

ARTICLE

Received 18 Mar 2014 | Accepted 20 Jun 2014 | Published 22 Jul 2014

DOI: 10.1038/ncomms5465

OPEN

Highly mesoporous metal-organic framework assembled in a switchable solvent

Li Peng¹, Jianling Zhang¹, Zhimin Xue¹, Buxing Han¹, Xinxin Sang¹, Chengcheng Liu¹ & Guanying Yang¹

The mesoporous metal-organic frameworks are a family of materials that have pore sizes ranging from 2 to 50 nm, which have shown promising applications in catalysis, adsorption, chemical sensing and so on. The preparation of mesoporous metal-organic frameworks usually needs the supramolecular or cooperative template strategy. Here we report the template-free assembly of mesoporous metal-organic frameworks by using CO_2 -expanded liquids as switchable solvents. The mesocellular metal-organic frameworks with large mesopores (13–23 nm) are formed, and their porosity properties can be easily adjusted by controlling CO_2 pressure. Moreover, the use of CO_2 can accelerate the reaction for metal-organic framework formation from metal salt and organic linker due to the viscosity-lowering effect of CO_2 , and the product can be recovered through CO_2 extraction. The as-synthesized mesocellular metal-organic frameworks are highly active in catalysing the aerobic oxidation of benzylic alcohols under mild temperature at atmospheric pressure.

¹ Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. Correspondence and requests for materials should be addressed to J.Z. (email: zhangjl@iccas.ac.cn).

n recent years, metal-organic frameworks (MOFs) have attracted considerable attention because of their diverse fascinating topologies, pore size tenability and extensive uses in lots of fields such as catalysis, adsorption, chemical sensing and so on 1-3. The construction of hierarchically meso- and microporous MOFs are of great interest, because they provide many novel properties and have important prospects in practical industrial processes^{4,5}. The larger mesopores allow for improved molecular accessibility, whereas smaller micropores provide high surface areas. Some methods have been developed for the formation of hierarchically meso- and microporous MOFs, including surfactant-template method^{6–9}, ligand extension method^{10–14}, microwave-assisted method¹⁵, solvent evaporation diffusion method^{16,17}, ionic liquid/supercritical CO₂ emulsion route¹⁸ and so on. However, most of the meso-MOFs adopt smaller mesopores (<5 nm) and the preparation of large-pore meso-MOFs is sporadic at best, which usually needs the supramolecular or cooperative template strategy^{6,9}. The augmentation of the MOF mesopores remains to be a major challenge.

Compressed CO_2 has received much interest because it is nontoxic, inexpensive, non-flammable, and can be easily recaptured and recycled after use^{19–21}. In particular, compressed CO_2 is quite soluble in many liquids, and can change the properties of the liquids considerably. For example, as CO_2 dissolves into an organic solvent, the liquid expands volumetrically, forming a CO_2 -expanded liquid $(CXL)^{22}$. Therefore, by varying CO_2 pressure, a continuum of liquid media ranging from the neat organic solvent to CXL is generated, and their properties can be adjusted by tuning the operating pressure. Until now, CXLs have been shown to be optimal solvents in a variety of fields, including facilitating polymer processing $^{23-26}$, serving as reaction media $^{27-31}$, precipitating fine particles $^{32-34}$, inducing separations 35,36 and so on.

Herein, we propose the CO₂-directed assembly of meso-MOFs. By using CXLs as switchable solvents, the mesocellular MOFs with large mesopores (13–23 nm) and ultra-high mesoporosities are formed. In comparison with the conventional methods for the meso-MOF formation, this strategy has many special advantages. First, the porosity properties of the as-synthesized MOFs can be easily modulated by CO₂ pressure. Second, the reaction for MOF formation from metal salt and organic linker can be accelerated by CO₂ due to the viscosity-lowering effect of CO₂. Third, the product can be recovered through extracting the solvent by CO₂. Fourth, CO₂ can be easily removed by reducing pressure. In addition, this method for the meso-MOF formation is

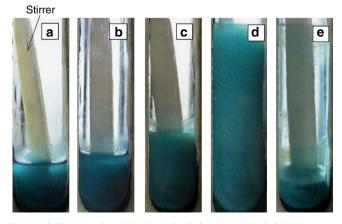


Figure 1 | Photographs of MOF synthesis in CO_2 -expanded DMF. (a) In pure DMF; (b) 2.0; (c) 4.5; (d) 6.6 MPa. (e) Phase separation in reaction system at 6.6 MPa after reaction for 3 h.

template-free, involves no longer ligand, proceeds at room temperature and can be applied to the synthesis of different kinds of MOFs. The mesocellular MOFs have shown to be highly effective and reusable heterogeneous catalysts for aerobic oxidation of benzylic alcohols under mild temperature at atmospheric pressure.

Results

Volume expansion of the reaction system by CO₂. $Cu_3(BTC)_2(H_2O)_3 \cdot xH_2O$ (BTC = 1,3,5-benzenetricarboxylate) is one of the most extensively explored MOFs for its various uses^{6,9,37–39}. Herein we synthesized Cu₃(BTC)₂ in CO₂-expanded N,N-dimethylformamide (DMF) at 30 °C, using copper(II) acetate monohydrate (Cu(OAc)₂·H₂O) and benzene-1,3,5tricarboxylic acid (H₃BTC) as MOF precursors. A certain amount of triethylamine was added into the reaction system to deprotonate the linker. Figure 1 shows the photographs of the reaction systems in pure DMF (Fig. 1a) and CO₂-expanded DMF at different pressures (Fig. 1b-d). Evidently, the reaction system was expanded with the addition of CO2 and the volume expansion increased at higher pressure. After 3 h of reaction the stirring was stopped. The product separated out from the solvent naturally and precipitated at the bottom of the autoclave (Fig. 1e). Then the upper solvent was extracted by flowing CO₂, and the product precipitated at the bottom of the autoclave was recovered and washed using ethanol.

Mesoporous $Cu_3(BTC)_2$ synthesized in CO_2 -expanded DMF. The $Cu_3(BTC)_2$ synthesized in pure DMF (in the absence of CO_2) appeared as irregular agglomerates (Supplementary Fig. 1). However, the mesocellular MOFs were formed in the CO_2 -expanded DMF. The $Cu_3(BTC)_2$ synthesized at 2.0 MPa exhibits

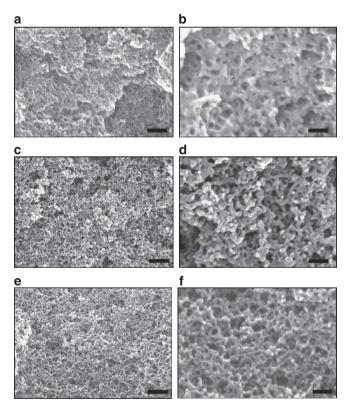


Figure 2 | SEM images of the $Cu_3(BTC)_2$ synthesized in CO_2 -expanded DMF. (a,b) 2.0; (c,d) 4.5; (e,f) 6.6 MPa. Scale bars, 150, 50, 500, 150, 500 and 150 nm for (a-f), respectively.

thick pore walls and mesopores of average size of 10 nm (Fig. 2a,b). When the pressure is increased to 4.5 MPa, the MOF is more porous, with thinner mesopore walls (Fig. 2c,d). The Cu₃(BTC)₂ synthesized at 6.6 MPa has mesopores in 20-30 nm and the diameters of the pore walls are around 10 nm (Fig. 2e.f). Clearly, higher CO₂ pressure is favourable to form more porous MOFs, with larger mesopores and thinner pore walls. The X-ray diffraction (XRD) peak positions and relative intensities of the assynthesized MOFs agree well with those of the simulated HKUST-1 (ref. 37; Supplementary Fig. 2). Fourier transform infrared spectra (Supplementary Fig. 3) revealed that the carboxylate groups of H₃BTC were coordinated to Cu(II) ions^{9,18,40}. The characteristic C = O stretching vibration for acetic acid $(1,770-1,750 \text{ cm}^{-1})$ and C-N stretching vibration $(1,230-1,770-1,750 \text{ cm}^{-1})$ 1,030 cm⁻¹) for triethylamine were not observed, indicating that the product is free of acetic acid and triethylamine, which could be removed easily by washing with ethanol. Energydispersive X-ray spectrum (Supplementary Fig. 4) demonstrates the presence of copper, oxygen and carbon in the prepared MOF and no N element was detected, further proving the absence of triethylamine in the product. The MOFs could keep stable up to 310 °C, as evidenced by thermogravimetric analysis (Supplementary Fig. 5), comparable to that of bulk HKUST-1 (refs 41,42).

Porosity properties of Cu₃(BTC)₂. The porosity properties of the Cu₃(BTC)₂ were determined by N₂ adsorption-desorption

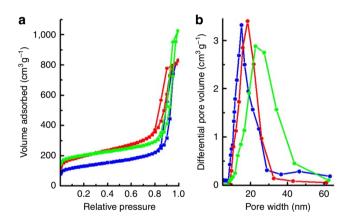


Figure 3 | Porosity measurements. Porosity properties of Cu₃(BTC)₂ determined by N₂ adsorption-desorption method. (a) N₂ adsorptiondesorption isotherms of the Cu₃(BTC)₂ synthesized in CO₂-expanded DMF at 2.0 MPa (blue curves), 4.5 MPa (red curves) and 6.6 MPa (green curves). (b) The mesopore size distribution curves for the Cu₃(BTC)₂ synthesized under the same conditions.

method after the sample was dried and degassed at 100 °C. Figure 3a shows the N₂ adsorption-desorption isotherms of the Cu₃(BTC)₂ synthesized in CO₂-expanded DMF at different pressures. They exhibit an intermediate mode between type I and type IV, which are related to mesoporous and microporous materials, respectively. The mesopore size distribution curves, calculated from Barrett-Joyner-Halenda analysis, are shown in Fig. 3b. The mesopore diameters of the Cu₃(BTC)₂ synthesized at 2.0, 4.5 and 6.6 MPa are centred at 13, 20 and 23 nm, respectively. Evidently, higher CO₂ pressure favours the formation of larger mesopores, which is consistent with the scanning electron microscopic (SEM) observations. From N₂ adsorptiondesorption isotherm, the diameter of the micropores was calculated to be 0.85 nm by Horvath-Kawazoe analysis (Supplementary Fig. 6), in agreement with the micropore diameter estimated from crystallographic data of Cu₃(BTC)₂ (ref. 37). The porosity properties of the MOFs were further characterized by small-angle X-ray scattering (SAXS) and the results are shown in Supplementary Fig. 7. The SAXS profiles (Supplementary Fig. 7A) display power law scattering of Q^{-4} in the low Q region (Q < 0.08 Å $^{-1}$), corresponding to the asymptotic scattering behaviour of mesopores 43. The mesopore size distributions of the MOFs synthesized at pressure of 2.0, 4.5 and 6.6 MPa were calculated, which are centred at about 13.8, 19.0 and 21.1 nm (Supplementary Fig. 7B). These results are consistent with the mesopore size distributions obtained from N₂ adsorption-desorption. The results prove the formation of hierarchically meso- and microporous MOFs in CXL and the mesopore size can be easily tuned by varying pressure.

The surface areas and pore volumes of the hierarchically porous Cu₃(BTC)₂ synthesized in CO₂-expanded DMF at different pressures are listed in Table 1, as identified from the N₂ adsorption-desorption isotherms. The BET (Brunauer, Emmett and Teller) surface area (S_{BET}) values of the three MOFs are not very high ($\sim 700 \,\mathrm{m^2\,g^{-1}}$), which can be ascribed to the pore impenetration⁴⁴. The total pore volumes (V_t) of the three MOFs are rather high ($>1.28 \text{ cm}^3 \text{ g}^{-1}$). The micropore volume is around $0.2 \,\mathrm{cm}^3 \,\mathrm{g}^{-1}$, while the mesopore volume (V_{meso}) accounts for about 85% of the total pore volume of the MOFs. As far as we know, the MOFs synthesized in CO2-expanded DMF represent the largest mesopore volume value among the reported meso-MOFs (usually in the range of $0.1-0.5 \text{ cm}^3 \text{ g}^{-1}$). The ultra-high mesopore volumes of the as-synthesized Cu₃(BTC)₂ result from their mesocellular structure. Moreover, Table 1 shows that the mesopore volume of the MOF synthesized in CO₂-expanded DMF at higher pressure is larger, suggesting that more CO₂ dissolved in DMF is favourable to form mesopores in MOF. Materials with high pore volume as well as large mesopores would be of importance for their applications in diverse fields such as catalysis, drug delivery, separation and energy storage.

Table 1 Porosity	properties	of the Cu	u ₃ (BTC) ₂	synthesized i	n CXLs.

Liquids	Pressure (MPa)	$S_{\rm BET}^{\star}$ (m ² g ⁻¹)	$S_{ m meso}^{\dagger}$ (m 2 g $^{-1}$)	$V_{\mathrm{t}}^{\ddagger}$ (cm 3 g $^{-1}$)	$V_{ m meso}^{ m \S}$ (cm 3 g $^{-1}$)	D _{meso} (nm)
DMF	2.0	671	330	1.283	1.102	13
DMF	4.5	687	334	1.385	1.173	20
DMF	6.6	728	366	1.586	1.356	23
DMA	4.5	480	223	1.147	1.009	17
NMP	4.5	445	218	0.757	0.634	13

^{*}S_{BET} is the BET-specific surface area

[†]S_{meso} is the specific mesopore surface area estimated by subtracting S_{micro}, the t-plot-specific micropore surface area calculated from the N₂ adsorption-desorption isotherm from S_{BET}.

 $[\]ddagger V_t$ is the total specific pore volume determined by using the adsorption branch of the N_2 isotherm at $P/P_0 = 0.99$. $\S V_{\text{meso}}$ is the specific mesopore volume obtained from the BJH cumulative specific adsorption volume.

The mesopore diameter is estimated from the local maximum of BJH pore size distribution obtained in the desorption branch of N2 isotherm.

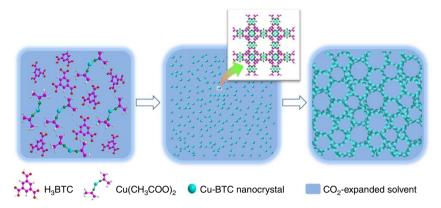
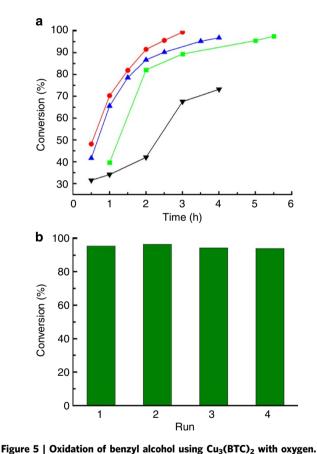



Figure 4 | Schematic illustration for mesocellular MOF formation. The Cu^{2+} ions react with the deprotonated BTC³⁻ in the CXL and the nanosized framework building blocks are produced. Then the MOF building blocks assemble to form the mesocellular MOFs with large mesopores and thin mesopore walls.

(a) Time conversion plot for the aerobic oxidation of benzyl alcohol to benzaldehyde catalyzed by the Cu₃(BTC)₂ synthesized in CO₂-expanded DMF at 2.0 MPa (green curve), 4.5 MPa (blue curve), 6.6 MPa (red curve) and in pure DMF (black curve). Reaction conditions: benzyl alcohol

and in pure DMF (black curve). Reaction conditions: benzyl alcohol 0.185 mmol, catalyst 30 mg, DMF 1ml, TEMPO (0.5 equiv), Na_2CO_3 (1 equiv), 75 °C, oxygen atmosphere. (**b**) The reusability of the $Cu_3(BTC)_2$ synthesized in CO_2 -expanded DMF at 6.6 MPa.

Mesoporous Cu₃(BTC)₂ synthesized in other CXLs. Furthermore, the Cu-BTC MOFs were synthesized in CO₂-expanded N,N-dimethylacetamide (DMA) and N-methyl-2-pyrrolidone (NMP) at 4.5 MPa, respectively. They both have a large-pore mesoporous structure (see SEM images, XRD patterns and N₂ adsorption–desorption isotherms in Supplementary Figs 8–10),

indicating that CO_2 is efficient for directing the assembly of mesocellular MOFs in different solvents. As listed in Table 1, the porosity properties and the mesopore size are decreased in the order of DMF>DMA>NMP. To better understand the effect of CO_2 on the mesocellular MOF formation, the volume expansions (ΔV) of the three organic solvents in CO_2 were determined. All these solvents can be expanded greatly by CO_2 , and the ΔV at the same pressure increases in the order of NMP<DMA<DMF (Supplementary Fig. 11). By combining the results shown in Table 1, evidently, the MOF synthesized in the more expanded liquid has higher porosity and larger mesopores.

Formation mechanism. On the basis of the experimental results, a possible mechanism for the CO₂-directed formation of mesocellular MOF is proposed (Fig. 4). First, the Cu²⁺ ions react with the deprotonated BTC³ – to structure the nanosized framework building blocks^{39,45}. Owing to the reduced solvency and viscosity of solvent by CO2 expansion, the microporous MOF building blocks produced in the CO₂-expanded solvent are expected to be smaller than those yielded in CO₂-free solvent^{39,45}, and higher pressure favours the formation of smaller building blocks^{32–34}. In a second step, the nanosized MOF building blocks assemble to form the network because smaller particles have higher surface energy⁴⁶, and the assembly of MOF nanocrystals is looser at higher pressure due to the greater expansion of the solvent. Therefore, after removing the solvent and releasing CO₂, the mesocellular MOFs with large mesopores and thin mesopore walls are formed. The structural parameters of the MOFs are dependent on CO₂ pressure, that is, the higher the CO₂ pressure is, the more porous MOF with larger mesopores is formed.

Catalytic activities of $\text{Cu}_3(\text{BTC})_2$. The $\text{Cu}_3(\text{BTC})_2$ MOFs synthesized in CO_2 -expanded DMF were used to catalyse the oxidation of benzyl alcohol to benzaldehyde, using 2,2,6,6-tetramethyl-piperidine-1-oxyl (TEMPO) as a co-catalyst⁴⁷. The selectivity of benzaldehyde was >99%. As shown in Fig. 5a, the $\text{Cu}_3(\text{BTC})_2$ synthesized at higher pressure is more active. By using the $\text{Cu}_3(\text{BTC})_2$ synthesized at 6.6 MPa, benzyl alcohol converted completely to benzaldehyde at 3 h (red curve). The activities of the three MOFs are higher than that synthesized in pure DMF (black curve), further much higher than that of commercial $\text{Cu}_3(\text{BTC})_2$ at the same experimental conditions (10% conversion at 3 h)⁴⁷. The catalyst shows no evident drop in catalytic activity after four runs (Fig. 5b), indicative of the high stability of the MOF. No notable difference was observed for the XRD patterns and SEM images of the fresh $\text{Cu}_3(\text{BTC})_2$ and that after being

reused for four runs (Supplementary Figs 12 and 13), indicating that the structural integrity of the MOF was well preserved. The porosity properties of the Cu₃(BTC)₂ after being reused for four runs were determined by N2 adsorption-desorption method (Supplementary Fig. 14). The BET surface area of the recycled sample is $685 \,\mathrm{m}^2\,\mathrm{g}^{-1}$, which is slightly lower than that of the original sample $(728 \text{ m}^2 \text{ g}^{-1})$. The mesopore size distribution of the recycled sample is nearly identical with that of the original one. This indicates that the mesoporous structure of the MOF can be well preserved after being reused for four runs. The slight drop of the BET surface area of the recycled MOF may be due to the presence of some inorganic and organic impurities generated during the reaction that blocks the micropore system⁴⁷

Moreover, the catalytic activities of the as-synthesized mesoporous Cu₃(BTC)₂ were tested for the aerobic oxidation of various alcohols. The reaction conditions are the same with those for the aerobic oxidation of benzyl alcohol. As can be known from Table 2, 3-nitrobenzyl alcohol, 4-methylbenzyl alcohol and cinnamyl alcohol converted completely to the corresponding aldehydes in 10, 7 and 6 h, respectively (entries 1-3). By contrast, the aldehyde yields catalysed by the commercial microporous Cu₃(BTC)₂ were 10, 65 and 62% for the three alcohols, respectively, even at a prolonged reaction time of 22 h (ref. 47). For the oxidation of 3,3',5,5'-tetrakis(trifluoromethyl)benzhydrol catalysed by the mesoporous Cu₃(BTC)₂, the 3,3',5,5'-tetrakis (trifluoromethyl)benzophenone yield reached 57.9% at 6 h, while that catalysed by the microporous Cu₃(BTC)₂ was 18.7% at the same experimental conditions (entry 4). Such high catalytic activities of the Cu₃(BTC)₂ synthesized in this work can be attributed to their mesocellular structure, which can enhance the diffusion of substrates and products⁴⁸. Also, the nanoscale size of the MOFs is favourable for increasing the density of catalytic active sites⁴⁹, thus accelerating the reaction more efficiently.

Mesoporous Mn MOFs synthesized in CXL. To expand the scope of the CXL for producing mesoporous MOF, we further performed the synthesis of other MOFs in the CXL. The mesoporous Mn-BTC and Mn-BDC (BDC = 1,4-benzenedicarboxylate) MOFs were formed in the CO₂-expanded DMF (see SEM images and XRD patterns in Supplementary Figs 15 and 16). The average mesopore size of the Mn MOFs is ~ 20 nm. The results indicate that the CXL is versatile in synthesizing different kinds of mesoporous MOFs.

Discussion

Here the mesocellular MOFs with large mesopores (13-23 nm) were synthesized in CXL. The porosity properties of the MOFs can be easily adjusted by controlling CO₂ pressure. The as-synthesized mesocellular Cu₃(BTC)₂ MOFs are effective and reusable heterogeneous catalyst for the aerobic oxidation of benzylic alcohols under mild temperature at atmospheric pressure. By taking advantages of interconnected nature of the large mesopores, these mesocellular MOFs have potential applications in catalysis, gas separation and controlled drug release.

The use of CXL for MOF formation has many advantages, for example, controllable, template-free and involves no longer ligand. It is worth noting that the Cu₃(BTC)₂ MOF formation in organic solvent is usually carried out at temperature 70–180 °C and a reaction time longer than 10 h is needed^{6,9,37-39}. Herein, the reaction in the presence of CO₂ proceeded at room temperature and the reaction time was shortened to 3 h. It can be attributed to the enhanced mass transport rates, resulting from the viscosity-lowering effect of CO₂ (ref. 22).

Finally, we note that our method can be applied to the synthesis of different kinds of MOFs with large-pore mesoporous structure. Furthermore, we anticipate that the CXL could be used in the in situ production of mesoporous MOFs decorated with highly dispersed metal (or metal oxide) nanoparticles, which will find important applications in catalysis.

Methods

Materials. CO₂ (>99.95%) was provided by Beijing Analysis Instrument Factory. DMF and trifluoroacetate were provided by Beijing Chemical Reagent Company.

Table 2 Oxidation of alcohols using Cu ₃ (BTC) ₂ with oxygen.								
Entry	Substrate	Product	Time (h)	Yield (%)	Time (h)	Yield (%)		
1	CH ₂ OH NO ₂	CHO NO ₂	10	>99*	22	10 [†]		
2	H₃С - —СН₂ОН	H ₃ C —CHO	7	>99*	22	65 [†]		
3	ОН	CHO	6	>99*	22	62 [†]		
4	F F F F F F F F F F F F F F F F F F F	F F F F F F F F F F F F F F F F F F F	6	57.9*	6	18.7 [‡]		
					18	45.3 [‡]		

*Yield using the mesoporous Cu₃(BTC)₂ synthesize in CO₂-expanded DMF at 6.6 MPa. Reaction conditions: alcohol (0.2 mmol), Cu₃(BTC)₂ (30 mg), TEMPO (0.5 equiv), Na₂CO₃ (1 equiv), DMF (1 ml), 75 °C, oxygen atmosphere.

Yield using the microporous Cu₃(BTC)₂ synthesized in pure DMF

Yield reported in ref. 47.

DMA and NMP were purchased from J&K Scientific Co., Ltd. $Cu(OAc)_2 \cdot H_2O(A. R. Grade)$ was purchased from Alfa Aesar. H_3BTC (purity 95%) was provided by Aldrich. Benzene dicarboxylic acid (H_2BDC , 98%), MnCl₂ (97%), methyl ammonium (30 wt% H_2O_2), benzyl alcohol (99%), cinnamyl alcohol (98%) and TEMPO (purity 98%) were supplied by Alfa Aesar. 3-Nitrobenzyl alcohol, 4-methylbenzyl alcohol and 3,3′,5,5′-tetrakis(trifluoromethyl)benzhydrol (purity 97%) were purchased from J&K Scientific Co., Ltd. Sodium carbonate was provided by Beijing Chemical Reagent Company. The methyl ammonium salt of the ligand H_2BDC was made by dissolving the benzene dicarboxylic acid in a 40 wt % solution of methyl amine in water. The excess methyl amine and water were evaporated under reduced pressure, and the isolated salt was then redissolved in distilled water to give an aqueous solution of desired concentration.

MOF synthesis. In a typical experiment, H_3BTC (0.25 mmol) and $Cu(OAc)_2 \cdot H_2O$ (0.5 mmol) were added into the solvent (5 g), which was loaded in a stainless steel autoclave (50 ml). Then 0.25 ml triethylamine was added into the autoclave to deprotonate the linker. CO_2 was charged into the cell under stirring until the desired pressure was reached. After the mixture was stirred at 30 °C for 3 h, the stirrer was stopped and the solvent was extracted by flowing CO_2 . The product was obtained after washing with ethanol for several times and drying at 60 °C under vacuum for 24 h. For comparison, the Cu-BTC MOF was synthesized in pure DMF, H_3BTC (0.25 mmol) and $Cu(OAc)_2 \cdot H_2O$ (0.5 mmol) were added into DMF (5 g), which was loaded in a stainless steel autoclave (50 ml). Then 0.25 ml triethylamine was added into the autoclave to deprotonate the linker. After the mixture was stirred at 30 °C for 24 h, the stirrer was stopped. The product was obtained after centrifugation, washing with ethanol and drying at 60 °C under vacuum for 24 h.

For the synthesis of Mn-BTC MOF, $\rm H_3BTC$ (0.5 mmol) and MnCl₂ (0.5 mmol) were added into DMF (5 g), which was loaded in a stainless steel autoclave (50 ml). Then 0.25 ml triethylamine was added into the autoclave to deprotonate the linker. $\rm CO_2$ was charged into the cell under stirring until the desired pressure was reached. After the mixture was stirred at 30 °C for 18 h, the stirrer was stopped. The product was obtained after washing with ethanol and drying at 60 °C under vacuum for 24 h. For the synthesis of Mn-BDC MOF, MnCl₂ (0.5 mmol) and the methyl ammonium salt of the ligand $\rm H_2BDC$ (0.5 mmol) were added into DMF (5 g), which was loaded in a stainless steel autoclave (50 ml). The other experimental procedures and conditions were similar to those for the Mn-BTC MOF synthesis.

MOF characterization. The products were characterized by XRD (Model D/MAX2500, Rigaka) with Cu K α radiation at a scanning rate of 5° min $^{-1}$. The morphologies were characterized by a HITACHI S-4800 scanning electron microscope. The porosity properties were gained from N_2 adsorption–desorption isotherms using a Micromeritics ASAP 2020M system. Fourier transform infrared spectra were obtained using a Bruker Tensor 27 spectrometer, and the samples were prepared by the KBr pellet method. The thermogravimetric measurements were carried out using Pyris 1 TGA with N_2 flow of 10 ml min $^{-1}$. The SAXS experiment was carried out at Beamline 4B9A at Beijing Synchrotron Radiation Facility. The wavelength was 1.38 Å and the distance of sample to detector was 2.044 m.

Volume expansion. The apparatus and experimental procedures were similar to those reported previously⁵⁰. It consisted mainly of a high-pressure view cell of 50 ml, a constant temperature water bath, a high-pressure syringe pump (DB-80), a pressure gauge, a magnetic stirrer and a gas cylinder. The temperature of the water bath was controlled by a HAAKE D8 digital controller and the accuracy of the temperature measurement was ± 0.05 K. The pressure gauge was composed of a pressure transducer (FOXBORO/ICT, Model 93) and an indicator, which was accurate up to ± 0.025 MPa in the pressure range of 0-20 MPa. In a typical experiment, the desired amount of organic solvent was added into the cell, and the cell was placed in the constant temperature water bath (30 °C). After the thermal equilibrium had been reached, a suitable amount of CO2 was charged into the high-pressure cell. The magnetic stirrer in the optical cell was started to accelerate the mixing of CO2 and the liquid. The pressure was unchanged with time as equilibrium was reached. The volume of the solution at equilibrium condition was known from the level of the liquid surface, and the volume expansion coefficient could be calculated on the basis of the volumes of the liquid before and after dissolution of CO2. More CO2 was charged and the volume of the liquid at another pressure was determined.

Catalytic test. The procedure of catalytic reaction was similar to those reported by Garcia and coworkers⁴⁷. A 5 ml flask was charged with the required amount of catalyst, TEMPO, and sodium carbonate. To this mixture, 1 ml DMF was added followed by the appropriate quantity of alcohol. The mixture was stirred at 75 °C under oxygen atmosphere. After the desired time, the heterogeneous mixture was cooled and centrifuged. The liquid product was analysed by a gas chromatograph (Agilent 6820). For the reusability investigation, after 3 h of reaction the catalyst was recovered by centrifugation, washed with ethanol and dried under vacuum. Then the solid was reused for a consecutive run.

References

- Stock, N. & Biswas, S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. *Chem. Rev.* 112, 933–969 (2012).
- Li, J.-R., Sculley, J. & Zhou, H.-C. Metal-organic frameworks for separations. Chem. Rev. 112, 869–932 (2012).
- Jin, S., Son, H.-J., Farha, O. K., Wiederrecht, G. P. & Hupp, J. T. Energy transfer from quantum dots to metal-organic frameworks for enhanced light harvesting. J. Am. Chem. Soc. 135, 955–958 (2013).
- Liu, Y., Xuan, W. & Cui, Y. Engineering homochiral metal-organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation. Adv. Mater. 22, 4112–4135 (2010).
- Xuan, W., Zhu, C., Liu, Y. & Cui, Y. Mesoporous metal-organic framework materials. Chem. Soc. Rev. 41, 1677–1695 (2012).
- Qiu, L.-G. et al. Hierarchically micro- and mesoporous metal-organic frameworks with tunable porosity. Angew. Chem. Int. Ed. 47, 9487–9491 (2008)
- Do, X. D., Hoang, V. T. & Kaliaguine, S. MIL-53(Al) mesostructured metal-organic frameworks. *Microporous Mesoporous Mater.* 141, 135–139 (2011).
- Choi, K. M., Jeon, H. J., Kang, J. K. & Yaghi, O. M. Heterogeneity within order in crystals of a porous metal-organic framework. *J. Am. Chem. Soc.* 133, 11920–11923 (2011).
- Sun, L.-B., Li, J.-R., Park, J. & Zhou, H.-C. Cooperative template-directed assembly of mesoporous metal-organic frameworks. J. Am. Chem. Soc. 134, 126–129 (2012).
- Perry, J. J., Perman, J. A. & Zaworotko, M. J. Design and synthesis of metalorganic frameworks using metal-organic polyhedra as supermolecular building blocks. *Chem. Soc. Rev.* 38, 1400–1417 (2009).
- Farha, O. K. & Hupp, J. T. Rational design, synthesis, purification, and activation of metal-organic framework materials. Acc. Chem. Res. 43, 1166-1175 (2010)
- Lykourinou, V. et al. Immobilization of MP-11 into a mesoporous metalorganic framework, MP-11@mesoMOF: A new platform for enzymatic catalysis. I. Am. Chem. Soc. 133, 10382–10385 (2011).
- Deng, H. et al. Large-pore apertures in a series of metal-organic frameworks. Science 336, 1018–1023 (2012).
- Liu, C., Li, T. & Rosi, N. L. Strain-promoted 'Click' modification of a mesoporous metal-organic framework. J. Am. Chem. Soc. 134, 18886–18888 (2012).
- Hong, D.-Y., Hwang, Y. K., Serre, C., Férey, G. & Chang, J.-S. Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: surface functionalization, encapsulation, sorption and catalysis. *Adv. Funct. Mater.* 19, 1537–1552 (2009).
- Fang, Q.-R. et al. Mesoporous metal-organic framework with rare etb topology for hydrogen storage and dye assembly. Angew. Chem. Int. Ed. 46, 6638–6642 (2007).
- 17. Yue, Y. et al. Template-free synthesis of hierarchical porous metal-organic frameworks. J. Am. Chem. Soc. 135, 9572–9575 (2013).
- Zhao, Y. J. et al. Metal-organic framework nanospheres with well-ordered mesopores synthesized in an ionic liquid/CO₂/surfactant system. Angew. Chem. Int. Ed. 50, 636–639 (2011).
- Blanchard, L. A., Hancu, D., Beckman, E. J. & Brennecke, J. F. Green processing using ionic liquids and CO₂. Nature 399, 28–29 (1999).
- Zhang, H. F., Long, J. & Cooper, A. I. Aligned porous materials by directional freezing of solutions in liquid CO₂. J. Am. Chem. Soc. 127, 13482–13483 (2005).
- Zhang, J. L. & Han, B. X. Supercritical or compressed CO₂ as a stimulus for tuning surfactant aggregations. Acc. Chem. Res. 46, 425–433 (2013).
- Jessop, P. G. & Subramaniam, B. Gas-expanded liquids. Chem. Rev. 107, 2666–2694 (2007).
- Goel, S. K. & Beckman, E. J. Plasticization of poly(methyl methacrylate) (PMMA) networks by supercritical carbon dioxide. *Polymer* 34, 1410–1417 (1993).
- Condo, P. D., Paul, D. R. & Johnston, K. P. Glass transitions of polymers with compressed fluid diluents: Type II and III behavior. *Macromolecules* 27, 365–371 (1994).
- Bortner, M. J. & Baird, D. G. Absorption of CO₂ and subsequent viscosity reduction of an acrylonitrile copolymer. *Polymer* 45, 3399–3412 (2004).
- Gong, J. et al. Formation of nanoscale networks: Selectively swelling amphiphilic block copolymers with CO₂-expanded liquids. Nanoscale 5, 1195–1204 (2013).
- Hancu, D., Green, J. & Beckman, E. J. H₂O₂ in CO₂: Sustainable production and green reactions. Acc. Chem. Res. 35, 757–764 (2002).
- 28. Beckman, E. J. Production of H_2O_2 in CO_2 and its use in the direct synthesis of propylene oxide. *Green Chem.* 5, 332–336 (2003).
- Phiong, H.-S., Cooper, C. G., Adesina, A. A. & Lucien, F. P. Kinetic modelling of the catalytic hydrogenation of CO₂-expanded α-methylstyrene. *J. Supercrit.* Fluids 46, 40–46 (2008).

- Subramaniam, B. Gas-expanded liquids for sustainable catalysis and novel materials: Recent advances. Coord. Chem. Rev. 254, 1843–1853 (2010).
- Andanson, J.-M., Marxa, S. & Baiker, A. Selective hydrogenation of cyclohexenone on iron–ruthenium nano-particles suspended in ionic liquids and CO₂-expanded ionic liquids. *Catal. Sci. Technol.* 2, 1403–1409 (2012).
- Zhang, J. L., Han, B. X. & Liu, J. C. Recovery of silver nanoparticles synthesized in AOT/C₁₂E₄ mixed reverse micelles by antisolvent CO₂. Chem. Eur. J 8, 3879–3883 (2002).
- Yeo, S.-D. & Kiran, E. Formation of polymer particles with supercritical fluids: A review. J. Supercrit. Fluids 34, 287–308 (2005).
- 34. Sala, S. *et al.* Crystallization of microparticulate pure polymorphs of active pharmaceutical ingredients using CO₂-expanded solvents. *Cryst. Growth Des.* **12**, 1717–1726 (2012).
- West, K. N. et al. CO₂-induced miscibility of fluorous and organic solvents for recycling homogeneous catalysts. Ind. Eng. Chem. Res. 43, 4827–4832 (2004).
- Zhang, J. L. et al. Efficient separation of surfactant and organic solvent by CO₂. Chem. Commun. 47, 5816–5818 (2011).
- Chui, S. S.-Y., Lo, S. M.-F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. A chemically functionalizable nanoporous material [Cu₃(TMA)₂(H₂O)₃]_n. Science 283, 1148–1150 (1999).
- Xiang, S., Zhou, W., Gallegos, J. M., Liu, Y. & Chen, B. Exceptionally high acetylene uptake in a microporous metal — organic framework with open metal sites. J. Am. Chem. Soc. 131, 12415–12419 (2009).
- Pham, M.-H., Vuong, G.-T., Fontaine, F.-G. & Do, T.-O. A route to bimodal micro-mesoporous metal-organic frameworks nanocrystals. *Cryst. Growth Des.* 12, 1008–1013 (2012).
- Deacon, G. B. & Philips, R. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. *Coord. Chem. Rev.* 33, 227–250 (1980).
- Liu, J. et al. Experimental and theoretical studies of gas adsorption in Cu₃(BTC)₂: an effective activation procedure. J. Phys. Chem. C 111, 9305–9313 (2007).
- Hartmann, M., Kunz, S., Himsl, D. & Tangermann, O. Adsorptive separation of isobutene and isobutane on Cu₃(BTC)₂. Langmuir 24, 8634–8642 (2008).
- 43. Tsao, C.-S. et al. Characterization of pore structure in metal-organic framework by small-angle X-ray scattering. J. Am. Chem. Soc. 129, 15997–16004 (2007).
- 44. Hafizovic, J. et al. The inconsistency in adsorption properties and powder XRD data of MOF-5 is rationalized by framework interpenetration and the presence of organic and inorganic species in the nanocavities. J. Am. Chem. Soc. 129, 3612–3620 (2007).
- Tsuruoka, T. et al. Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth. Angew. Chem. Int. Ed. 48, 4739–4743 (2009).
- Oh, M. & Mirkin, C. A. Chemically tailorable colloidal particles from infinite coordination polymers. *Nature* 438, 651–654 (2005).

- Dhakshinamoorthy, A., Alvaro, M. & Garcia, H. Aerobic oxidation of benzylic alcohols catalyzed by metal-organic frameworks assisted by TEMPO. ACS Catal. 1, 48-53 (2011)
- 48. Carné, A., Carbonell, C., Imaz, I. & Maspoch, D. Nanoscale metal-organic materials. *Chem. Soc. Rev.* 40, 291–305 (2011).
- Park, K. H., Jang, K., Son, S. U. & Sweigart, D. A. Self-supported organometallic rhodium quinonoid nanocatalysts for stereoselective polymerization of phenylacetylene. *J. Am. Chem. Soc.* 128, 8740–8741 (2006).
- Zhang, J. L. et al. Effect of compressed CO₂ on the size and stability of reverse micelles: Small-angle X-ray scattering and phase behavior study. J. Chem. Phys. 118, 3329–3333 (2003).

Acknowledgements

We thank the National Natural Science Foundation of China (21173238, 21133009, U1232203, 21021003) and Chinese Academy of Sciences (KJCX2.YW.H16). We are also grateful to Prof. Zhonghua Wu, Prof. Zhihong Li and Dr Guang Mo of Beijing Synchrotron Radiation Facility for their help on small-angle X-ray scattering experiment.

Author contributions

L.P. performed the whole experiments. Z.M.X. and X.X.S. worked on the MOF characterization. C.C.L. and G.Y.Y. worked on the catalytic reaction. L.P., J.L.Z. and B.X.H. analysed the data and proposed the formation mechanism of mesoporous MOF. J.L.Z. and L.P. wrote the manuscript. J.L.Z. conceived the project and designed the experiments.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Peng, L. *et al.* Highly mesoporous metal-organic framework assembled in a switchable solvent. *Nat. Commun.* 5:4465 doi: 10.1038/ncomms5465 (2014).

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The images or

other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/