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Morphogenesis of filaments growing
in flexible confinements
R. Vetter1, F.K. Wittel1 & H.J. Herrmann1

Space-saving design is a requirement that is encountered in biological systems and the

development of modern technological devices alike. Many living organisms dynamically pack

their polymer chains, filaments or membranes inside deformable vesicles or soft tissue-like

cell walls, chorions and buds. Surprisingly little is known about morphogenesis due to growth

in flexible confinements—perhaps owing to the daunting complexity lying in the nonlinear

feedback between packed material and expandable cavity. Here we show by experiments and

simulations how geometric and material properties lead to a plethora of morphologies when

elastic filaments are growing far beyond the equilibrium size of a flexible thin sheet they are

confined in. Depending on friction, sheet flexibility and thickness, we identify four distinct

morphological phases emerging from bifurcation and present the corresponding phase

diagram. Four order parameters quantifying the transitions between these phases are

proposed.
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W
hat morphologies will a thin object adopt when
subjected to tight spatial confinement? This funda-
mental question of morphogenesis arises on a large

range of length scales, from DNA strands packed in bacterio-
phage capsids and globules1–3 to the folding of pop-up tents4.
Packing problems have played a major role in the understanding
of spatial self-organization in living organisms and technological
applications alike. Thin sheets of foil or paper, for instance,
develop complex ridge networks when folded and crumpled5–10.

Significant progress has recently been made in the under-
standing of dense packings of elastic and elasto-plastic wires, in
absence of thermal fluctuations, inside of rigid three-dimensional
confinement11–14. A particular restriction shared by all these
studies is the perfect rigidity of the cavities—a constraint rarely
met in nature or biomedical applications. Detachable platinum
coils, for example, which have revolutionized the surgical
treatment of saccular cerebral aneurysms15, are many orders of
magnitude stiffer than the arterial walls they are fed into16.
Microtubules confined in lipid bilayer membranes17,18 and
erythrocytes19,20 as well as actin/filamin networks in
vesicles21,22 are able to deform their weak confinements
significantly. In turn, such cavities force the contained filaments
to buckle and reorder if their persistence length grows large
enough. Recent experiments on coiled elastic nanowires and
nanotubes encapsulated in swelling polymer shells and emulsion
droplets have demonstrated how mechanical work can be stored
and deployed through deformable spatial confinement23–25.

Knowing the mechanisms that govern morphogenesis in
constrained spaces is key to understanding the ordering in dense
packing problems. Here we present computer simulations and
table-top experiments with everyday materials carried out to
explore the morphological phase space of filament packings in a
regime that is conceptually very different from previous
systematic studies. A regime where the growing filament can
strongly deform the cavity, allowing for a surprisingly enriching
mutual feedback between the two structures. A decisive set of two
geometric and two material parameters are identified that control
this complex interaction, giving rise to no less than four distinct
morphologies vastly differing in their packing evolution and
energetics. Our findings provide the foundation for a new
research field in which packing processes and growth are
governed by the complex interplay of thin deformable bodies
made of different materials. The reported observations exemplify
the dramatic influence of friction and confinement rigidity on
packing processes in both natural and technological applications.

Results
Model and parametrization. The most intelligible and pure way
of gaining quantitative insight into morphogenesis in flexible
confinements is by continuum mechanical simulations with
linearly elastic materials. Many of the aforementioned applica-
tions are best matched by a circular ring filament growing inside
of a closed spherical thin sheet. Figure 1 shows a cut-out of our
computational model (see also Supplementary Note 1). Both
filament and sheet are characterized by three homogeneous iso-
tropic material parameters, labelled with subscripts f and s,
respectively: the Young’s modulus E, Poisson’s ratio n and mass
density r. In accordance with a suggestion for condensed DNA3,
Coulomb’s law is assumed for dry stick–slip friction between any
two contacting surfaces (filament–filament, filament–shell, shell–
shell) with an isotropic static friction coefficient, ms, and a slightly
lower dynamic friction coefficient, md. To simplify the parameter
space, we use the same coefficients for all the three contact types
and fix md¼ 0.9ms, which is adequate for a broad class of
materials26.

The initial condition at time t¼ 0 consists of a ring filament
with length L and cross-sectional radius r, surrounded by a close-
fitting spherical shell with thickness h, whose middle surface has
radius R. As the filament grows, it bears against the confining wall
until the critical buckling load 4Ef If

�
R2
b (where If¼pr4/4 is the

second moment of area) is exceeded and it buckles out of plane
with harmonic mode m. Excited modes m42 are unstable in the
quasi-static frictionless limit27, but our simulations show that
they can be observed when inertia is not negligible (that is, large
mass densities, fast growth or viscous overdamping) and in the
presence of significant friction. The ground state buckling mode
m¼ 2, which is the most relevant in practice, develops a saddle
shape as depicted in the middle of Fig. 2 until two filament
segment pairs touch. This first contact occurs at l :¼ L(t)/
L(0)¼ l*E2.127 for rigid spherical cavities in the theoretical thin
filament limit r-0 (ref. 27). The bending energy Ub of the
filament before l¼ l* can be approximated analytically by

UbRf

Ef If
¼ 1

2

Z 2pl

0
ds kðsÞ2 þ 1

� �
; ð1Þ

where k is the geodesic curvature of the rim of a unit ‘excess cone’
(e-cone)28, and Rf :¼ L(0)/2p¼R� h/2� r is the effective
filament radius. Growth beyond l* in finite systems with real
self-avoiding materials, however, has never been explored to date.
Our simulations and experiments dispel this limitation, showing
that four distinct morphologies emerge by bifurcation as the
filament grows longer (Fig. 2). We denominate them ‘spiral’,
‘classical’, ‘folded’ and ‘warped’, motivated by their characteristics
as detailed in the following.

A key result from the computer simulations is that this
morphogenesis is controlled by four independent dimensionless
non-negative quantities,

s ¼ R=r; g ¼ R=hð Þ2; e ¼ Ef=E; m ¼ ms; ð2Þ

if inertial effects are negligible. Up to an irrelevant prefactor, g is
the Föppl–von Kármán number, a geometrical measure for a thin
sheet’s tendency to bend rather than stretch. e is the relative
filament rigidity, which conversely may also be thought of as the
confinement flexibility. g and e generalize the previously studied
rigid cavities, which are attained in the limits g-0 and e-0.
Together with g, expressing the nominal system size by the
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Figure 1 | Schematic of the interaction model. Both the circular filament

and the confining spherical sheet are characterized by a Young’s modulus E,

Poisson’s ratio n and mass density r. We assume stick–slip Coulomb

friction between any contacting surfaces. The morphogenesis is governed

by only four dimensionless numbers: the nominal system size s¼ R/r, the

Föppl–von Kármán number g¼ (R/h)2, the relative confinement flexibility

e¼ Ef/Es, and the Coulomb friction coefficient m¼ms.
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non-dimensional ratio s renders the problem scale-invariant,
which attests to the wide applicability of our results from
microscopic to macroscopic scales.

Morphological phases and phase transitions. The packing in
frictionless rigid spheres can serve as a toy model for less idealized
systems. When l4l*, a spiral (depicted in Fig. 2, top left;
Supplementary Movie 1) develops analogous to unconfined
e-cones29. In the spirit of refs 30,31, we call this the ‘spiral phase’.
Simple geometrical arguments (see Supplementary Note 2) allow
for an analytical approximation of the predominating elastic
contribution, the bending energy Ub of the confined filament:

UbRf

Ef If
� p

Rf

r
log 1þ 2

cot y=2ð Þ� 1

� �
þ 4p

p=2� y
; ð3Þ

where the coil inclination y is implicitly determined by
lEsin(y)Rf/rþp/2� y. In Fig. 3a, we show that equations (1)
and (3) are in excellent agreement with our numerical
measurements. The measured energy weakly oscillates because
the coil is slightly bent by the S-curves. These oscillations increase
for larger s. As the surface gets fully covered with a single layer of
filament (l approaching Rf/r), the growing filament eventually
buckles inward to release a large amount of elastic energy, and the

packing process continues in a less ordered manner, much like
some DNA molecules in phage capsids2,32.

A crucial requirement for a growing filament to coil is
tangential sliding, giving rise to the high degree of order in the
spiral morphology by continuous rearrangements. Many practical
materials, however, resist sliding by frictional forces and even
DNA does so33–35. Friction induces locality by limiting
rearrangments to the local neighbourhood, inhibiting
relaxations to lower global energy conformations, thus trapping
growing filaments in a disordered state (Fig. 2, bottom left;
Supplementary Movie 2). Figure 3a clearly shows that the
bending energy is bounded from below by the spiral phase.
A similar situation is encountered in flat wire packings31, from
where we adopt the term ‘classical phase’. To quantify the
spontaneous breaking of spiral symmetry with increasing m, we
propose the following order parameter. Let [p1, p3, p3]T(s) denote
the position of the centreline of the filament after transformation
onto its own principal axes in the order of descending principal
moments of inertia. Then, the sign of tðsÞ ¼ @2

s p2@sp1 � @2
s p1@sp2

indicates its turning direction as seen along the axis of minimal
moment of inertia. Consequently, the circular convolution

cðqÞ ¼ 1
L

Z L

0
ds sgn s� L=2ð Þt sþ qð Þ½ � 2 0; 1½ � ð4Þ
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Figure 2 | Packing evolution depending on friction and confinement rigidity. A confined growing ring buckles to a saddle shape (buckling mode

m¼ 2, middle). Beyond the point of first contact l¼ l*, four distinct morphologies can emerge. The folding at low friction and weak confinement is

repeated during growth: filament bundles refold self-similarly, each time tripling the number of bundle strands (n¼ 3k).
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Figure 3 | Comparison of dynamics and energetics. (a) Filament bending energy in the spiral (blue) and classical (green) morphology at s¼ 20.

The inset shows the inclination y(l) of the spiral coil. (b) Folded morphology at s¼ 20, g¼ 202, e¼ 104, m¼0. The predominant elastic energy

contribution alternates between the filament bending energy Ub and the membrane energy Um (stretching term of Supplementary Equation (2)).

A cascade of four self-similar folds can be recognized by the repeated power law regions.
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is a natural measure for the degree of order of the filament when
cut in half at s¼ q and s¼ qþ L/2. Here we implicitly extend
t(s)¼ t(sþ L) periodically. If the two halves equally contain
right- and left-turning segments, we have c(q)¼ 0. Conversely,
only if one half turns only left and the other half only right, we
have c(q)¼ 1. Thus, if we account for the periodic nature of
the ring filament by maximizing over all bisection points q, the
turning disorder D :¼ 1�max{c(q)|qA [0, L]} can serve as an
order parameter to discriminate the spiral from the classical
phase. It is evident from Fig. 4a that the transition occurs near
mE0.5, with a slight dependence on s. In stiff confinement,
friction must thus be fairly strong to introduce local order, which
contributes to explaining why viral DNA is often condensed into
layered spools36–39.

The surface-covering spiral and classical morphologies bear
resemblance to liquid crystals (LCs), an analogy that has already
been drawn in the context of DNA packing in viral capsids40. Let
us define a loop by an area surrounded by a filament segment
with only one inner point of contact31. The spiral phase has only
four such loops (two at each pole), while the classical phase is
characterized by a broader spatial distribution of loops. At very
high surface packing (l-Rf/r), the classical loops are compressed
to point singularities with strength 1/2 delimiting line
disclinations known from nematic LCs41. The spiral phase is in
turn reminiscent of spherical smectic LCs with two closely bound
disclinations ending at two 1/2-singularities at each pole42. The
total disclination strength of a spherical LC is always 2, which is a
direct consequence of the Gauss–Bonnet theorem. Indeed, this
identity holds for growing ring filaments for all s, m in the spiral
and classical phases. The number of topologically non-trivial

loops is always four, but the classical phase can exhibit an
arbitrary additional number of topologically trivial loops.
However, we stress that the existence of topologically trivial
loops is sufficient, but not necessary for D40, and is thus not an
order parameter.

The spiral and classical morphologies are highly metastable as
the filament inevitably buckles away from the rigid wall. A
qualitative stability condition was derived in ref. 40 and translates
to loos2 in our terms, suggesting that dense single-layered
surface packings are found only in sufficiently large cavities. This
explains why they are not common in biophysical environments
and vesicles. Instead, such systems gain ultimate stability from
weak or flexible confinement. In the computer simulations, we
increased g and e to discover a completely altered morphogenesis
beyond a certain transition. As the confining sheet is weakened or
thinned, suddenly, the filament folds on itself as illustrated in the
top right of Fig. 2 instead of coiling (see also Supplementary
Movie 3). Bundles of n subthreads are formed similar to
actin/filamin rings and microtubules in vesicles21,22,43 or folded
poles in pop-up tents4. We hence refer to this as
the ‘folded phase’. The folding process is repeated as the
filament continues to grow. The winding number n obeys
n¼Pk(2mk� 1), where mkA {2, 3, 4,...} is the buckling mode and
k¼ 0, 1, 2,... is the number of folds in the cascade (see also
Supplementary Note 3). The ground state (mk�2) energy is
plotted in Fig. 3b, revealing a series of self-similar folds that define
the folded phase. Before buckling, the circular filament bundle
with bulk radius Rb expands to release bending energy according
to UbRf/EfIfEnpRf/RbBl� 1, stretching the circumjacent sheet
until a critical radius Rb¼Rc is reached where the bundle buckles.
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Figure 4 | Order parameters for the transition between the phases. (a) Half of the spiral filament turns right and half of it left, which is not the

case in the classical phase (e¼0, l¼ 10). (b) The dissimilarity between the filament and its own mirror image is strictly positive in the chiral spiral

phase, but vanishes in the achiral folded phase (g¼ 104, m¼0, l¼ 5). (c) The amount of torsion quantifies the transition from the folded to the

warped phase (g¼ e¼ 104, l¼ 5). (d) The fraction of the sheet surface in contact with itself vanishes when the warped phase transitions to the

classical phase (g¼ 104, m¼ 1.4, data maximized over lA [1,10]). Error bars represent s.e.m. from 6–10 independent realizations.
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The long-term trend is UbRf/EfIfBla with aA (0, 1), indicating
that the critical radius increases as Rc/RfBl(1� a)/2. For the set of
parameters in Fig. 3b, a¼ 0.80±0.02 (s.e.m.). This striking
refolding of bundled rings provides a purely mechanical
explanation for the spontaneous bundling of weakly confined
filaments, such as actin networks21,22 and marginal microtubule
bands in developing erythrocytes19,20, as a result of membrane
or shell enclosure instead of cross-linkage. Only sufficiently
deformable containers conform to pushing filaments, allowing
them to pass one another to fold into energetically more
favourable bundle configurations. This might also provide a
paradigm to explain layered slime thread bundling in hagfish
gland thread cells44, where the cell membrane deforms under
high packing pressure. Our findings suggest that such thread
bundle packings may be obtained only in systems where frictional
forces are rather small. Other biological systems in which filament
bundling provides a mechanism of mechanical stabilization in
membrane confinement include filopodial protrusion45,46.

Remarkably, the gain in mechanical stability in flexible cavities
goes hand in hand with the loss of chirality. A convenient order
parameter describing the transition from the spiral to the folded
phase is the chirality measure 1� S, where S is the degree of

similarity of the filament with its own mirror image as defined in
ref. 47, maximized over all possible mirror planes. In Fig. 4b, a
pronounced discontinuity in 1� S is in evidence, suggesting that
the phase transition is of first order. Chirality of confined rods is
known to play a key role in the morphogenesis of Escherichia coli
cells for instance, where the bacterial rod grows into a helical
spiral, guided by proteins48. Our results provide evidence that,
conversely, filament chirality can emerge as a purely mechanical
consequence of a non-flexible confinement.

If growing filaments are inclined to form highly ordered
bundles inside deformable membrane cavities (without friction),
the question naturally arises whether purely mechanical material
properties can also give rise to disordered packing morphogenesis
with strongly warped or tangled filaments. Developing vertebrate
intestines, where the gut tube grows into the body cavity at a
different rate than the adhering mesenteric sheet, are in fact one
example49. Here we are able to put this particular result in a
broader, more general framework by controlling friction. As m is
increased, the thin flexible sheet grabs hold of the pushing
filament by tightly wrapping around it. Just like in the classical
phase, friction (or adhesion) enforces locality: the filament can no
longer just freely fold up inside, and further growth causes it to
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locally twist in frustration, leading to a warped morphology
(depicted in Fig. 2, bottom right; Supplementary Movie 4). For g,
m-N, this behaviour is reminiscent of the Euler–Plateau
problem50, but significantly more complex due to the crucial
role of twist and volumetric exclusion. The transition from the
folded to the warped phase is accompanied by the breaking of
torsional symmetry. As order parameter, the non-dimensional
torsional energy /Y3

2SL2¼ 2LUt/GfJf (see Supplementary Note
1) may be used, since it vanishes in the folded phase for s-N

and takes a significant, finite value in the warped phase. As can be
recognized from Fig. 4c, the exact value of the corresponding
critical friction coefficient, while depending on the system size s,
is generally very low, implying that the warped phase is relevant
even in systems with moderate friction. Within the warped phase,
the stored torsional energy quickly levels off. Our measurements
thus provide a tight lower bound for the amount of twist in
various vetrebrate guts49.

The direct transition from the classical to the warped
morphology is less obvious. A large portion of the phase space
is occupied by ‘mixed’ states in which the confinement is not stiff
enough to keep the filament from buckling into the sphere, but at
the same time not flexible enough to wrap around it and force it
to twist. Such configurations are prevalent, for example, in brain
aneurysms occluded by detachable coils (see, for example, ref. 51).
It is nonetheless possible to define a sharp phase boundary (PB)
by considering as an order parameter the area fraction of the
sheet that is in contact with itself, Oc/O, because it is non-zero
only in the warped phase (Fig. 4d).

Morphological phase diagram. For the design and optimization
of new materials and structures, for example, in nanorobotics or
endovascular coiling, reliably predicting the packing behaviour is
essential. We used our computer simulations to acquire a quan-
titative image of the morphological phase space, allowing us to
accurately predict morphogenesis depending on the geometry
and material parameters. In the low-friction regime (upper half of
Fig. 5), the spiral and folded phases are separated by a smooth PB
that is well approximated by quadratic curves in log(e)–log(g)
space. Evidently, if the confining sheet is thin enough, filaments
do not need to be substantially more rigid to fold instead of
coiling. Bigger systems (larger s) favour the spiral morphology as
the PB is shifted towards weak confinements (large g, e). Very
close to the PB, mixed configurations such as the one shown in
Fig. 5f occur when the filament folds at only one of the two
contact points, which is a dynamic effect.

A cut through the phase space at fixed s and g unveils its full
complexity (lower half of Fig. 5). All phase boundaries are
s-dependent, and the spiral and classical morphologies prevail
towards large s as predicted by the stability condition. Perhaps
most intriguingly, we find straight single-parameter lines along
which all morphologies are traversed, including the mixed region
(uncoloured area). An example is the line along the e-axis, at
s¼ 40, g¼ 104, m¼ 0.5. This shows how delicate the choice of
parameters is for targeting a specific morphology—possibly too
delicate for nature to rely on this selection in some parameter
regions. Another striking feature is reentrancy of the warped
phase in small systems with strong friction (Fig. 5 at s¼ 20,
g¼ 104, eE102–103, mE1.2), where the folded phase extends far
into the large-m region. Anyway, in its low-m end near the
boundary to the folded phase, the warped morphology is just a
temporary interstate. The filament first warps (including the
characteristic twist and sheet–sheet contact), but on further
growth, some sliding allows it to rearrange and fold nevertheless,
defining a region in phase space where the warped and folded
phases coexist.

Discussion
Natural shell tissue is often softer than other thin bodies it gets in
contact with. We have emphasized the importance of taking this
flexibility into account in the study of morphogenesis in spatially
confined systems. Depending on the involved size ratios and
friction, the confinement need not be substantially less rigid to
allow for a very rich nonlinear mutual interaction, giving way to
completely changed morphogenesis. We have identified four
morphological phases in the linear growth of confined thin
filaments, building a bridge between the packing of confined
DNA, the growth of guts, the bundling of actin networks in cell-
sized liposomes and even LCs. Our results from computer
simulations are fully consistent with the experiments we
conducted on off-the-shelf materials at the human length scale
(Fig. 5a–d).

The presented morphological phase diagram is independent of
how growth is realized in detail. In the simulations, we grew the
filament uniformly everywhere, whereas the tangential injection
of an invariant wire in the experiments corresponds to
concentrated growth at the point of insertion. These two extremes
are exactly equivalent in the low-friction phases owing to global
rearrangements, and they similarly produce the high-friction
morphologies with the exception that reorganization is somewhat
condensed to a neighbourhood about the growth/injection zone.
Even the converse problem, an invariant filament getting
gradually compressed by a shrinking shell, yields the same
morphologies as simulations revealed (Supplementary Movie 5).
The only difference is that s (and possibly g) decrease over time
and the phase diagram must be interpreted accordingly. All
presented analytical and scaling arguments hold also for this
case without modification (where Rf is no longer constant, and
l :¼ L/2pRf).

Our findings establish a paradigm for understanding morpho-
genesis of thin filaments in a multitude of biological mechanisms.
Most importantly, we showed how nature may employ flexible
envelopment and low-frictional forces as a mechanical trick to
realize spontaneous bundling and alignment of confined threads,
as it is observed in giant vesicles21,22, erythrocytes19,20, hagfish
cells44 and so on, without the need for filament interlinking. On
the technological side, the morphologies we discovered in flexible
confinement should find direct impact in nanorobotics and
nanomotors, for which the reported folding of elastic rings
provides a new method to stably store and deploy mechanical
work in tightly confined spaces. Unlike open nanowires, which
coil into quasi-two-dimensional spirals23, ring-like filaments fold
in three dimensions and possess no sharp ends that could pierce
their environment. Such systems need to be designed with as little
friction as possible to avoid the energetically and spatially less
optimal warped phase.

Methods
Computer simulations. We minimized the total elastic energy numerically with
the finite element method. The filament was modelled by locking-free beam
elements with an exact shear representation52 embedded into a co-rotational
formulation53 for geometric nonlinearity, while the shell was represented by Loop
subdivision surface elements54 that provide the C1-continuity required for
boundedness of the curvature integral in Supplementary Equation (2). These
descriptions have been published in full detail elsewhere14,55. Up to 4,000 elements
were used to discretize the filament, whereas the shell consisted of 20,480 triangles.
We let the filament grow uniformly in length according to l :¼ L(t)/L(0)¼ exp(lt).
The growth rate l was set sufficiently small for inertial effects to have a negligible
effect on the outcome. Volumetric exclusion was imposed by repulsive normal
forces upon overlap according to the Kelvin–Voigt model where the elastic part
was determined using Hertzian contact theory. A dry slip–stick friction model56

was applied for the tangential Coulomb forces. Inertial terms with mass densities rf
and rs to account for dynamics as well as small subcritical viscous damping for
equilibration were added. Newton’s equations of motion were integrated in time
with the predictor–corrector constant–average acceleration method and adaptive
time-stepping. A tiny random perturbative deflection was imposed on the ring
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filament to allow it to break the system’s initial symmetry by Euler buckling and to
allow for independent repetitions of the simulations. Our aim was to simulate
realistic yet generic materials, and thus we chose 2r¼ 1mm, Ef¼ 1GPa,
rf¼ rs¼ 1 g cm� 3, nf¼ ns¼ 1/3, but note that our results are reported in
dimensionless units and are hence valid on any scale.

Experiments. In the experiments shown in Fig. 5, we tangentially attached straight
steel pipes to rigid polystyrene spheres and manually fed polyurethane wires from
both sides at equal speed through the pipes into the spheres. Starting from an
initially preset loop, the wire then developed into the spiral or classical morphology
depending on friction, which we controlled with a silicone lubricant. For the
morphologies in weak confinement, we used stiffer polycaprolactam wires and
customary stretchable balloons made of natural rubber into which the wires were
tangentially pushed by hand.

References
1. Smith, D. E. et al. The bacteriophage f29 portal motor can package DNA

against a large internal force. Nature 413, 748–752 (2001).
2. Kindt, J., Tzlil, S., Ben-Shaul, A. & Gelbart, W. M. DNA packaging and ejection

forces in bacteriophage. Proc. Natl Acad. Sci. USA 98, 13671–13674 (2001).
3. Odijk, T. Statics and dynamics of condensed DNA within phages and globules.

Phil. Trans. R. Soc. A 362, 1497–1517 (2004).
4. Mouthuy, P.-O., Coulombier, M., Pardoen, T., Raskin, J.-P. & Jonas, A. M.

Overcurvature describes the buckling and folding of rings from curved origami
to foldable tents. Nat. Commun. 3, 1290 (2012).

5. Lobkovsky, A., Gentges, S., Li, H., Morse, D. & Witten, T. A. Scaling properties
of stretching ridges in a crumpled elastic sheet. Science 270, 1482–1485 (1995).

6. Ben Amar, M. & Pomeau, Y. Crumpled paper. Proc. R. Soc. A 453, 729–755
(1997).

7. Blair, D. L. & Kudrolli, A. Geometry of crumpled paper. Phys. Rev. Lett. 94,
166107 (2005).

8. Vliegenthart, G. A. & Gompper, G. Forced crumpling of self-avoiding elastic
sheets. Nat. Mater. 5, 216–221 (2006).

9. Tallinen, T., Åström, J. A. & Timonen, J. Deterministic folding in stiff elastic
membranes. Phys. Rev. Lett. 101, 106101 (2008).

10. Tallinen, T., Åström, J. A. & Timonen, J. The effect of plasticity in crumpling of
thin sheets. Nat. Mater. 8, 25–29 (2009).
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