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Silver-catalysed direct amination of unactivated
C–H bonds of functionalized molecules
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Carbon–nitrogen bond formation from inert C–H bonds is an ideal organic transformation and

a highly desirable method for the synthesis of N-containing molecules due to its high effi-

ciency and atom economy. In this report, we develop a general reaction to achieve an

unprecedented selective intramolecular amination of unactivated C–H bond in the absence of

complex directing groups. Functionalized heterocyclic products are built up from readily

available linear amines through simple and reliable silver catalysis, representing a new

silver-based C–H functionalization. This method displays preference for primary sp3 C–H

bonds and exhibits distinct chemo- and regioselectivity compared to existing methods of

direct amination (Hofmann–Löffler–Freytag reaction and nitrene insertion). The study high-

lights the manipulation of unfunctionalized groups in organic molecules to furnish complex

structural units in the natural and bioactive molecules.
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D
irect functionalization of inert C–H bonds is of great
importance with the potential to fundamentally change
the strategy of organic synthesis1–3. This chemistry can

directly convert simple, cheap and readily available raw materials
into highly valuable and useful products by the manipulation of
inert unfunctionalized groups4–8. The greatest challenge in this
field is therefore to achieve the chemo- and regioselectivity in
C–H functionalization among many C–H bonds in organic
molecules, while keeping an array of functional groups intact. In
addition to the issue of selectivity, there are more challenges
toward the direct functionalization of sp3 C–H bonds, including:
their high bond dissociation energy, inaccessibility of the
independent C–H bonding and antibonding orbitals as well as
steric hindrance. In the past decades, great progress has been
made in such fields to convert aliphatic sp3 C–H bonds to C–C,
C–O and C–B bonds in either stoichiometric or catalytic manner
based on transition-metal catalysis9–15. The present article
focuses on the direct amination of inert Csp3–H bonds,
especially primary C–H bonds to construct aza-heterocycles.

Nitrogen-containing heterocycles, such as pyrrolidines, oxazo-
lidines and tetrahydroquinolines, are dominant both in naturally
occurring and man-made compounds, which often exhibit high
levels of biological activity. In particular, the pyrrolidine and
tetrahydroquinoline derivatives are privileged structural units in
natural products and pharmaceuticals as exemplified by the
structures of strychnine, folicanthine and mesembrine and so on
(Fig. 1a)16–20. Many chemists have devoted themselves to
searching for practical and convenient synthetic methods for
accessing such ubiquitous structural units by direct oxidative
amination of C–H bonds21–38. In fact, efforts toward such a goal
can be traced back to the historical Hofmann–Löffler–Freytag
reaction in early 19th century and its advanced versions-the
Baldwin and Doll modification and the Suárez modification21–29.
Another effective method for approaching direct amination of sp3

C–H bonds is to utilize nitrene insertion via transition-metal
catalysis (Fig. 1b)30–33. Amongst these, silver complexes were first
founded to promote the nitrene insertion34,35. Recently,
Hennessy and Betley36 developed a successful example for
carrying out such transformation via Fe catalysis under mild

conditions. The power of this strategy has also been demonstrated
in the synthesis of the natural product tetrodotoxin37.

Notably, the selectivity in these two elegant transformations is
highly dependent on the nature of C–H bonds. In general,
secondary and tertiary C–H bonds are much more reactive than
the primary one for both reactions. Primary C–H bonds could be
accessed only in cases of conformational bias38,39. To approach
the primary selectivity of direct amination, Chen and Daugulis
groups successfully developed a Pd-catalysed cyclization to
specific ring systems by using a directing strategy while the
manipulation of protecting group by multistep transformations
limited its applications40–42.
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Figure 1 | Pyrroline structural active compounds and synthetic methods.

(a) Diversified structures of alkalines containing semi-unsubstituted

pyrroline structural units. (b) Secondary and tertiary aliphatic C–H

amination through transition-metal catalyzed nitrene insertion and

Hofmann–Löffler–Freytag reaction (HLF reaction). (c). Rational design on

direct primary C–H amination via transition-metal catalysis.
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Figure 2 | Direct amination of primary and benzylic C–H bonds. The

reaction scheme is shown above the table. aUnless otherwise noted, the

reaction conditions were as follows: sulphonamide (0.25mmol), AgOAc

(20mol%), PhI(OTFA)2 (2.0 equiv), ligand (20mol%), K2CO3 (2.0 equiv),

PhCl/dichloroethane (DCE) (1.5ml/1.5ml), 120 �C, 12 h. The isolated yield

was shown in the parentheses. bSulphonamide (0.25mmol), AgOAc

(20mol%), PhI(OTFA)2 (2.0 equiv), ligand (20mol%), K2CO3 (4.0 equiv),

PhF/Trichloroethane (1.5ml/1.5ml), 120 �C, 2 h; then another PhI(OTFA)2
(2.0 equiv) was added and the reaction was continued for another 2 h.
cSulphonamide (0.10mmol), AgOAc (20mol%), PhI(OTFA)2 (2.0 equiv),

ligand (20mol%), K2CO3 (2.0 equiv), PhCl/DCE (1.0ml/1.0ml), 120 �C,
12 h. dThe yield was determined by 1H NMR of the crude reaction mixture.
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To achieve the primary selectivity to construct the abundant
five-membered heterocyclic products from easily available amine
derivatives without the requirement of complicated directing
groups, new strategies and new catalytic systems are highly
desirable43,44. Notably, the compatibility with an array of the
functionalities, the availability of the starting materials and the
reliability of the new reaction system are important for potential
applications. Herein, we report an unprecedented Ag-catalysed
direct amination of primary sp3 C–H, secondary benzylic
C–H and aryl C–H bonds from linear triflamide (1,1,1-
trifluoromethanesulfonamide) under simple conditions. This
represents a powerful approach to access structures widely
existing in natural products and druggable molecules.

Results
C–H cyclizations. We chose the sulphonamides as the substrates
due to their easy availability and broad application in organic
synthesis. After extensive screening of a variety of transition-
metal catalysts, oxidants, bases and ligands, we found that the
combination of AgOAc, K2CO3, 4,40-di-t-butyl-2,20-bipyridine
and PhI(OTFA)2 gave the best results and the desired pyrolidines
were isolated from linear alkyltriflamide (Supplementary
Tables 1–3). This method was successfully applied to a variety
of triflamide derivatives, providing the cyclized products in fair to
good yields (Fig. 2). Notably, the presence of substituents at the
b-position is favourable for the transformation of products and
good yields of 2a and 2b were obtained. a-Substitution decreased
the yields and the examples indicate steric hindrance playing a
key role in these annulations (2c–e). g-Substituted linear
triflamide afforded the pyrrolidine product in a fair yield (2f).

Substrate 1g afforded 2g in a good yield with the expected
preference for the trans isomer (86:14).

Substrate scope. We further expanded the substrate scope
containing heteroatom functional groups. To our satisfaction, we
found that O-containing functional groups are well-tolerated
(2i, 2j, 2k). Remarkably, the excellent leaving group –OTs
(4-toluylsulfonoxyl) was compatible. The spirocyclic 2l was
obtained from substrate 1l through double cyclization, albeit in
relatively low yield. The 1,2-amino alcohol derivative 1m afforded
oxazolidine 2m, indicating the enhanced reactivity of the C–H
bond adjacent to the heteroatom in spite that the reaction leaves
much room for the improvement. The protected amino alcohol
1n well proceeded the cyclization, with the retention of the
stereogenic centres, providing an efficient method to produce
unnatural proline derivatives. The five–six fused-ring compound
2o was formed in a satisfactory yield, and the diastereoselectivity
was controlled by the starting materials. Compared with primary
C–H bonds, secondary or tertiary C–H bonds exhibit poor
reactivity, which is distinct from Hofmann–Löffler–Freytag
reactions or nitrene insertions, thus probably pointing out the
different mechanistic pathway 1p and 1q (after 12 h, 59% of 1p
and 51% of 1q were recovered). Moreover, five-membered ring is
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much favoured even in the presence of more reactive primary
C–H bonds for the formation of six-membered ring (24% of the
1r was recovered). In contrast, the more reactive benzylic
secondary C–H bonds in 1s and 1t could be addressed, expanding
the scope for further applications.

Due to the distinct proposed pathway of such an amination
from previous methods, we envisioned that this chemistry could
be applicable for direct amination of aromatic C–H bonds. Thus,
we extended this chemistry to build up the structurally important
tetrahydroquinoline scaffolds from 3-arylpropyl triflamide 3
(Fig. 3). A series of g-aryl substituted sulphonamides were
examined and it was found that: (1) substituented aliphatic motifs
at different positions do not obviously affect the efficiency; (2)
electron-rich aromatics react preferentially; (3) compared with
the inert primary sp3 C–H bond, the sp2 C–H bond on the
aromatic ring is more reactive; and (4) notably, functionalized
substrate 3h also exhibited good reactivity, thus indicating great
potential for their applications.

Competition experiments. Competition experiment between
primary C–H bonds and secondary C–H bonds was carried

out (Supplementary Fig. 1). As predicted, the preference for
amination is CMe–H44Cmethylene�H (Fig. 4a). The KIE
experiments have been conducted and we found that the intra-
molecular and intermolecular kinetic isotopic effect values at the
benzylic position were 2.8 and 1.4, respectively (Supplementary
Figs 2 and 3). On the basis of all these results, we proposed that
this transformation was preferred to a proton abstraction path-
way. With the assistance of strong s-donor chelating N-ligands,
the silver complex could be oxidized to Ag(III) after the ligand
exchange. The hyperelectrophilic Ag(III) centre attacks the less
steric hindered the primary C–H bonds, followed by electrophilic
deprotonation, which probably goes through a concerted
metallation/deprotonation process in the presence of TFAO�

(1,1,1-trifluoroacetate anion) as a base. Afterwards, the reductive
elimination produced the desired product, releasing Ag(I) to fulfil
the catalytic cycle (Fig. 5). The steric and electronic outcomes
based on different substrates are consistent with this hypothesis.
In some cases, a small amount of the desired product is also
observed in the absence of the Ag catalyst, indicating the com-
petitive existing radical pathway, which may induce the low KIE
in kinetic studies.
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Use of amino esters. To show the power of this method, the
protected linear amino acid esters 5 and 7 were submitted to
the standard condition, and both 3-methylproline 6 and
2-tetrahydroquinonylcarboxilic ester 8 were obtained in satisfying
yield. Moreover, more complicated 9 is also converted into
tetrasubstituted pyrrolidine 10 as the epimer of natural (� )-
codonopsinine with a sole diastereoisomer in a single operation.
To our satisfaction, tricyclic scaffold 12, containing the core
structure of the natural product martinellic acid, can be also
constructed via double aminations, in which both primary
Csp3–H and aromatic CAr–H are aminated in a single operation,
showing the beauty of this chemistry in organic synthesis.

In conclusion, we first developed an unprecedented site-
selective amination of C–H bonds without the requirement of
special complicated directing groups. N-heterocyclic products
bearing complex functionalities were constructed from simple
and easily available linear triflamines via reliable and easily
handled Ag catalysis. The method displayed unique chemo- and
regioselectivities that differed from the existing methods. This
study highlighted the manipulation of unfunctionalized groups in
organic molecules to furnish the complex privileged structural
units in the synthesis of natural products and bioactive molecules
using a new pathway that is broadly applicable in organic
synthesis.

Methods
Materials. Materials were obtained from commercial suppliers or prepared
according to standard procedures unless otherwise noted. AgOAc and PhI(OTFA)2
were purchased from J&K Chemical Co., Ltd. 4,40-Di-tert-butyl-2,20-dipyridyl was
purchased from Sigma-Aldrich. Potassium carbonate, anhydrous (K2CO3) was
purchased from Alfa Aesar used without any further purification. All the solvents
and other reagents were directly used from the purchased without any further
purification unless otherwise specified.

General spectroscopic methods. For NMR and X-ray analysis of compounds in
this paper, see Supplementary Figs 1–140 and Supplementary Tables 4–6. NMR
spectra were recorded on Bruker 400 and 500M nuclear resonance spectrometers
unless otherwise specified. CDCl3 as solvent and tetramethylsilane (TMS) as the
internal standard were employed. Chemical shift values for 1H NMR and 13C NMR
are referenced to residual solvent peaks (CHCl3 in CDCl3: 7.26 p.p.m. for 1H,
77.00 p.p.m. for 13C). Chemical shifts are reported in d p.p.m. All coupling
constants (J values) were reported in Hertz (Hz). Data for 1H NMR spectra are
reported as follows: chemical shift (p.p.m., referenced to TMS; s¼ singlet,
d¼ doublet, t¼ triplet, q¼ quartet, dd¼ doublet of doublets, dt¼ doublet of
triplets, m¼multiplet), coupling constant (Hz) and integration. 19F NMR data was
obtained on Varian 300M nucleus resonance spectrometers. Column chromato-
graphy was performed on silica gel 200–300 mesh. HRMS (high-resolution mass
spectra) were recorded on a Bruker Apex IV FTMS mass spectrometer (ESI) in the
State-authorized Analytical Center at Peking University. 1H NMR, 13C NMR and
ESI spectra are provided for all compounds. See the Supplementary Methods for
the characterization data for compounds not listed in this section.

Synthesis of 3-Methyl-1-(trifluoromethyl)sulfonyl-pyrrolidine 2a. Silver acet-
ate (AgOAc, 8.3mg, 0.05mmol), 4,40-Di-tert-butyl-2,20-dipyridyl (dtbpy, 13.4mg,
0.05mmol), [Bis(trifluoroacetoxy)iodo]benzene (PhI(OTFA)2, 215mg, 0.5mmol)
and potassium carbonate (K2CO3, 69mg, 0.5mmol) were placed in a vial under air.
Chlorobenzene (PhCl, 1.5ml), triflamide 1a (54.8mg, 0.25mmol), dichloroethane
(1.5ml) were sequentially added. The mixture was stirred at room temperature for
5min and then was stirred for 12 h at 120 �C. After the reaction mixture was cooled
to room temperature, direct flash silica gel column purification (eluent: 100ml of
PE; then PE/DCM/Et2O 250/20/5) of the reaction solution provided 2a (40mg,
0.17mmol) in 70% isolated yield. (Because the boiling point of desired product is
low, the solvent should be evaporated under low temperature). Colourless oil. 1H
NMR (400MHz, CDCl3) d 3.63–3.71 (m, 2H), 3.52 (q, J¼ 8.0Hz, 1H), 3.06 (t,
J¼ 8.0Hz, 1H), 2.40 (octet, J¼ 8.0Hz, 1H), 2.13 (sext, J¼ 8.0Hz, 1H), 1.65 (tq,
J¼ 8.0, 12.0Hz, 1H), 1.11 (d, J¼ 4.0Hz, 3H). 13C NMR (100MHz, CDCl3) d
120.44 (q, J¼ 322.0Hz), 55.32, 48.56, 33.90, 33.57, 17.00. HRMS–ESI
(m/z): [MþNa]þ calcd for C6H10F3NNaO2S, 240.02765; found, 246.02789.
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reaction). Chem. Rev. 63, 55–64 (1963).

25. Baldwin, S. W. & Doll, R. J. Synthesis of the 2-aza-7-
oxatricyclo[4.3.2.04,8]undecane nucleus of some gelsemium alkaloids.
Tetrahedron Lett. 20, 3275–3278 (1979).
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