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A multitasking functional group leads to structural
diversity using designer C–H activation reaction
cascades
Ying Chen1,2,*, Dongqi Wang2,3,*, Pingping Duan2,3, Rong Ben1,2, Lu Dai2, Xiaoru Shao3, Mei Hong2,

Jing Zhao1,2,3 & Yong Huang2,3

The C–H activation strategy has become one of the preferred methods to introduce chemical

functionality to a chemically inert carbon atom. Intensive efforts have been devoted to

developing either versatile bond formations (product structural diversity) or effective

directing groups (substrate site selectivity). From the views of medicinal and synthetic

practitioners, the C–H activation approach remains inadequate due to its limitation to point-

to-point derivatization. Direct assembly of 3D molecular complexity in a single step remains

elusive for this strategy. Towards this goal, a multitasking functional group is required to

accomplish several missions in one pot: site selecitivity, cleavability and redox versatility. We

demonstrate that an oxyacetamide group is such a multifunctional warhead that enables a

series of C–H functionalization cascades and allows direct access to structurally diverse

polycyclic heterocyles in one pot. The progress of these reaction cascades were fully con-

trolled by oxidants and temperature. The proliferation of the reaction chain can be extended

to a four-step cascade.
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C
–H activation reactions refer to a carbon–hydrogen bond
cleavage process mediated by organometallics, where the
bond dissociation is accomplished through coordination

of the C–H bond to the inner sphere of a transition metal1–3. In
this paradigm, directed C–H functionalization received the most
attention, as a coordinative group (directing group, DG) on a
substrate can escort the transition metal in proximity to one
specific C–H bond, resulting in precise site-selective control
among many innocent hydrocarbons4–6. However, the use of a
DG often leaves a chemical trace in the products, limiting their
structural diversity (Fig. 1a).7 Strategies trying to address this
drawback include incorporation of the DG into a heterocycle via
in situ condensation reactions or development of a traceless
DG8–16. For example, we have developed a fully cleavable DG
that allowed both convenient removal and conversion to various
functional groups after the C–H activation step. The triazene
group was discovered as an excellent DG for ortho C–H
rhodation and subsequent chemical manipulations. This group
can be removed quantitatively or undergo a number of C–C, C–
O, C–N and C–X bond formation, leaving no trace in the
products (Fig. 1b).8 In addition, the triazene could also engage in
heterocyclization with internal alkynes via partial in situ cleavage
to generate substituted indole analogues9. Recently, Ellman,
Bergman and colleagues10 described a rhodium-catalysed
annulation reaction between an azobenzene and an
azidobenzene to yield a substituted phenazine. A Friedel–Crafts
type of in situ electrophilic cyclization/aromatization sequence
was used to incorporate the DG into the heterocycle (Fig. 1c).
Despite these advances, the structural diversity of the C–H

functionalization products remains convergent. In addition, the
chemistry involving DGs post the pivotal C–H activation reaction
remains underexplored. Therefore, a strategy allowing for rapid
construction of 3D molecular architecture using the C–H
activation concept would require a multipurpose functional
group: first, it can serve as an excellent binder for transition
metals and dictates site selectivity; second, it is labile and readily
cleavable; third, it is redox versatile and enables inter- and
intramolecular ring formation.

Ideally, the multifunctional DG participates in a number of
reaction cascades in the presence of an orthogonal catalyst/
additive, and therefore substantially enriches the molecular
complexity of the products. Preferably, the reaction cascades can
be controlled by either the catalyst or additives, rendering
designated proliferation of the reaction chain. Towards this goal,
we envisioned that the O-NHAc (oxyacetamide) fulfills the
multifunctional criteria of such a group due to its excellent metal
directing ability, the oxidative O–N bonds and nucleophilic amide
functionality11–14. We chose the rhodium catalysed C–H
vinylation reaction between an N-aryloxyacetamide and an
internal alkyne to explore the cascade strategy17–19. After the
C–H vinylation, the oxyacetamide DG might undergo transition-
metal-catalysed dioxygenation reaction to give rise to a fused
dihydrofuran–dihydrooxazole scaffold. This [5,5] heterocycle
contains a chemically labile hemiaminal functionality and is
likely to trigger several rearrangement/oxidation pathways to give
substituted polyheterocycles. Therefore, such a multitasking
functional group of will open doors to rapid structural
diversification through multistep cascades using simple substrates.
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Figure 1 | Evolution of the C–H activation strategy. (a) The first catalytic C–H activation reaction was developed by Murai et al.7 (b) The traceless triazene

DG developed by us8,9. (c) A representative example of DG incorporates into a heterocycle: phenazine synthesis by Ellman, Bergman and colleagues10.

(d) Our multitasking strategy to access highly sophisticated heterocyclic scaffold containing two quaternary stereogenic centers that might allow

further ring formations.
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Results
The double cascade towards dihydrobenzofuro[2,3–d]oxazoles.
We embarked on our design by investigating a reaction between
N-phenoxyacetamide (1a) and diphenylacetylene (2a), which was
recently published by Lu and co-workers to undergo a classic
point-to-point ortho-selective vinylation reaction and yield the
enamide product (3aa)11. Treatment of 3aa with various
transition metals in an attempt to cyclize the oxyacetamide
onto the double bond quickly identified that using 1.2 equiv.
Ag2CO3 alone, a new heterocycle was formed in quantitative
yield. Single crystal X-ray crystallography confirmed an unusual
dioxygenation of the olefin, leading to a dihydrobenzofuro[2,3–
d]oxazole skeleton bearing two adjacent quaternary stereogenic
centres as a single diastereomer. The mechanism of this
transformation is intriguing as 1 equiv. of H2 was observed.
Presumably, a phenoxylation catalysed by silver is followed by a
rapid dehydrogenative cyclization20–23. Detailed mechanistic
aspects are currently under investigation (Fig. 2).

Scope of arenes for the double cascade. Encouraged by the
formation of 4aa, we attempted to combine this dioxygenative
cyclization with the initial C–H vinylation condition in a one pot
cascade. Gratifyingly, 5mol% [RhCp*Cl2]2 and 1.2 equiv. of
Ag2CO3 in MeOH at 25 �C smoothly converted N-phenox-
yacetamide (1a) to the desired dihydrobenzofuro[2,3–d]oxazole
4aa directly in 97% isolated yield. To the best of our knowledge,
this is the first example of the heterocycle containing two chiral
centres prepared in one pot via a C–H activation process. The
reaction did not proceed in the absence of Rh. The substrate
scope was examined next. A series of substituted arylox-
yacetamides smoothly reacted with diphenylacetylene 2a to afford
the desired heterocyles (Table 1). Yields of those bearing electron-
donating substituents were particularly high. The reaction of a
substrate having an electron-withdrawing CF3 was sluggish (41%
yield). The dimethyl-substituted substrate 1f resulted in moderate
yield (68%). Halogens, including iodine, were well tolerated and
the corresponding halogenated dihydrobenzofuro[2,3–d]oxazoles
were isolated in yields ranging from 75 to 79%. Single regioiso-
meric product was obtained when a meta-substituted N-phe-
noxyacetamide was used. The oxyacetamide DG allowed bulky
substituent and yield was uncomprised.

Scope of alkynes for the double cascade. The scope of alkynes
was also surveyed (Table 2). A series of aryl-substituted alkynes

coupled with 1a smoothly and the relevant products were isolated
in moderate yield (60–75%). Unsymmetrical internal alkynes
were also effective, generating single regioisomeric products.
X-ray crystallography analysis (for 4ad, see Supplementary
Information) revealed that the alkyl group is pointed distal to
the nitrogen atom. Dialkyl-substituted alkynes failed to react with
1a under standard condition. On the other hand, electron-defi-
cient internal alkynes, 3-phenylpropiolonitrile for example,
reacted smoothly and the desired dihydrobenzofuro[2,3–d]oxa-
zole was obtained in 40% yield.

The double cascade towards polysubstituted isoquinoline.
Next, we attempted to further increase the molecular complexity
by treating the dihydrobenzofuro[2,3–d]oxazole product 4 with
another alkyne under C–H activation conditions. Interestingly, a
polysubstituted isoquinoline product 5 was obtained, through a
C–H annulation/rearrangement process. The formation of 5 from
4 required the employment of AgTFA (2.2 equiv.) and methanol
at 120 �C. Both aryl,aryl- and alkyl,alkyl-disubstituted alkynes
were tolerated and the products were obtained in moderated
yields. Separate experiments show that the formation of 5 prob-
ably goes through intermediate 3, as 4 was converted back to 3 at
120 �C in the absence of alkyne (vide infra). Based on this finding,
conditions were tested to access the dihydrobenzofuro[2,3–
d]oxazole product 5 directly from N-phenoxyacetamide 1 and
excess alkyne 2 (Table 3). We were delighted to find that the
reaction proceeded smoothly using [Cp*RhCl2]2 (5mol%),
AgTFA (2.2 equiv.) and CsOAc (2 equiv.) at 120 �C. Interestingly,
the overall yield for the 1–5 triple cascade was generally higher
than that of the single-step reaction of 4–5. Unsymmetrical
internal acetylenes led to single regioisomers, whose configuration
was determined by X-ray. This double cascade demonstrated
substantial increase of structural complexity for a one-pot reac-
tion using very simple starting materials.

The double cascade using two different alkynes in one pot. A
major limitation for the one-pot cascade in Table 3 is that the
same alkyne reacts twice, which restricts the structure diversifi-
cation of the product. However, subjecting two different alkynes
to the reaction condition (Table 3) resulted in messay mixtures.
After a quick condition survey, we were excited to find that
sequential addition of alkynes provided a nice solution to the
chemoselectivity issue. First, N-phenoxyacetamide 1 was mixed
with 1.05 equiv. alkyne A at room temperature; next, the second
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Figure 2 | Oxidative cyclization of enamide 3aa. Unusual silver promoted oxidative cyclization of enamide 3aa.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5610 ARTICLE

NATURE COMMUNICATIONS | 5:4610 | DOI: 10.1038/ncomms5610 | www.nature.com/naturecommunications 3

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Table 1 | Substrate scope of aryloxyacetamide for one-pot synthesis of dihydrobenzofuro[2,3–d]oxazoles.
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Table 2 | Substrate scope of alkynes for one-pot synthesis of dihydrobenzofuro[2,3–d]oxazoles.
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alkyne B was introduced on consumption of A and the reaction
temperature was raised 120 �C (Table 4). This experimental
maneuvre led to clean isolation of the hybrid product. No other
isomers were observed. Interestingly, the other double-cascade
product 4 was not observed throughout the course of the cascade,
suggesting that the formation of 5 did not necessarily go through
4 as a key intermediate.

Triple and quadruple cascades. As the isoquinoline product 5
contains a redox-labile triaryl methine moiety, we examined the
feasibility of obtaining further functionalized product of higher
oxidation states directly from 1a. Gratifyingly, treating N-acetyl
phenyloxyamide 1a and excess diphenyl acetylene with
[Cp*RhCl2]2, AgOAc (2.1 equiv.) in methanol led to the corre-
sponding methyl ether product smoothly, rendering a three-step
(C–H vinylation, C–H annulation and oxidation) cascade reac-
tion. Simply increasing the amount of oxidant to 6 equiv. afforded
the corresponding dimethyl ketal product in 80% yield, a quad-
ruple cascade. The termination of these cascades was precisely
controlled by the silver oxidant and its stoichiometry.

Discussion
The mechanisms for the formation of 5, 6 and 7 are intriguing. A
series of experiments were carried out to further understand these
transformations. Treatment of 4aa with the Rh catalyst, AgTFA
and CsOAc at 120 �C led to the formation of enamide 3aa in 50%

isolated yield. Treating 3aa with [Cp*RhCl2]2 and AgOAc, in the
absence of the alkyne, generated 4aa in high yield at 70 �C, which
went back to 3aa and its double-bond isomer (trans-enamide)
when further heated at 120 �C. The enamide product 3aa readily
reacted with diphenyl acetylene to yield dihydrobenzofuro[2,3–
d]oxazole 5aaa in 62% yield. This result suggests that the
formation of 5aaa from 4aa is likely to occurr via intermediate
3aa. The absence of 4 for the one-pot reaction using two different
alkynes (Table 4) also supports that 4 is not involved for in the
cascade from 1 to 5. Careful examination of the cascade mixture
led to the detection of 3 that slowly converted to 5 on addition of
the second alkyne. The mechanism for 3aa to 5aaa probably
involves C–H activation using NHAc as the DG (Fig. 4,
intermediate B), which is well documented for reactions with
internal alkynes24,25. Treatment of 5aaa under various oxidative
conditions afforded very little 6, suggesting that direct oxidation
of 5aaa is not responsible for the formation of 6. This is also
supported by the fact that the direct formation of 6 from 1a
requires lower temperature than 5aaa from 1. A more plausible
explanation for the triple cascade product 6 (Fig. 3) is the in situ
enamine oxidation of the 3aa to its corresponding a-methoxy
imine (possibly in equilibrium with 4aa), which directs the
subsequent C–H annulation reaction with the alkyne (Fig. 4,
intermediate A). Treatment of 6 with CD3OD and excess AgOAc
(5 equiv) yielded fully deuterated dimethyl ketal 7-d6.
We propose a silver mediated single-electron transfer (SET)

Table 3 | Substrate scope of polysubstituted isoquinoline product 5.
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Table 4 | Double cascade using two different alkynes.
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process for this rather unusual oxidative rearrangement. On
phenolate addition to the pyridine ring, the resulting
dihydropyridine C could be readily oxidized by silver to
generate a conjugated radical cation D. This radical cation
could undergo b-fragmentation to yield a more stable a-methxoy
diarylmethyl radical. Further oxidation of this radical, followed by
CD3OD addition would afford the desired 7-d6. This
unprecedented carbon–carbon cleavage is under investigation
using simple substrates to test its synthetic generality.

In summary, we develop a series of C–H functionalization
cascades catalysed by Rh(III), which enable direct access to
several heterocyclic scaffolds using oxyacetamide as a multi-
tasking group. This enzyme-like rapid proliferation of reaction
cascades, up to four steps, features unprecedented dioxygenation,
oxidation and rearrangement mechanisms that are fully con-
trolled by the choice of silver oxidant, its equivalence and reaction
temperature. The reactions show excellent chemoselectivity and
wide substrate scope for both N-aryloxyamides and internal
alkynes. The products showed substantially increased molecular
complexity and steady elevation of oxidation state. We expect that
this strategy will offer endless opportunities for rapid assembly of
structurally diverse heterocycles using the C–H activation
strategy.

Methods
Materials. All reagents were purchased and used without further purification
unless otherwise specified. Solvents for flash column chromatography were tech-
nical grade and distilled before use. Analytical thin-layer chromatography was
performed using silica gel plates with HSGF 254 (0.15–0.2mm) manufactured by
Shandong Huanghai Chemical Company (Qingdao, China). Visualization of the
developed chromatogram was performed by measuring ultraviolet absorbance
(254 nm) and using appropriate stains. Flash column chromatography was per-
formed using Qingdao Haiyang Chemical HG/T2354-92 silica gel (45–75 mm) with
the indicated solvent system according to standard techniques.

General spectroscopic methods. 1H NMR and 13C NMR data were recorded on
Bruker 400MHz (100MHz for 13C) nuclear resonance spectrometers unless
otherwise specified. Chemical shifts (d) in p.p.m. are reported relative to the residual
signals of chloroform (1H 7.26 p.p.m. and 13C 77.16 p.p.m.). Multiplicities are
described as follows: s (singlet), bs (broad singlet), d (doublet), t (triplet), q (quartet)
and m (multiplet). Coupling constants (J) are reported in Hertz (Hz). 13C NMR
spectra were recorded with total proton decoupling. High-resolutionmass
spectrometry–electrospray ionization (HRMS–ESI) analysis was performed by
the Analytical Instrumentation Center at Peking University, and HRMS data
were reported as ion mass/charge (m/z) ratios in atomic mass units. 1H NMR,
13C NMR and HRMS are provided for all compounds; see Supplementary Figs 1–79.
For oak ridge thermal ellipsoid plot (ORTEP) presentation of 4aa, 4ad, 5aaa, 5aak,
6 and 7, see Supplementary Figs 79–85. See Supplementary Methods for the
characterization data for compounds not listed in this section. See Supplementary
data 1–6 for X-ray CIF files of compounds 4aa, 4ad, 5aaa, 5aak, 6 and 7 (CCDC
984442-984447).
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One-pot synthesis of 4aa. Without precaution to extrude air or moisture,
N-phenoxyacetamide 1a (0.5mmol, 1 equiv.), diphenyl acetylene (0.6mmol, 1.2
equiv.), [Cp*RhCl2]2 (0.025mmol, 5mol%) and Ag2CO3(1.2 equiv.) were weighted
in a 1-dram vial equipped with a stir bar. MeOH (1.25ml) was added. The reaction
was stirred at room temperature for 12 h, diluted with dichloromethane and
transferred to a round-bottom flask. Silica gel (0.5 g) was added to the flask and the
reaction vessel was concentrated under reduced pressure. The silica gel-absorbed
product was purified by silica gel flash column chromatography to yield 4aa (97%
yield). 1H NMR (300MHz, CD2Cl2): d 7.51–7.42 (m, 1H), 7.23–7.03 (m, 11H),
6.98–6.87 (m, 2H), 2.32 (s, 3H); 13C NMR (75MHz, CD2Cl2): d 169.48, 159.69,
137.57, 137.10, 131.74, 127.91, 127.59, 127.52, 127.37, 126.95, 126.89, 126.42,
121.99, 117.49, 110.88, 99.15, 14.37; HRMS (ESI) calculated for [C22H18NO2]þ :
328.1338; Found: 328.1331; infrared (cm� 1): 3061.00, 1662.64, 1598.99, 1463.97,
1282.66, 1001.06, 752.24, 696.30.

One-pot synthesis of 5aaa. N-phenoxyacetamide 1a (0.5mmol, 1 equiv.),
diphenyl acetylene (0.6mmol, 1.2 equiv.), [Cp*RhCl2]2 (0.025mmol, 5mol%),
AgTFA(1.1mmol, 2.2 equiv.), CsOAc (1mmol, 2 equiv.) and MeOH (1.25ml) were
added to a sealed tube in a glovebox. The reaction was stirred at 120 �C for 8 h,
before it was diluted with dichloromethane and transferred to a round-bottom
flask. Silica gel (0.5 g) was added to the flask and the reaction vessel was con-
centrated under reduced pressure. The silica gel absorbed product was purified by
silica gel flash column chromatography to yield 5aaa (73% yield). 1H NMR
(300MHz, CD2Cl2): d 12.10 (s, 1H), 8.72–8.56 (m, 1H), 8.72–8.56 (m, 1H), 7.84–
7.72 (m, 3H), 7.53 (d, J¼ 7.0Hz, 1H), 7.43 (s, 3H), 7.29 (dt, J¼ 17.5, 7.5 Hz, 11H),
7.16 (d, J¼ 7.0Hz, 2H), 7.01–6.88 (m, 2H), 6.56 (s, 1H); 13C NMR (75MHz,
CD2Cl2): d 161.86, 157.19, 141.75, 139.21, 137.37, 136.65, 132.16, 131.49, 131.24,
131.05, 130.15, 129.42, 128.43, 128.30, 128.18, 128.00, 127.87, 127.82, 127.76,
127.70, 127.61, 126.87, 126.47, 125.92, 124.70, 119.56; HRMS (ESI) calculated for
[C34H26NO]þ : 464.2014; Found: 464.2000. infrared (cm� 1): 3057.17, 2358.94,
1556.55, 1487.12, 1379.10, 1255.66, 759.95, 732.95, 698.23.

One-pot synthesis of 5aak. N-phenoxyacetamide 1a (0.5mmol, 1 equiv.),
diphenyl acetylene (0.6mmol, 1.2 equiv.), [Cp*RhCl2]2 (0.025mmol, 5mol%),
AgTFA(1.1mmol, 2.2 equiv.) and Ag2CO3(1.2 equiv.) were weighted in a 1-dram
vial equipped with a stir bar. MeOH (1.25ml) was added. The reaction was stirred
at room temperature for 12 h. Next, 3-hexyne (1.0mmol, 2.0equiv) was added. The
reaction was stirred at 120 �C for 8 h, before it was diluted with dichloromethane
and transferred to a round-bottom flask. Silica gel (0.5 g) was added to the flask and
the reaction vessel was concentrated under reduced pressure. The silica gel
absorbed product was purified by silica gel flash column chromatography to yield
5aak (48% yield). 1H NMR (400MHz, CD2Cl2): d 12.88 (s, 1H), 8.50 (d, J¼ 8.5Hz,
1H), 8.16 (d, J¼ 8.6Hz, 1H), 7.82 (t, J¼ 7.6Hz, 1H), 7.67 (t, J¼ 7.6Hz, 1H), 7.50–
7.41 (m, 1H), 7.28–7.17 (m, 4H), 7.02 (d, J¼ 7.0Hz, 2H), 6.96 (d, J¼ 7.8Hz, 1H),
6.89 (t, J¼ 7.4Hz, 1H), 6.36 (s, 1H), 3.14 (dd, J¼ 7.6, 2.1 Hz, 2H), 3.09–2.96 (m,
2H), 1.34 (td, J¼ 7.5, 2.4Hz, 6H); 13C NMR (101MHz, CD2Cl2): d 159.88, 157.39,
151.26, 142.12, 136.42, 132.10, 130.75, 129.76, 129.24, 128.28, 128.01, 127.75,
126.75, 126.25, 125.71, 125.21, 124.03, 119.51, 119.27, 27.62, 20.72, 14.87, 14.38;
HRMS (ESI) calculated for [C26H26NO]þ : 368.2014; Found: 368.2010.

One-pot synthesis of 6. N-phenoxyacetamide 1a (0.5mmol, 1 equiv.), diphenyl
acetylene (0.6mmol, 1.2 equiv.), [Cp*RhCl2]2 (0.025mmol, 5mol%), AgOAc
(1.05mmol, 2.1 equiv.) and MeOH (1.25ml) were added to a a sealed tube in a
glovebox. The reaction was stirred at 70 �C for 6 h, before it was diluted with
dichloromethane, and transferred to a round-bottom flask. Silica gel (0.5 g) was
added to the flask and the reaction vessel was concentrated under reduced pressure.
The silica gel absorbed product was purified by silica gel flash column chroma-
tography to yield 6 (60% yield). 1H NMR (400MHz, CD2Cl2): d 9.82 (s, 1H), 9.14
(d, J¼ 7.5Hz, 1H), 7.77 (d, J¼ 7.7Hz, 1H), 7.75–7.71 (m, 1H), 7.64–7.54 (m, 2H),
7.47–7.43 (m, 3H), 7.43–7.37 (m, 6H), 7.31 (d, J¼ 1.5Hz, 1H), 7.30–7.28 (m, 1H),
7.25 (d, J¼ 4.9Hz, 1H), 7.19 (dd, J¼ 10.7, 4.4Hz, 4H), 6.98–6.91 (m, 1H), 6.80 (d,
J¼ 7.7Hz, 1H), 3.18 (s, 3H); 13C NMR (101MHz, CD2Cl2): d 158.42, 155.34,
146.40, 140.49, 139.56, 138.15, 137.04, 131.72, 131.48, 130.90, 130.26, 130.14,
129.70, 129.32, 128.54, 128.25, 127.72, 127.67, 127.62, 127.47, 127.39, 127.20,
126.84, 126.55, 125.51, 119.33, 118.72, 90.97, 29.71; HRMS (ESI) calculated for
[C35H28NO2]þ : 494.2120; Found: 494.2117; infrared (cm� 1): 3055.24, 2358.94,
1577.77, 1446.61, 1242.16, 1074.35, 763.81, 700.61, 669.30.

One-pot synthesis of 7. N-phenoxyacetamide 1a (0.5mmol, 1 equiv.), diphenyl
acetylene (0.6mmol, 1.2 equiv.), [Cp*RhCl2]2 (0.025mmol, 5mol%), AgOAc
(1.05mmol, 2.1 equiv.) and MeOH (1.25ml) were added to a a sealed tube in a
glovebox. The reaction was stirred at 70 �C for 6 h, before it was diluted with
dichloromethane, and transferred to a round-bottom flask. Silica gel (0.5 g) was
added to the flask and the reaction vessel was concentrated under reduced pressure.
The silica gel absorbed product was purified by silica gel flash column chroma-
tography to yield 7 (80% yield). 1H NMR (400MHz, CD2Cl2): d 8.18 (dd, J¼ 7.8,
1.7Hz, 1H), 8.00 (d, J¼ 7.8Hz, 1H), 7.67–7.61 (m, 1H), 7.60–7.51 (m, 2H),
7.45–7.41 (m, 1H), 7.40–7.33 (m, 6H), 7.23 (ddd, J¼ 7.8, 5.0, 1.5Hz, 3H), 7.17–7.13
(m, 1H), 7.13–7.06 (m, 7H), 3.06 (s, 6H); 13C NMR (101MHz, CD2Cl2): d 158.61,

150.58, 146.47, 141.36, 140.51, 138.70, 137.92, 134.38, 131.53, 130.54, 130.11,
129.12, 128.96, 128.27, 127.49, 127.16, 127.13, 127.04, 126.73, 126.14, 125.80,
125.17, 124.63, 124.61, 124.32, 118.18, 101.02, 48.92; HRMS (ESI) calculated for
[C35H27NO2Na]þ : 546.2045; Found: 546.2037. infrared (cm� 1): 3059.10, 2937.59,
2358.94, 1620.21, 1573.91, 1373.32, 1213.23, 1056.99, 767.67, 700.16.
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