of transmon-like energy levels, see Fig. 2, with a
periodicity of e compared with 2e for the transmon. The
microwave photons couple to the charge operator and we find
that even when EM/ECoo1 the charge matrix element hi j n̂ j ji
that couples to the photon field is strongly dependent on ng and
EJ/EC for the allowed GHz-range transitions (Fig. 2a) since the
bare states of the system become strongly hybridized. The MT
level structure is highly anharmonic because of the fact that the
third level is separated by an energy scale of the order of the
plasma oscillation frequency

ffiffiffiffiffiffiffiffiffiffiffiffi
8ECEJ

p
that is much larger than the

doublet level splitting BEM in the regime we consider. This could
be traced back to the geometric origin where a nanowire with
only a few channels would support a much smaller coupling EM
compared with the macroscopic Josephson junction with EJ, and
the charging energy is controlled by the engineered capacitance.

For completeness, we would like to mention other scenarios that
were recently discussed in the literature: the EM¼ 0 and EM¼
EC¼ 0 limits in refs 28,29; the flux qubit in ref. 41; circuit QED
extensions in refs 42,43; and, photon-induced long-distance
Majorana coupling in ref. 44. In contrast, the present work offers
an effective model capturing the multilevel spectrum of the
charge-qubit device. Owing to a particular set of useful features
that we now elaborate on, this minimal scenario may also
have considerable appeal as an alternative to transport-based
experiments.

Solution of the model. In the topological phase and when
EM¼ 0, the nanowire excitations on each side of the potential
barrier carry each a single zero energy fermion state, whose
occupation becomes locked to the parity of the unpaired charge
on the same side35,38,45–48. The parity of the total unpaired charge
stays constant in the model and therefore the hamiltonian can be
projected on two parity states that yields the form (see the
Methods section for details)

H ¼ HT ng
� �

EM cos j=2ð Þ
EM cos j=2ð Þ HT ng

� �� �
; ð2Þ

which we now diagonalize by solving the eigenvalue equation
Hw¼Ew where w¼ (f(j), g(j))T. A crucial point is that one
should take into account the requirement on the Hilbert space
that f(j) is periodic in j with a periodicity 2p, while g(j) is
antiperiodic. Alternatively, one can use a basis composed of solely
periodic functions; however, the Hamiltonian gets modified
according to H-H0 ¼UHUw, with U¼ diag{1, eij/2}

H0 ¼ HT ng
� �

EM
2 1þ e� ijð Þ

EM
2 1þ eijð Þ HT ng þ 1=2

� �� �
: ð3Þ

The eigen energies of this Hamiltonian were calculated
numerically employing charge eigenstates and are presented in
Fig. 3 as a function of ng.

Further insight into the effect of the coupling HM on the system
can be gained from diagonalizing the Hamiltonian in the basis of
the transmon eigenfunctions34 that will be denoted as Ck(ng, j)
and which diagonalize HT[ng] and HT[ngþ 1/2], respectively. In
this basis, H0 can be shown to be approximately 2� 2 block
diagonal since HM mostly couples the same band pairs {Ck(ng,
j), Ck(ngþ 1/2, j)}. This coupling results in an energy splitting
of the order EM developing around ng¼ 1/4 (see Fig. 3b)) while
further from this point it is a function of both EM and the
dispersion (which is defined as the amplitude of the variation of a
specific eigenenergy with respect to ng). Importantly, the
periodicity of the energy levels is halved, and this will affect the
behaviour of the system with respect to tunnelling of non-
equilibrium quasiparticles. Further, in the transmon regime EJ/
EC441 the dispersion of the transmon levels is exponentially
suppressed such that the EM dominates the spectral gap and
flattens it further, see Fig. 3c,d, and hence improving its famous
resilience against dephasing caused by charge fluctuations.

Each energy eigenstate can be described as pseudospin in the
two-dimensional state space of unmixed parities associated
with the one transmon band states of HT[ng] and HT[ngþ 1/2].
We denote these by |k,±S¼ (fk,�, gk,�)T where k¼ 0, 1, y
denotes the transmon band index and ± denotes the amplitude
pairs that become exactly symmetric and antisymmetric at the
degeneracy point ng¼ 1/4. In the vicinity of this point, inter-
action HM strongly correlates the parity and phase (j) with close-
to-equal weight hybridization, that is, |f 2|� |g2|¼ 0 (/sZS¼ 0).
The resulting pseudospin nature of the wave function can
be depicted by taking the partial trace in the pseudospin
space ðhsxi; hsyi; hsziÞj;� ¼ Tr rk;� ðjÞ~s

� �
, see Fig. 4a.
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Figure 2 | The influence of coherent electron tunnelling between

Majorana states on the transmon spectrum. (a) Schematic representative

the bare eigenstates for the two parity states (depicted at the left and right

potential wells) that are coherently mixed to form superposition states that

constitute energy doublets (middle section). Tunable microwave couplings

between the states (indicated by arrows) realize a double-L system. The

various optical transition strengths can be controlled by varying either EJ or

ng. (b) Representative probability densities of the two eigenstates denoted

|0/1; ±S plotted against the background of the dominant Josephson

energy potential, for EC/h¼0.4GHz, EJ/EC¼ 25, EM/EC¼ 5� 10�4,

ng¼0.25. The doublet energy splittings are drawn exaggerated for visibility

in the panels.
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The j-dependent pseudospin lies on the equator of the Bloch
sphere because of the equal weighting. It points predominantly in
the sx direction since the parity of the transmon wave functions
with respect to j yields real matrix elements for HM.

Light–matter interaction. Electromagnetic fields influence the
dynamics of the MT by coupling via the dipole operator, given by
D¼ ideqj, where d is the distance between the two super-
conductors. In the transformed basis, D0 ¼UDUw the dipole
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Figure 3 | Calculated spectra of the full Hamiltonian for different parameter regimes. (a) Spectrum of the Majorana-Cooper-Pair-Box spectrum with

EJ/h¼ 10GHz, EC/h¼0.4GHz for EJ/EC¼ 25 and EM/EC¼ 1/400 as a function of the charge offset ng. An avoided crossing of order EM develops (b) between

the states of different parity and the periodicity of the spectrum is halved, to repeat when ng-ngþ 1/2. The ground state pair is shown for EM/EC¼ 1/1,400

(black), EM/EC¼ 1/140 (blue) and EM/EC¼ 1/70 (green) for EJ/EC¼ 7.14 (with EC/h¼ 1.4GHz). (c) For EJ/EC¼ 25 the parity states for EM¼0 are

crossing but exponentially close in energy with a dispersion of E0þ (EM¼0)/h¼ 2� 10� 5GHz (see inset graph of the grey dashed area, with same x axis).

However, including the Majorana coupling, EM40 effectively removes the degeneracy and determines the energy splitting in the whole range of ng. (d) In the

transmon regime the residual dispersion is further suppressed by the Majorana interaction HM, as the plot of dispersion ratio E1þ (EM)/E1þ (0) shows.
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operator acquires the form

D0 ¼ ed
i@j

i@j þ 1
2

� �
: ð4Þ

The parity-phase correlation has important consequences for
the microwave and RF coupling between the states. The matrix
elements of the dipole operator

Gk;s!k0;s0 ðngÞ ¼ðedÞ� 1
Z2p

0

djhk; s jD0 jk0; s0i

¼
Z2p

0

dj f �k;sfk0;s0C
�
kðng;jÞi@jCk0 ðng;jÞ

h

þ g�k;sgk0;s0C
�
kðng þ 1=2;jÞði@j þ 1=2ÞCk0 ðng þ 1=2;jÞ

i
;

ð5Þ
where s, s0¼±, yield the coherent sum of two matrix elements
resulting from the different fermion parities. Thus, the transition
amplitude between states of same or different s, s0 is given by the
coherent addition of the matrix elements (see Fig. 2a). Usually,
the integrals need to be evaluated numerically; however, some
observations can be made on general grounds. At the degeneracy
point, ng¼ 1/4 the parity pseudospin state amplitudes have equal
weight of uncoupled MT components and the matrix elements
for the transitions |0; sS-|1; s0S become

G0;s!1;s0 ðng ¼ 1=4Þ ¼
i
2

Z 2p

0
dj C�

0ðng ¼ 1=4;jÞ@jC1ðng ¼ 1=4;jÞ�
�

C�
0ðng ¼ 3=4;jÞ@jC1ðng ¼ 3=4;jÞ

�
;

ð6Þ

where the relative sign ± depends on the choice of pair of states.
As we show in the Methods section for the transitions
corresponding to |0; ±S-|1; ±S there is a full destructive
interference between the dipole matrix elements at ng¼ 1/4. As we
move away from the special point ng¼ 1/4, the amplitudes change
and the dipole coupling returns to a finite value on a scale that
depends on EM, see Fig. 4. In contrast, the ‘intraband’ dipole
coupling Gk,s-k,s0 can be shown to be relatively small for all values
of ng.

Detectible experimental signatures. As ng is varied, it should be
possible to see the number of transition lines indicated in Fig. 2a
change. A spectroscopic pattern (Fig. 5) that is essentially
different from the one of the transmon would emerge. It arises
from the excitation spectrum that consists of multiple doublets
inherited from the charge parity states (see Fig. 2b). A dominant
feature in the pattern is that the strength of the parity-conserving
transitions (green), see Fig 2a, can be tuned to exactly zero by the
gate offset ng or exponentially suppressed by varying the ratio
EJ/EC (Fig. 4b–d). The former appears as a hole in the middle of
the spectrum (see Fig. 5). This pattern depends on the Majorana
coupling EM and the latter may be estimated from it. In the
following paragraph we show that this pattern is robust against
additional residual interactions such as g1g2, g1g4 and g3g4 cou-
plings or when several transverse modes exist in the wire. A
sensitive experimental technique49 that relies on the Ramsey
measurement was used recently for temporally tracking minute
changes in the spectrum of the transmon (of the order of %0.04
of the transition frequency). It was demonstrated that for a device
that has similar parameters to the one discussed here the
transition rate for non-equilibrium quasiparticles was slow
enough (milliseconds regime) to allow temporal tracking of the
spectral structure. From our model analysis it arises that if
combined with bias gates that influence ng and the strength of the

coherent tunnelling process EM, such demonstrated experimental
sensitivity would be arguably be sufficient for (1) detecting
the additional transition frequencies in the transmon regime
EJ/EC441, (2) achieving, in a split CPB configuration, a strong on–
off control of the coupling to microwave photons, see Fig. 4b. In a
split CPB configuration of the transmon device it is possible to
control the effective Josephson energy EJ by varying the external
flux through the loop34. In the hybrid MT model the sensitivity of
the dipole coupling to parameters also extends to an exponential
dependence on the ratio of EJ/EC since the latter controls the
relative effectiveness of the hybridization created by HM,
and (3) detecting the disappearance of two spectral lines exactly
at the degeneracy point ng¼ 1/4. Other methods of strongly
controlling the coupling were designed and demonstrated
recently50–52 using a split CPB strongly coupled to a cavity, albeit
with a qualitatively different behaviour since the dependence on
EJ/EC requires precise tuning to one point in order to turn off
the coupling.

Finite size effects and multimode wire. In the following, we
discuss two central mechanisms that may modify the spectro-
scopic spectrum of the MT device. The first mechanism is related
to the appearance of additional Majorana couplings, as can result
from the finite size of the wire or from certain disorder effects.
The second mechanism results from the presence of additional
transverse modes in the wire interacting via the charging energy.
As we now argue, the rich spectroscopic interference patterns that
occur in these cases display very similar characteristics compared
with the pure case discussed before, demonstrating a certain
robustness of these results.

First, we consider the case that additional Majorana couplings
exist, such that HM is replaced by

Hð1Þ
M ¼il12g1g2 þ il34g3g4 þ il14g1g4 cos j=2ð Þ

þ il23g2g3 cos j=2ð Þ:
Introducing fermions via G1 ¼ 1ffiffi

2
p ðg1 þ ig2Þ and G2 ¼

1ffiffi
2

p ðg3 þ ig4Þ, as described in the Methods section, and projecting
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Figure 5 | Predicted spectroscopy of a Majorana-transmon qubit device.

The microwave transition frequencies (Df) of the system as function of the

offset charge ng for the different transition paths within the lower part of

the spectrum. Away from ng¼ 1/4, the upper (A) and lower (C) lines are

associated with the usual transmon transitions, while the central lines (B)

describe parity-mixing effects and are a unique feature of the Majorana

modes. In addition, at ng¼ 1/4 the transition amplitudes in each parity

manifold interfere destructively and this gives rise to another unique feature,

a ‘spectral hole’ in transition (A, C). In contrast to the traditional transmon,

all spectral lines are gate-tunable, and the pattern can be shifted between

four (left) and two (centre) resonant frequencies. The frequencies are

plotted relative to the average and in units of the line width k/2p¼ 50KHz,

taking EC/2p¼400MHz, EJ/EC¼ 27 and EM/2p¼0.5MHz.
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on their occupations |00S and |11S (constraining our discussion
to the even subspace, without loss of generality), we get the
modified Hamiltonian

Hð1Þ ¼ HT ng
� �

� l EM cos j=2ð Þ
EM cos j=2ð Þ HT ng

� �
þ l

	 

; ð7Þ

where l¼ (l12þ l34)/2 and EM¼ (l23þ l14)/2. This results in the
introduction of a new energy scale l that repels the Transmon
energies associated with the uncoupled states |00S and |11S. For
the case l44EM, by tuning now the Transmon dispersion, one
can reach the limit that the coupling energy EM will become
ineffective. This leads to exponential sensitivity to the presence of
l44EM that can further help to differentiate higher energy
spurious states from the zero mode states. For the Majorana
modes we expect on physical grounds that the coupling strengths
satisfy looEM. The resulting spectroscopic pattern is displayed
for several values of lrEM in Fig. 6, using the same parameters
as in Fig. 5.

Next, we consider the case that there are two transverse modes
in the wire (one can also extend straightforwardly the analysis to
additional transverse modes). Consequently, one should double
all Majorana zero modes and obtain two sets gi and g0i where
i¼ 1,y,4. The modified HM is

Hð2Þ
M ¼ il23g2g3 cos j=2ð Þþ il023g

0
2g

0
3 cos j=2ð Þ:

We stress that the problem is not trivially doubled owing
to the presence of a charging energy, which is only sensitive
to the total unpaired charge. We introduce additional
fermions G0

1 ¼ 1ffiffi
2

p ðg01 þ ig02Þ and G0
2 ¼ 1ffiffi

2
p ðg03 þ ig04Þ. Using the

notation jn1; n01; n2; n02i for the occupations of the fermions, the
full charge basis is |00; 00Seicj, |01; 01Seimj, |10; 10Seipj and
|11; 11Seiqj, where c, qEZ and m, pEZþ 1/2. The full
Hamiltonian can be written in this basis as

Hð2Þ ¼ s0 � t0HT ng
� �

þs0 � t1E
0

M cos j=2ð Þ
þ s1 � t0EM cos j=2ð Þ;

ð8Þ

where the matrices si#tj are composed of two copies of Pauli
matrices. We present the resulting spectroscopic pattern in Fig. 7
using the same parameters as in Fig. 5 and for several values of
E0
M. The resulting spectroscopic pattern looks like two copies of

the single-mode spectrum, shifted up and down by E0
M. Although

more complex interference effects occur when E0
M � EM, the two

outer lines remain well decoupled from their respective other
copy, and the spectral hole in the two outer lines consequently
persists.

Discussion
A device that realizes this Hamiltonian could have substantial
advantages over current superconducting qubit devices: (1) in
addition to the gate tunability of the direct microwave coupling
between transmon qubit states, the two lowest MT states form an
energy doublet, see Fig. 2, which constitutes a highly anharmonic
MT qubit. The high anharmonicity is considered a benefit for
qubit state manipulation as it reduces the probability of
higher states being excited and shortens the duration of control
pulses. (2) The two almost degenerate ground states can be
regarded as part of a L type system and thus optically
manipulated via transitions involving the higher doublet states.
(3) The sensitivity of the states to the parameter ng leads to
adiabatic control, which by tuning ng from 0 to 1/2 will take a
system prepared, for example, in a state pointing predominantly
in the |k; 0, 0S direction to a state close to |k; 1, 1S.
Microscopically, a Cooper pair is split coherently and adiabati-
cally between the two sides of the junction generating the
transition between the two parity states.

Microscopic two-level systems (TLS) that interact with the
charge qubit generally give rise to spurious spectroscopic
signatures. However, these can be differentiated from the case
of Majorana fermions. In the case of a TLS that is resonantly
coupled to the transmon there is only one ground state and
therefore only two spectroscopic transitions to the one-excitation
manifold. Correspondingly, there are only two transition
frequencies that can be observed compared with up to four in
the Majorana case. In contrast, if the TLS is close to degenerate in
energy, the full system may possess a similar spectrum of two
doublets. However, the crucial difference arises from the absence
of direct coupling between the two quasi-degenerate ground
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Figure 6 | Spectroscopic signatures in the presence of additional

Majorana couplings for different coupling strengths. The spectral holes

around ng¼ 1/4 for the outer spectroscopic lines are unaffected by the

coupling strength l. As l gets closer in size to EM, one of the spectral

nodes in the centre of the pattern coalesces with its mirror image. At even

larger values of l, the two outer spectral lines quickly lose weight. The

pattern demonstrates a periodicity in ng with a double period 2e, while

the halved periodicity is lost because of the presence of the additional

couplings shifting all Majorana zero modes away from zero energy.

(a) l¼ EM/4, (b) l¼ EM/2 and (c) l¼ EM.
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states, in contrast to the case of Majorana fermions. This strongly
suppresses any additional features in the spectroscopic pattern.
Another possible scenario is a single electron state trapped within
the oxide barrier, with a typical energy E0, that can exchange
electrons with the two superconductors. Again, the phenomen-
ology is very different since there will always be an extra energetic
cost associated with an unpaired electron within the super-
conductors, leading to a very high energy scale E0þD in which
such processes appear in the spectroscopic pattern (here D is the
superconductor gap). Generally speaking, independently of the
competing microscopic scenario, as long as zero energy Majorana
modes exist in the sample: (i) the periodicity of the spectrum is
coherently halved compared with the regular transmon owing to
a rigidity in the relative shift ng-ngþ 1/2 of the two levels that
hybridize to form the doublet; and, (ii) the spectroscopic

signatures do not depend on the particular realization of
randomly occurring TLSs in the oxide. Finally, semiconductor
nanowires would probably contain a certain degree of disorder.
Qualitatively, if the disorder is long ranged and smooth on the
scale of the lattice constant, it could effectively act as a random
potential that fragments the nanowires into sections of topolo-
gically trivial and non-trivial phases. Within the theoretical
framework of topological superconductrors, this would cause the
appearance of additional Majorana pairs along the nanowire.
However, only couplings between Majorana zero modes residing
on opposite sides of the Josephson junction would couple to the
superconducting phase difference and hence to the photons. In
contrast, the rest of the Majorana zero modes would be passive
spectators in this process and hence we do not expect the
signatures described here to disappear.

Methods
Derivation of the Hamiltonian. The mesoscopic nature of the Majorana-CPB
prescribes certain intricacies in the diagonalization procedure that we now elabo-
rate on. It is a common practice to compose non-local Dirac fermion zero modes
G1 ¼ 1ffiffi

2
p ðg1 þ ig2Þ, G2 ¼ 1ffiffi

2
p ðg3 þ ig4Þ and similarly Gw

1, G
w
2 through hermitian

conjugation. This choice of basis simplifies the calculations as well as the pre-
sentation of our solution. By doing so we retain vital information regarding the
different boundary conditions for the even and odd sectors of the charge transfer
operator. This is also compatible with our goal of calculating the dipole matrix
elements, which is very naturally written as a diagonal operator in our basis. This
set of operators satisfies the canonical anticommutation relations for fermions,
fGi;G

w
j g ¼ dij. In addition, we introduce a number operator for each super-

conductor that we denote by n̂i ði ¼ 1; 2Þ; which counts the number of Cooper
pairs in units of 1, and which is conjugate to the superconducting phase,
ji; ½n̂i;ji� ¼ � i. Importantly, in topological superconductors n̂i can assume both
integer and half-integer eigenvalues. The latter are associated with the presence of
an unpaired electron, counted as half a Cooper pair.

We initialize the system by considering, in the absence of tunnelling across the
junction, a definite parity of the electron number within each superconductor.
The occupation of the Dirac zero mode Ni ¼ Gw

i Gi is thus set by the parity of the
electron number, Ni¼ 2ni(mod 2). Let us denote the initial state of the two Dirac
zero modes within one doublet by |N1, N2S. For simplicity we also assume that
initially n1¼ n2 (different choices lead to slightly different formulations but the
physical results remain the same up to an overall shift of the gate charge).

Next we turn on the couplings EM and EJ associated with single-electron
tunnelling and Cooper-pair tunnelling, respectively. We construct basis states for
the even and odd parity sectors and relative number of Cooper pairs n̂ ¼
1
2 ðn̂1 � n̂2Þ

eijn jN1;N2i; n 2 Z
� �

; ð9Þ

eijn j �N1; �N2i; n 2 Zþ 1
2


 �
; ð10Þ

where �Ni ¼ 1�Ni and j¼j1�j2 is the relative phase satisfying ½n̂;j� ¼ � i.
The first (second) set of wave functions is periodic (antiperiodic) under a change of
j by 2p. The Cooper-pair tunnelling operator modifies the eigenvalue of n̂ by ±1,
hence only couples states internally within the two subspaces (9) and (10). In
contrast, the single-electron tunnelling operator intermixes the two subspaces. To
model the latter we introduce electron raising and lowering operators e� iji=2

satisfying ½ni; e� iji=2� ¼ � 1
2 e

� iji=2. These operators are double-valued as they
change sign when ji-jiþ 2p and need to be matched with the Majorana zero
mode operator that also changes sign, leading to admissible operators (the
spectrum is necessarily 2p periodic, although some parity constrained states may
exhibit 4p periodicity). The single electron tunnelling term is thus written in terms
of the relative phase and the Majorana zero modes as in Equation (1), with
� 2ig2g3 ¼ Gw

1G2 þGw
2G1 þGw

1G
w
2 þG2G1 fully shuffling the state of the zero mode

occupations: jN1;N2i $ j �N1; �N2i. In addition, the phase-dependent part of the
electron tunnelling operator ensures that the eigenvalue of n̂ changes by ±1/2.
Hence, states of the form (9) can only couple to states of the form (10).

By projecting on the orthogonal states |N1, N2S and j �N1; �N2i the Hamiltonian
acquires a matrix structure, see Equation (2), or in the alternative basis,
Equation (3).

Coherent interference. On the basis of Equation (B3) in ref. 34 it can be shown
that the characteristic values n of the Mathieu functions in the transmon wave
functions obey n1� ng ¼ � nng . From this, it is straightforward to show that the
transmon wave functions obey Ckð1� ng;jÞ ¼ eijC�

kðng;jÞ based on the
symmetry properties for non-integer Mathieu functions with respect to n. The
degeneracy point ng¼ 1/4 is special since it obeys ngþ 1/2¼ 1� ng from which it
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Figure 7 | Spectroscopic signatures of the two-mode wire as function of

the second mode coupling. As the second mode (with coupling strength

E0M) is turned on, the spectrum initially behaves like two shifted copies

of the single-mode spectrum. When E0M gets larger, more complex

interference patterns appear. However, it can be seen that the spectral holes

around ng¼ 1/4 for the outer spectroscopic lines remain robust across the

transition from one mode to two modes, albeit their overall visibility

noticeably decreases. (a) E0M¼ EM/4, (b) E
0
M¼ EM/2 and (c) E0M¼ EM.
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follows that Ckðng ¼ 3=4;jÞ ¼ eijC�
kðng ¼ 1=4;jÞ and therefore the expression

for the dipole can be written solely in terms of wave functions at ng¼ 1/4.
Employing in addition on the symmetry properties for non-integer Mathieu
functions with respect to the phase j it follows that for the transitions
corresponding to |0; ±S-|1; ±S there is a full destructive interference between
the dipole matrix elements.
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