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Stabilizing colloidal crystals by leveraging void
distributions
Nathan A. Mahynski1, Athanassios Z. Panagiotopoulos1, Dong Meng2 & Sanat K. Kumar2

Colloids often crystallize into polymorphic structures, which are only separated by marginal

differences in free energy. Due to this fact, the face-centred cubic and hexagonal

close-packed hard-sphere morphologies, for example, usually crystallize simultaneously from

a supersaturated solution. The resulting lack of long-range order in these polymorphic

structures has been a significant barrier to the widespread application of these crystals in, for

instance, photonic bandgap materials. Here, we report a simple method to stabilize one out of

two competing polymorphs by exploiting the fact that they have significantly different spatial

distributions of voids. We use a variety of polymeric additives whose geometries can be tuned

such that their entropy loss, which is related to crystal void symmetries, is different in the two

competing polymorphs. This, in turn, controls which polymorph is most thermodynamically

stable, providing a generalizable means to stabilize a selected crystal polymorph from a suite

of competing structures.
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C
olloidal crystals with well-defined global order have utility
in a range of novel optical and catalytic devices1–3, for
example, as photonic bandgap materials. However, such

long-range order is often difficult to achieve in practice since the
structure of these crystals, determined by short-range
interactions, is generally polymorphic. For instance, in the
limiting case of hard spheres, crystals are known to form
hybrids of hexagonal close-packed (HCP) and face-centred cubic
(FCC) structures4–8. This is due to the fact that the FCC structure
is only B0.001kBT per sphere higher in entropy9–11. While the
energy, pressure and overall packing fraction
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the FCC and HCP structures are the same as a consequence of
having an identical number of nearest neighbors, the manner in
which their voids distribute the free volume inside each crystal is
not (cf. Fig. 1).

Polymers are commonly used as depletants in colloidal
systems, and binary colloid–polymer mixtures have been
exhaustively studied for the past half century12–20. The
phenomenon of depletion is a manifestation of size-asymmetric,
athermal, binary systems maximizing their entropy; the volume
‘freed’ when the larger species aggregates produces a
disproportionate increase in the entropy of the smaller species
(depletant) compared to the entropy lost by the larger
species21,22. At high-enough polymer densities this is sufficient
to drive phase separation, in which both the colloids and
polymers partition into complementary rich and lean phases. In
this work, the colloid-rich (polymer-lean) phase we focus on is
the crystal phase, which is in equilibrium with a dense polymer
phase containing dilute colloids (colloidal ‘gas’)14.

In previous studies, the nature of the polymers adsorbed in the
voids of the colloidal crystal has been neglected on the assumption
that the polymers’ contribution to the system’s free energy is
inconsequential14,19,23. However, when a depletant is confined into
such restricted environments as the interstices of a crystal, its
topology implies that it can have very different entropies in the
different polymorphs (which have different spatial void

distributions). This effect is driven by local asymmetries at the
length scale of the next-nearest neighbour stacking plane in the
crystal (ABX, where X can be either A or C), and thus is entirely
overlooked by mean-field theories. Here we show that such
differences in void symmetry play a significantly underappreciated
role in determining the free energy of depletants adsorbed in the
crystal, which can be exploited to bias the production of a single
polymorph over others during crystallization. Because the specific
free energies of pure FCC and HCP crystals differ only marginally,
we find that these differences in chain entropy provide a sufficient
driving force to uniquely select a single polymorph. Our
equilibrium methodology promises to obviate other exotic
techniques, such as templating1, gravity reduction8,24, anisotropic
thermal interactions25,26 or thermal gradients27, for selecting a
desired crystal structure from a suite of competitors. This
constitutes a novel, but simple design principle whereby a
depletant’s geometry may be tailored to select a specific
polymorph without any modification of the colloid itself; we
illustrate this principle with two examples: (1) for linear polymers
as depletants, and (2) for size-asymmetric block copolymers. Going
further, we propose that our logic is generalizable to other
depletant topologies as well.

Results
Polymorph discrimination with linear homopolymers. First, we
consider mixtures of hard-sphere colloids and linear polymers. In
the absence of polymer, or for very short chains, hard spheres are
experimentally observed to always crystallize into the random
hexagonal close-packed (rHCP) structure4,28, though computer
simulations suggest they may anneal to the more stable FCC
polymorph over much longer timescales7. In contrast, for polymers
long enough to span two (or more) neighbouring crystal voids our
simulations show that the HCP crystal is strongly stabilized relative
to the FCC, and becomes overwhelmingly the most thermo-
dynamically (and kinetically) favoured state. To understand why,
we first consider the free energy difference between polymers
adsorbed in each type of crystal.

In our model system, polymers are treated as fully flexible bead-
spring necklaces of M beads, each of diameter sm¼ 1, while
colloids are represented as large spheres of diameter sc¼ 6.45,
unless otherwise stated. All spheres interact with a purely repulsive
Weeks-Chandler-Andersen (WCA) potential (which is a
Lennard–Jones potential truncated at its minimum and shifted,
cf. Methods, Model A). By performing Monte Carlo (MC)
simulations to insert a single polymer segment-by-segment into
these crystals we measured the excess incremental chemical
potential, mexi , of an adsorbed chain29. The sum of the incremental
chemical potentials provides the total excess chemical potential of
the chain, mextot ¼

PM
i¼1 m

ex
i , which is a measure of the accessible

volume inside each crystal (Fig. 2). For M¼ 1, a successful
insertion depends on locating voids in the crystal that only
represent roughly 26% of the volume of the simulation cell.
However, subsequent insertions benefit from the fact that the first
bead has already been successfully inserted into a void. Thus, these
beads have a disproportionately larger free volume in their
immediate vicinity, and are therefore incrementally easier to insert
than the first. As the local void fills up, the chain has to find
another void to occupy. Once this happens, mextot for the FCC
crystal begins to exceed that of the HCP, in this case for MZ10.
We focus on M¼ 10 because it is the shortest chain that produces
a statistically significant difference between the polymorphs.
Though small, this difference (roughly 0.1kBT in favour of the
HCP) is two orders of magnitude larger than the entropy
difference in favour of the FCC state based on the pure colloid
case9–11. The origin of this result lies in the differences between
the crystal void symmetries.
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Figure 1 | Crystal morphologies. (a) Two adjacent layers, A and B, of the

FCC and HCP crystals are identical. The eclipsed HCP configuration repeats

this stacking pattern and has ABAB symmetry, while rotating a third plane

by 60� yields the staggered FCC polymorph (ABC symmetry). Stacking

faults (for example, ABCBA) create ‘random’ hexagonal close-packed

structures (rHCP). The interstitial voids between neighbouring planes can

be described by two types of platonic solids: octahedrons and tetrahedrons.

(b) The voids in these crystals are connected out-of-plane in very different

manners: in the FCC structure, octahedral voids (OVs) do not share any

common faces and any direct connection between neighbouring OVs is

interrupted by intervening tetrahedral voids (TVs), (c) whereas in the HCP

crystal OVs do share common faces, providing a direct route from one OV

to another.
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While both the FCC and HCP crystals have two tetrahedral
(TV) and one octahedral void (OV) per colloid, their relative
arrangements are very different (cf. Fig. 1). In both FCC and HCP
crystals, in the plane of the hexagonally ordered colloids, the
voids that share faces follow the connectivity pattern: OV–TV–
OV–TV. On the other hand, in the out-of-plane direction in the
HCP crystal, the OVs stack on top of themselves as do the TVs.
Therefore, in the HCP crystal a chain can ‘travel’ normal to the
hexagonally packed planes directly from one OV to another since
they share common faces. In contrast, the staggered configura-
tions of the A and C planes in the FCC crystal imply that each
OV face is ‘capped’ by TVs in all directions, and thus there are no
direct OV–OV pathways. The significance of this void con-
nectivity difference is appreciated by calculating the total volume
of each void. As an approximation, consider the largest sphere, of
radius r, that could be inscribed into each type of void without
overlapping the colloids that form the vertices. If the length of
each edge is sc, then for TVs 2rtv=sc ¼

ffiffiffiffiffiffiffiffi
3=2

p
� 1 � 0:225,

while for OVs 2rov=sc ¼
ffiffiffi
2

p
� 1 � 0:414. Therefore OVs have

over (0.414/0.225)3\6 times the volume of their TV counter-
parts. Sufficiently long chains cannot exist in a single void and
must cross the faces of the void polyhedra through trigonal gaps
formed by triplets of colloids in order to find more room; at the
size asymmetry of the model system (sm/scE0.155) each gap is

just wide enough to allow a single bead through at a time. The
chain thus incurs a significant entropic penalty every time it must
do so. In the HCP crystal only, vertical OV stacking symmetry
permits a chain to move directly from one OV to another
allowing chains that require multiple voids (MZ10) to access
significantly more volume with lower entropic penalties than in
the FCC state. This picture suggests the point at which the
polymer begins to explore, if not completely cross over to, a
neighbouring OV in the HCP polymorph is where mtotex becomes
sufficiently disparate between the two crystals.

In fact, by explicitly measuring the average number of
monomers found in TVs as the chain grows, /MtvS, we have
confirmed this hypothesis. Consider Fig. 2b; for both polymorphs,
as the chain exceeds a length of 2, the TVs become significantly
more confining than the available OVs, which the chain almost
exclusively occupies until it reaches M¼ 10. Surrounded by only
TVs, polymers in the FCC crystal do not cross between voids
until ME13, and do not reach the next OV until ME15.
However, the HCP polymorph provides a large, easily accessible
amount of free volume in the neighbouring OV voids, and does
not require a growing chain to traverse any TVs; only as a single
OV fills up do chain ends appear to occasionally sample the TV
space, and once the chain finds the next OV it rarely returns to
visit its neighbouring TVs.
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Figure 2 | Thermodynamics of a confined linear homopolymer. (a) Incremental, mexi , and total, mextot, excess chemical potential of a polymer of length

M inside rigid crystals (cf. Methods). ForMo10, the chemical potentials of chains in each polymorph are identical within statistical error (95% confidence),

while for M410, their difference rises to the order of unity or more in favour of the HCP crystal. For M¼Mc¼ 10 the difference is roughly 0.1kBT. Mm

denotes the chain length when the difference in mextot between the polymorphs is at a maximum. (b) The average number of monomers found in tetrahedral

voids (TVs) in each polymorph (the remainder are in octahedral ones) when the chain has a total length, M. p(M) is the normalized probability for each

monomer that resides in a TV when the chain is of length M. The inset shows the ratio between the polymorphs; clearly, in the HCP crystal the monomers

are almost two orders of magnitude less likely to occupy the highly confining TVs and instead expand into neighbouring OVs when M is sufficiently

large. (c) A plot of the difference in total excess chemical potential between the two polymorphs, Dmextot ¼ mextot FCCð Þ� mextot HCPð Þ, as a function of total

polymer chain length at four different ratios of sc/sm. The red line indicates the location of Mc (where the difference exceeds 0.1kBT) and the dashed black

line is a fit ofMm to the formMm � Dmextot=kBT� 2
� �� 1=2

, implying a limiting value of Dmextot ¼ 2kBT. The dashed cyan line indicates results for sc/sm¼ 9.50

with a polydispersity d¼ 5.3% (cf. Methods). (d) Mc and Mm versus the ratio of the colloid and monomer diameters. Each follows a (different) scaling law

as the colloid–monomer size asymmetry grows, suggesting that the effect will still be present as the colloid becomes much larger than a monomer (Kuhn)

segment. The inset depicts the free energy according to equation (1) versus Mc at four different sc/sm ratios; its constant value validates the scaling

equation and implicates confinement effects as the cause of the differences in mextot between the polymorphs.
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Clearly this effect is quantitatively dependent upon the
mutually excluded volume between the monomers (Kuhn
segments) and colloids. However, upon varying the colloid to
monomer diameter ratio, we found that this effect did not
disappear as the asymmetry increased. The magnitude of the
maximum difference between the two polymorphs tends to both
decay and occur at larger M, but plateaus to a limiting value of
roughly 2kBT (cf. Fig. 2). This suggests that as sc/sm increases the
picture will not qualitatively change (cf. Supplementary Fig. 1),
and that there will always exist a critical length,Mc, beyond which
a chain will be able to sense the different local environments
inside each polymorph. If we take Mc to be the point at which the
difference in mextot between the two polymorphs is roughly 0.1kBT,
we find that these chain lengths follow macroscopic scaling laws
for confined polymers. Namely, the free energy of confinement,
Fconf/kBT, for an athermal polymer should scale as (cf.
Supplementary Note 1 for derivation):

Fconf
kBT

� sm
sc

� �5=3

Mc ð1Þ

The right-hand side of equation (1) is plotted in the inset of
Fig. 2d. As expected, this quantity is constant across all size
asymmetries; this equation may also be interpreted as a statement
of how large the polymer must be to perforate an OV, since for a
single chain in a good solvent RgBM3/5sm. This supports the
conclusion that the difference in polymer free energy between the
two polymorphs is driven by confinement in different local
environments. Further, once a chain is sufficiently long such that
the free energy to confine it in an OV exceeds a fixed threshold,
the chain will bias the system toward the HCP polymorph.
Therefore, as sc/sm increases to more experimentally realizable
scales, we do not expect this effect to disappear. Furthermore, the
chain length, Mm, where the weak maximum in the difference of
mextot between the polymorphs (Fig. 2d) is observed, also scales as a
power law:

Mm � sc
sm

� �9=5

ð2Þ

Phase behaviour and crystal grain structure. These results
suggest that for this model when MZ10 a depletion-flocculated
colloidal crystal will thermodynamically favour the HCP crystal
over the FCC. To confirm this prediction, we studied the crystal–
vapour equilibrium of nearly hard-sphere colloids with mono-
disperse polymers of chain length, M¼ 10 (q¼ 2Rg/scE0.5),
using canonical molecular dynamics (MD) simulations. Initially
amorphous mixtures were used and we observed a clear structural
transition between amorphous and crystalline states. Figure 3a is
in reasonable agreement with both theory19 and experiments23

for similar q, for crystal–vapour and liquid–vapour phase
boundaries in the plane of polymer and colloid volume
fractions, fc�fp. A caveat is that these results are subject to
the relatively slow nucleation kinetics near the binodal28.

The resulting configurations were analysed using Steinhardt–
Nelson bond order parameters to characterize crystal grains based
on their local orientational symmetry (cf. Methods)30,31. After
sufficient time, the radial distribution function between
crystallized colloids was identical for all system densities above
the line given in the phase diagram (Fig. 3a), indicating a unique
final state. A representative configuration is depicted in
Supplementary Fig. 2. However, this state is clearly not the
FCC crystal as assumed by mean-field theories; instead, it is
apparent from the location and relative size of the peaks in Fig. 3b
that the resulting structure is HCP. For pure colloids, the Ostwald
‘rule of stages’ posits that crystallization from a supernatant

solution should proceed via a series of metastable intermediate
states16, namely, a progression from a body-centred cubic (BCC)
crystal to HCP and finally a very slow transition to pure FCC,
during which the crystal appears to have rHCP character4,8,31,32.
Although recent studies have challenged the ability of this
principle to predict the outcome of specific nucleation events, the
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Figure 3 | Phase behaviour and structure of crystallizing colloids.

(a) Phase diagram in the colloid volume fraction–polymer volume fraction

(fc�fp) plane for sc/sm¼ 6.45 (cf. Methods, Model A), where M¼ 10.

We define fc ¼ ps3crc=6 and fp ¼ 4pR3grp=3, where Rg is the polymer’s

infinitely dilute radius of gyration and rp and rc are the polymer and colloid

number densities, respectively. The black line is a guide to the eye.

(b) Radial distribution functions, g(r), for crystallized colloids at three state

points. Perfect FCC and HCP states are shown in the bottom panels, while

the top panel depicts measured behaviour when M¼ 10. Only the colloids

classified as crystallized (cf. Methods) are included. (c) Fraction, f, of the

colloids present as each polymorph as determined by bond order parameter

analysis. Approximately spherical FCC and HCP crystallites at an overall

volume fraction of fc¼0.2 were placed in solution withM¼ 10 polymers at

fp¼0.65. The initially FCC state gradually evolved towards the HCP state,

while HCP crystals remained unchanged over the same time, illustrating

that the HCP is truly the most stable state.
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importance of metastable intermediates has been verified even for
soft colloids33–35. Thus, one could hypothesize that the HCP state
observed here might simply be metastable.

To dispel this notion, we repeated simulations at the same
overall colloid and polymer densities, but initialized the colloids
as either perfect FCC or HCP crystals. Using bond order
parameter analysis we classified each colloid in the simulation as
FCC, HCP, liquid, or unknown (cf. Methods). Initially, some
amount of polymer, depending on the fp (external osmotic
pressure), invades each crystal (cf. Supplementary Note 2 and
Supplementary Fig. 3); as polymers explore the free volume inside
the crystal, they begin to recognize the entropic favourability of
the HCP configuration over the FCC, which would suggest a slow
transition from the FCC to the HCP polymorph. As Fig. 3c
illustrates, the initially FCC crystals do, in fact, reorder into the
HCP state, while the initially HCP crystals remain stable over the
same amount of simulation time.

Generalization to arbitrary depletant topology. We have also
found that this effect can be generalized to other depletant
topologies. For instance, although the HCP polymorph is always
predicted to be the most stable when using linear polymer chains
(of sufficient length) as depletants, one can imagine other
topologies that may favour the FCC. We focus here on the case of
asymmetric tetramers, that is, a four-bead chain whose inner two
monomers have a diameter of unity (sm¼ 1.0), but whose
terminal beads have a diameter of 1.75sm (cf. Methods, Model B
and Fig. 4). The bond lengths between the end and middle beads
are indicated as rend and rmid, respectively. To a first approx-
imation this represents a block copolymer whose different con-
stituents are experiencing good and poor solvent interactions.

Although the design space is vast, we found that the two bond
lengths were sufficient to control which polymorph is most stable.
We repeated the incremental chemical potential MC analysis with
varying bond lengths to produce the plane shown in Fig. 4a. This
illustrates the difference in the total excess chemical potential of
the tetramers when fully inserted into each of the two
polymorphs, and suggests that at (rmid, rend)¼ (2, 2.5) the FCC
polymorph should be strongly favoured while at (2, 3.5) the HCP
should be favoured instead. Again we tested these predictions
with canonical MD simulations, as shown in Fig. 4b, which
clearly confirmed these conjectures. As the terminal monomers of
a tetramer are too large to fit through the trigonal gaps formed by
tangent colloids in either of the close-packed morphologies, the
precipitation of the colloids proceeds via a ‘co-crystallization’
route whereby the colloids crystallize around the tetramers. This
leads to slower dynamics, which are more sensitive to nucleation
events than in the case of linear chains, but nonetheless behave as
expected. We tested the predictive capacity of this method for
other tetramers as well and found, in all cases, the MC method to
be a robust predictor of the most stable polymorph. By increasing
the diameter of the terminal beads and shortening the bonds
(Model C) we found that kinetic barriers tended to be reduced.
Figure 4c illustrates this for conditions where Dmextot ¼ � 0:42kBT
(FCC preference).

Discussion
To our knowledge, there has not been a clear experimental
realization of this phenomenon for several reasons. External
factors such as difficulty in simultaneous density matching of
both colloids and depletants28 and thermal interactions between
monomer (Kuhn) segments and the colloids are likely to play an
important role. The former is known to affect the kinetics of
crystallization in terrestrial environments8,28, while the latter can
disrupt this effect if the cross-interactions are significant enough;
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distribution function for all colloids present in each system at the end of the
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monomer volume fraction, fm¼4prt(2(sm/2)3þ 2(1.75sm/2)3)/3
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of polymorph according to bond order parameter analysis in a MD

simulation of tetramers using Model C (cf. Methods). The beads on

the ends are slightly larger (2.2sm) and bonds a bit shorter

Dmextot ¼ �0:42kBT
� �

, which seems to relax some of the kinetic barriers

to crystallization. Both samples clearly anneal to the FCC state in an

approximately linear fashion, and larger tetramer densities tend to both

reduce the amount of HCP polymorph which initially nucleates, and

facilitate the annealing process. Here fc¼0.2 and fm¼4prt(2(sm/
2)3þ 2(2.2sm/2)3)/3.
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however, the present work illustrates that entropy alone is
sufficient to provide a mechanism that can discriminate between
polymorphs.

We further considered the effects of colloidal polydispersity on
this phenomenon (cf. Methods). Although this effect has been
shown to not affect the relative stability of the FCC and HCP
polymorphs in pure systems36, it is conceivable that the resulting
void distortions in the polydisperse crystals could significantly
impact our results. As a first approximation, we repeated our MC
simulations for sc/sm¼ 9.50 with a bidisperse population of
colloids, where half had a diameter of 9.50sm while the diameter
of the other half (chosen at random) was reduced by 10%. This
leads to a polydispersity of d¼ 5.3%, which is commensurate with
the largest polydispersity observed in hard-sphere crystals37,38.
Although simulations suggest that hard-sphere fluids of arbitrary
polydispersity can be coaxed into precipitating crystalline solids
at sufficiently high pressures, fractionation tends to prevent the
crystals from exceeding a polydispersity of roughly 6%38,39. In
our simulations, we leave the colloids placed at the original lattice
positions they would be found at if the system were monodisperse
with sc/sm¼ 9.50, which opens the crystal significantly. In a real
crystal, we would expect the lattice to deform and compress,
making the polymer confinement even more dramatic. Of course,
we expect this effect to be identical in both polymorphs, so we
interpret our results as an upper bound for the impact of colloidal
polydispersity on negating our results. Figure 2c clearly illustrates
that the magnitude of the difference in polymer chemical
potential between the two polymorphs remains on the order of
kBT, and thus colloidal polydispersity does not destroy this
phenomenon. Remarkably, although polydispersity may weaken
the overall magnitude of the effect atMm, we note thatMc slightly
decreases, suggesting that in polydisperse systems this distinction
between the polymorphs may occur at even shorter chain lengths
than in more monodisperse ones.

Our work provides useful guidelines for identifying an
experimentally realizable system exhibiting this phenomenon.
Our results show that this effect is the most noticeable when
sc/sm is small. Thus, polymers with large Kuhn segments in
combination with small colloids are the most promising means of
observing the phenomena discussed here; for example, our results
for sc/sm¼ 9.50 in Fig. 2c would be analogous to a system of
double-stranded DNA and colloids with a diameter of B1 mm.

Differentiation between crystal polymorphs via the interplay of
depletants and void symmetry has many important potential
applications, especially in self-assembling photonic nanostruc-
tures where long-range crystalline order is crucial. Inducing
spontaneous long-range order in colloidal crystals traditionally
requires the assistance of exotic external mechanisms1,8,24–27.
However, our results illustrate that intrinsic differences in spatial
void distributions can be exploited by a polymer, or other well-
designed depletants confined in the crystal phase, to
thermodynamically select a morphology without the need for
such intensive techniques. The use of confined depletants to
mediate colloidal crystal structure may thus provide a generally
applicable design mechanism for the self-assembly of globally
ordered crystal lattices.

Methods
Bond order parameter analysis. In a simulation, colloids are classified as solid,
liquid or gas-like based on bond-orientation order parameters30,31. For systems
that were observed to crystallize in Fig. 3 (Model A), we analysed the radial
distribution function of the colloids to locate the first minimum immediately
following the nearest-neighbour peak. This was generally constant at
approximately rn¼ 7.65, but was observed to vary by as much as ±0.5 with system
density. Colloids within rn of each other are considered neighbours. The vector
connecting any two neighbours, rij, is considered a ‘bond’ whose orientation is
characterized by the unit vector r̂ij , which defines both a polar and azimuthal angle,

yij and fij, respectively. This defines the lth degree spherical harmonic of order m,
Ym
l ðyij;fijÞ ¼ Ym

l ðr̂ijÞ. The local structure around the ith colloid with Nb(i)
neighbors can be described by

qlmðiÞ ¼
1

NbðiÞ
XNbðiÞ

j¼1

Ym
l ð̂rijÞ ð3Þ

Following ref. 31 we focus on l¼ 6 to quantify the degree of local ordering requisite
of a solid rather than a liquid, which also exhibits non-zero local order. A
normalized complex vector for each colloid, q6(i), can thus be defined with
(2� 6þ 1) orthogonal components:

q̂6mðiÞ ¼
q6mðiÞP6

m¼� 6
q6mðiÞk k2

� �1=2 ð4Þ

A dot product can then also be constructed as

q6ðiÞ � q6ðjÞ ¼
X6

m¼� 6

q̂6mðiÞq̂�6mðjÞ ð5Þ

where the asterisk superscript denotes the complex conjugate31. If the dot product
exceeds a given threshold, we define the two colloids as ‘connected’, and if a colloid
has enough connections we consider it to be a solid particle. We took thresholds for
the dot product and number of connections, qthresh and Nn, to be 0.55 and 4,
respectively. These values yielded unambiguous radial distribution functions
characteristic of each phase (cf. Supplementary Fig. 4), and are consistent
with previously employed values for similar applications6,31, though further
investigation revealed that the qualitative results of our analysis are somewhat
insensitive to the absolute value of these parameters.

A similar procedure can be used to identify the specific polymorph a crystallized
colloid is present in. As described in ref. 40, performing a simple averaging of the
local bond order parameters for each colloid over its nearest neighbours tends to
separate the regions of this phase space where the FCC and HCP (and other
simple) crystal structures reside. The locally averaged bond order parameters are
defined as

qlðiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p

2lþ 1

Xl
m¼� l

qlmðiÞ
�� ��2

vuut ; ð6Þ

where

qlmðiÞ ¼
1

NbðiÞ
XNbðiÞ

j¼0

qlmðjÞ: ð7Þ

The quantity �Nb ið Þ refers to the number of nearest neighbours around a colloid,
i, including itself. Pure FCC, HCP, BCC and liquid structures were analysed with
this technique to produce a unique ‘fingerprint’ in the �q4 � �q6 plane for each,
which was later used to classify our colloids during a simulation (cf. Supplementary
Fig. 5 and Supplementary Note 3). An analysis of the colloids’ radial distribution
function qualitatively verified our results as well (cf. Supplementary Fig. 6 and
Supplementary Note 4).

Monte Carlo. Incremental excess chemical potential calculations for the polymers
were performed by growing a chain, bead-by-bead, inside each type of crystal using
MC techniques as described in ref. 29. These crystals were initialized such that
nearest neighbours were separated by scþ g¼ scþ 21/6� 1 (cutoff of
equation (8)), which was confirmed with subsequent MD simulations to be the
equilibrium separation between nearest neighbours in the crystal. This creates a
gap, g E0.12, beyond the hard-sphere diameter between nearest neighbours. We
investigated this in more detail, but found that changing this gap size to span a
typical range found in MD simulations did not change our results qualitatively (cf.
Supplementary Fig. 7 and Supplementary Note 5). All simulations were performed
at a reduced temperature, T*¼ kBT/E¼ 1. Pair potentials are reported in the
following subsections for each model we employed.

Each polymer was grown inside a repeatable unit of each polymorph. The
FCC environment was composed of 32 colloids arranged into stacked planes
with ABC symmetry (cf. Fig. 1) in a cubic, periodic box of length, L ¼ 2

ffiffiffi
2

p
sc þ gð Þ.

The HCP polymorph required a periodic, rectangular box of dimensions

Lx ; Ly ; Lz
� 	

¼ 4 sc þ gð Þ; 4
ffiffiffiffiffiffiffi
3=4

p
sc þ gð Þ; 4

ffiffiffiffiffiffiffi
2=3

p
sc þ gð Þ

D E
, in order to place four

layers in ABAB symmetry for a total of 64 colloids. MC cycles of 5� 106� 50� 106

equilibration moves were performed per monomer currently in the system before a
new monomer was formally grown on the chain. During each cycle the excess
chemical potential measurements were performed by inserting a new ‘ghost’
monomer after roughly each of 1� 104 successful relaxation moves. We employed
simple monomer displacements, displacements of the polymer’s centre of mass and
cut-and-regrowth schemes using Rosenbluth sampling accepted according to the
Metropolis criterion41. The first move type was found to be sufficient to sample mexi
by brute force, though the latter two routines were helpful in refining the sampling
of the probability that monomers occupied a TV when the chains became very
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long. This probability was measured during the equilibration period as mexi was
being calculated, but only the ensemble of beads that were fully inserted (no ghost
beads) contributed to this measurement.

Molecular dynamics. Canonical (NVT) MD simulations to observe colloidal
crystallization induced by linear polymers in Fig. 3a were run for more than 200
million time steps of length dt ¼ 0:005

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ms2m=E

p
ð1�106tÞ, and were initialized

from low-density states equilibrated with Brownian dynamics, then quickly com-
pressed to reach a final cubic box with sides of length L¼ 50sm. All simulations
were performed at a reduced temperature, T*¼ kBT/E¼ 1.0, using a Nosé–Hoover
thermostat with a coupling constant of tQ¼ 1.0. The same thermostat, timestep
and box size were used for all other MD simulations as well, such as those involved
in melting a certain polymorph and to study crystallizing tetramers. This typically
provided several hundred colloids, and several thousand polymers in each simu-
lation. Crystallization was usually observed within the first quarter of the total
simulation window for those used in Fig. 3a, but simulations were continued to
verify the stability of the observed state. Of course, we suspect that crystallization
can still be observed at lower fp than what we report in Fig. 3a simply due to
kinetic effects and the finite length of our simulations, which excludes nucleation
events that could take a very long time to observe. Due to the low interfacial
tension between the phases, we were unable to identify any fluid–fluid phase
separation at lower densities within a reasonable time frame. Fluid–fluid phase
separation at q¼ 2Rg/sc¼ 0.5 is known to exist; however, a description of these
phases is beyond the scope of this work. To reach effective timescales sufficient to
observe crystallization, the mass of both the polymer beads and colloids, m, was set
to unity, and all simulations were accelerated on graphics processing units with the
open-source Highly Optimized Object-oriented Many-particle Dynamics pack-
age42,43. Even so, simulations at the level of full monomeric detail of the polymer
required an extremely long time to generate the trajectories presented here. For
instance, the melting simulations presented in Fig. 3c took over 30 days of
wallclock time, while those in Fig. 4b took nearly 2 months; this simply serves to
highlight the importance of our MC simulations, which required only a fraction of
this time to search through a much broader parameter space.

Polydispersity. We emulated the effect of colloidal polydispersity on our results to
a first-order approximation by considering a bidisperse system of colloids in our
MC simulations. Colloids were initialized at their standard lattice positions
(g¼ 0.12) with sc/sm¼ 9.50; however, in each instance half of them were chosen at
random and their diameters were decreased by 10%. Simulations were repeated 30
times to account for variations in these choices and to ensure statistical accuracy.
We define polydispersity, d, in the conventional fashion as the ratio of the standard
deviation to the mean of the diameters, which yields B5.3% for this system.

Simulation model A. In the case of colloids and linear polymers, we used a nearly
hard-sphere potential for the colloids and monomer beads, which is amenable to
simulation using traditional MD, for both our MD and MC simulations. All
particles interact through a cut and translated Lennard–Jones potential:

Ui;jðrÞ ¼ 4E
1

r�D

� �12

� 1
r�D

� �6
 !

þ E ð8Þ

where D¼ (siþsj)/2� 1 and si refers to the diameter of the particle, cut off at
rcut¼Dþ 21/6 so as to be purely repulsive. This is better known as the WCA
potential44. Polymers are represented by a freely jointed bead-spring model where
beads (Kuhn segments) are spheres with diameter sm¼ 1, connected by finitely
extensible non-linear elastic bonds: Ubond rð Þ ¼ � ð1=2Þkr20 ln 1� ðr�DÞ=r0ð Þ2

� �
.

Following the Kremer–Grest model, we set k¼ 30 and r0¼ 1.5, which minimizes
bond crossing45. Colloids are represented as single spheres with a diameter
sc¼ 6.45sm, unless otherwise stated, which is large enough to avoid Kuhn-
segment-level depletion effects and allow the beads to pass through trigonal voids
created by tangent triplets of colloids46.

Simulation model B. When calculating mexi using MC in the case of the tetramers,
both beads and colloids were modelled as purely hard spheres to accelerate the
calculations. Changing between WCA and hard-sphere potentials did not change
our results qualitatively (and only minimally quantitatively) in the case of linear
chains, so we do not expect any differences to be significant here either:

UhsðrÞ ¼
0 r4sij
1 r � sij



; ð9Þ

where sij¼ (siþsj)/2. Bonds are described as square wells according to

Ubond;ijðrÞ ¼
1 r � rm;ij

0 rm;ijoro1:1rm;ij

1 r 	 1:1rm;ij

8<
: ; ð10Þ

where rm,ij denotes rend or rmid between beads i and j. Again, nearest-neighbour
colloids in the crystal were placed with an additional gap of 0.12sm between them
to be more representative of the WCA potentials used in the MD, and sc¼ 6.45sm.
Terminal beads had a diameter of 1.75sm while the interior beads had a diameter of

sm¼ 1.0 (cf. Fig. 4). These potentials were emulated in MD by replacing
equation (9) with equation (8), and equation (10) with a harmonic potential:

Ubond;ijðrÞ ¼
1
2
kij r� r0;ij
� �2

: ð11Þ

The equilibrium length for a bond is given by r0,ij¼ 1.05rm,ij, and the potential
strength, kij, was set such that Ubond,ij(rm,ij) ¼ Ubond,ij(1.1rm,ij)¼ 10kBT.

Simulation model C. We tested other variations of pair potentials to rule out their
significance. By increasing the size of the large terminal beads (cf. Fig. 4) and
shortening the bonds (relative to Model B) we found that kinetic barriers to
nucleation and annealing were significantly reduced. In this model, terminal beads
had a diameter of 2.2sm, while internal ones were set to sm¼ 1.0. Using our MC
simulations we found that for tetramers with (rmid, rend)¼ (1.2, 3.2) in a crystal
with sc¼ 6.45sm, g¼ 0.12sm, mextot FCCð Þ� mextot HCPð Þ ¼ � 0:42kBT , which sug-
gests a relatively strong preference for the FCC. All particles interacted through a
hard-sphere potential (cf. equation (9)), but the bonds were slightly shortened:

Ubond;ijðrÞ ¼
1 r � rm;ij

0 rm;ijorodm þ rm;ij

1 r 	 dm þ rm;ij

8<
: ; ð12Þ

where rm,ij denotes rend or rmid between beads i and j, and dm¼ 0.2 for rend and 0.1
for rmid.

The MD counterparts for these MC simulations replaced equation (9) with
equation (8) and their bonding potential, equation (12), with the harmonic
potential of equation (11). Again, the bond strength was set such that
Ubond,ij(rm,ij)¼Ubond,ij(rm,ijþ dm)¼ 10kBT, and r0,ij¼ rm,ijþ dm/2.
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