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Action-value comparisons in the dorsolateral
prefrontal cortex control choice between
goal-directed actions
Richard W. Morris1,*, Amir Dezfouli1,*, Kristi R. Griffiths1 & Bernard W. Balleine1

It is generally assumed that choice between different actions reflects the difference between

their action values yet little direct evidence confirming this assumption has been reported.

Here we assess whether the brain calculates the absolute difference between action values or

their relative advantage, that is, the probability that one action is better than the other

alternatives. We use a two-armed bandit task during functional magnetic resonance imaging

and modelled responses to determine both the size of the difference between action values

(D) and the probability that one action value is better (P). The results show haemodynamic

signals corresponding to P in right dorsolateral prefrontal cortex (dlPFC) together with

evidence that these signals modulate motor cortex activity in an action-specific manner. We

find no significant activity related to D. These findings demonstrate that a distinct neuronal

population mediates action-value comparisons, and reveals how these comparisons are

implemented to mediate value-based decision-making.
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F
or behaviour to remain adaptive a decision-maker must be
able to rapidly establish the best action from multiple
possible actions. Such ‘multi-armed bandit’ problems are,

however, notoriously resistant to analysis and typically hard to
solve when employing realistic reward distributions1–3.
Understanding the variables we compare to make choices and
how we select the best option has, therefore, become an important
goal for research into adaptive systems in economics, psychology
and neuroscience4–8. It is important to note that choosing
between different actions often occurs in the absence of cues
predicting the probability of success or reward and under such
conditions decisions are made on the basis of action values,
calculated from the expected probability that a candidate action
will lead to reward multiplied by the reward value9–11. Choosing
between actions requires, therefore, the ability to compare action
values, a comparison that should occur, logically, as a precursor
to choice, serving as an input into the decision-making process.
Nevertheless, despite the importance of this process, it is not
known how such comparisons are made, and where in the brain
these comparisons are implemented to guide action selection12.

Conventionally, action values have been compared based on a
difference score between the two values (for example, QLeft�
QRight in reinforcement-learning models10,11)13,14. Although
computationally straightforward, this approach can be sub-
optimal because it requires the accurate estimation of the value
of all available actions before the comparison can be made15.
Ultimately, what matters to the agent is not necessarily the
absolute difference in action values but which action has the
greater value. As such, to make a decision, it is often sufficient to
calculate the likelihood of an action being better than alternatives,
rather than calculating by how much. As an alternative to the
difference score, therefore, actions could be compared based on
their relative advantage; that is, the probability that one action’s
value is greater than the alternate action16, that is,
P(QLeft4QRight). The relative advantage (P) is less informative
than the difference because it provides no information regarding
the amount by which QLeft is greater than QRight; however, P is
also more efficient because it is only necessary to calculate the
relative advantage of taking an action without having to
determine the value of the inferior action, and this is sufficient
to optimally guide choice3,17.

Studies to date have reported neural signals related to action
value (that is, QRight, QLeft) in the caudate and efferent motor
regions of the cortex14,18–21. However, few studies have reported
neural signals related to the comparison of these values. Single-
unit studies in monkeys have gone to some length to isolate
action values from stimulus values using free-response tasks
involving distinct motor actions instead of visual stimuli to
discriminate options18,20. Using this approach, values related to
the reward contingency of the separate actions have been
distinguished in different striatal projection neurons. However,
relatively few caudate neurons appear to represent the difference
between action values20. Human neuroimaging studies have
distinguished action values in motor regions of the cortex, such as
the premotor cortex and supplementary eye field13,14,21; however,
only two studies have reported signals representing the difference
between options and these studies involved choices between
discriminative cues13,14. Consequently, it is unknown the extent
to which these neural signals reflect differences in action values or
learned stimulus values.

Accordingly, we assessed the comparison of action values in an
unsignalled choice situation, using a free-response test, to
eliminate any potential influence of stimulus values on the
comparison process. In each block, we programmed one response
with a slightly higher reward contingency to produce realistic
differences in action values, and participants had to learn which

of the two actions was superior via feedback (note that because we
manipulate reward contingency and not reward magnitude,
contingency and value are effectively equivalent in our study). We
distinguished two alternate computational signals comparing
action values at each response: P representing the probability the
left action was more likely to lead to reward than the right action
(QLeft4QRight); and D representing the difference between each
action’s value (QLeft�QRight). It is important to recognize that,
although both models can potentially discriminate the best
choice, we were concerned here to establish (i) whether P adds
any advantage in predicting choice over D; (ii) which model best
predicts both choice performance and the changes in BOLD
signal associated with those choices and (iii) whether any such
region modulates choice-related activity in the motor cortex,
representing the output of the decision process. The results show
that actions are chosen on the basis of P values, that right
dorsolateral prefrontal cortex (dlPFC) activity tracks these values
and also modulates motor cortex activity in an action-specific
manner. The relative advantage of an action appears, therefore, to
be an important input into the decision-making process enabling
action-selection.

Results
Behavioural choices and causal ratings track the best action.
Participants freely chose between two actions (left or right button
presses) for a snack food reward (M&M chocolates or BBQ-
flavoured crackers) in 40-s interval blocks (Fig. 1a). One action–
outcome contingency (action value) was always higher than the
other action; however, the identity of the high-value action varied
across blocks so participants had to learn anew which action led
to more rewards. The difference between action values also varied
from large to small across blocks so the task difficulty ranged
from easy (large) to difficult (small) conditions. We measured
response rates on each action, as well as subjective causal ratings
(0–10) for each action after each block. Across conditions, each
participant selected the higher-value action more often than the
low-value action (Fig. 1b; main effect of action contingency
F¼ 34.62, Po0.001). Causal judgments also closely reflected the
differences in action value of each block (Fig. 1c; main effect of
action contingency F¼ 42.26, Po0.001.

The relative advantage and the Q difference guides choice. We
fit a Bayesian learning model, based on the relative advantage, to
each subjects’ choice responses, which allowed us to generate P,
that is, which action was more likely to result in reward. We also
fit a Q-learning model to each individual subject using the
maximum likelihood estimation method to generate D, that is,
the difference between action–outcome contingencies (QLeft and
QRight). In addition, we generated a hybrid model in which
choices are guided by both Q-learning and the relative advantage
model (see Supplementary Fig. 1 for the negative log likelihoods).
The results of a likelihood ratio test indicated that the hybrid
model provided a better fit to participant choices than Q-learning,
after taking into account the difference in number of parameters
(Table 1). This shows the relative advantage model accounted for
unique variance in the subject choices over Q-learning alone.
Individual model fit statistics and parameters are provided in
Supplementary Table 1.

Inspection of the time course of P and D values across the
session revealed they both discriminated the best action (Fig. 2a).
However, the D signal quickly decayed towards the programmed
difference in contingency in each block, which was usually small
(that is, o0.2), whereas the relative advantage of the best action
(P) was sustained across the block. To determine whether P was
more predictive of choice when the difference in action values
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was small (that is, at intermediate values of D near or equal to
zero), we compared the predictive value of P and D over choice at
different levels of P and D in a logistic regression. Figure 2b shows
we were able successfully to identify conditions under which P
and D are differentiated: at small differences in action values (the
middle tertile of D values), P was a significant predictor, whereas
D was not. Conversely, Fig. 2c shows that P and D were
significant predictors across all tertiles of P values (pso0.001).
This result confirms that when choices were made in the presence
of small differences in action value, P values better discriminated
the best action.

Dorsolateral prefrontal cortex tracks the relative advantage. To
identify the neural regions involved in the computation of the
relative advantage values that guided choice, we defined a stick
function for each response and parametrically modulated this by

P in a response-by-response fashion for each participant. As we
used a free-response task and the interval between choices was
not systematically jittered, we cannot determine whether the
model variables had separate effects at the time of each choice (or
between choice and feedback). We can only determine whether
neural activity was related to the time course of the model vari-
ables across the 40-s block as subjects tried to learn the best action
(for example, Fig. 2a). An SPM one-sample t-test with the
parametric regressor representing P revealed neural activity
positively related to P in a single large cluster in the right middle
frontal gyrus, with the majority of voxels overlapping BA9
(dlPFC22,23; peak voxel: 44, 25, 37; t¼ 5.98, family-wise cluster
(FWEc) P¼ 0.012). Figure 2a shows the cortical regions where
the BOLD response covaried with the P values of each response,
implicating these regions in encoding the relative likelihood that
the left action is best (QLeft4QRight).

M&Ms = 0
Shapes = 0

0

1

2

3

40 s (free responses) 12 s

R
at

in
g

Response rate Causal rating
10.0

7.5

5.0

2.5

0.0

R
es

po
ns

es
 s

–1

0.25 0.080.1250.25 0.080.125

M&Ms = 1
Shapes = 0

0 10 2 3 4 5 6 7 8 9 10
Very

unlikely
Very
likely

How likely was it pressing the right
button earnt you an M&M?

Figure 1 | Experimental stimuli, behavioural choices and causal ratings. (a) Before the choice, no stimuli indicated which button was more likely to

lead to reward. When the participant made a choice, the button chosen was highlighted (green) and on rewarded trials the reward stimulus was presented

for 1,000ms duration. After each block of trials, the participant rated how causal each button was. (b) Mean response rate (responses per second)

was higher for the high-contingency action (blue) over low-contingency action (red) in each condition. (c) Causal ratings were higher for the high-

contingency action (blue) over low-contingency action (red) in each condition. Response rate and causal rating significantly varied with contingency,

Po0.001. Vertical bars represent s.e.m.

Table 1 | Model comparisons between the hybrid model and its special cases.

Hybrid Q-learning Relative advantage

Negative log likelihood 5421 5506 5558
Aggregate LRT favouring hybrid — X240¼ 170*** X220¼ 274***
No. of favouring hybrids — 13 8
Pseudo R2 0.608 0.602 0.597

Shown for each model: negative log likelihood; test statistic and P-value for a likelihood ratio test against the hybrid (full) model, aggregated across subjects; the number of subjects favoring the hybrid
model on a likelihood ratio test (Po0.05); and the degree to which the model explained the choice data averaged over the individual fits (pseudo R2). ***Po1E-16.
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Figure 3a inset shows that the per cent signal change at the
peak voxel in the right dlPFC cluster was linearly related to the
magnitude and direction of P, after splitting the P values into
three separate and equal-sized bins (high, medium and low
tertiles) and calculating the mean local per cent signal change in
each bin using rfxplot24. Figure 3b shows the right dlPFC
distinguished when the relative advantage of the left action was
greater than the right (P40.5) and when the right action was
greater than the left (Po0.5), alongside the BOLD response when
the left and right button press occurred. Comparison of the fitted
response with the high and low P values relative to button presses
clearly showed that the right dlPFC activity did not simply reflect
the motor response (button press), because the direction of the
BOLD signal discriminated between high and low P values, but
not action choices.

Differentiating action contingencies and action policies. We
tested for regions representing the difference between action
values (D) in a similar but separate GLM. As P and D were highly
correlated for some subjects (for example, Pearson r¼ 0.86 for
Subject 01; see Supplementary Table 2 for a complete list), a
separate GLM was used to avoid the orthogonal transformation of
parametric modulators in SPM and preserve the integrity of the
signal. In the same manner as described above for P values, we
defined a stick function for each response and parametrically
modulated this by D in a response-by-response fashion for each
participant. An SPM one-sample t-test of this modulator revealed
that no clusters met our conservative correction for multiple
comparisons (FWEco0.05). The peak voxel occurred in a mar-
ginally non-significant cluster in the right inferior parietal lobe

(BA40: 38, -38, 34; t¼ 5.58, FWEc¼ 0.066). The effect of the D
signal in the right dlPFC at the same coordinates identified for P
(44, 25, 37) was t¼ 2.99, FWEc¼ 0.236. The failure to find an
action-specific delta signal in the brain is consistent with at least
one other study that also reported no spatially coherent effect of
delta signal13.

The Q-learning model also contains a policy function that
maps value differences (D) to choice, p. Policy (p) represents the
probability of taking each action on the basis of the size of the
difference between actions, and so it may characterize an
alternative to the relative advantage signal. For this reason we
also tested for brain activity correlating with p in a separate GLM.
An SPM one-sample t-test of this modulator revealed that no
clusters exceeded our cluster-level correction (FWEc¼ 0.37). The
absence of a D or policy signal in prefrontal regions does not
support the results of our behavioural modelling, which suggested
that under large contingency differences (that is, large D values)
subject’s choices were predicted by D. Our behavioural modelling
also showed that large D values were rare in our task, so there
may not have been sufficient power to detect fMRI-related
changes in the current test.

To formally determine which of the variables (P, D or p)
provided the best account of neural activity in the right dlPFC,
we performed a Bayesian model selection analysis25,26.
Specifically we used the first-level Bayesian estimation
procedure in SPM8 to compute the log evidence for both
signals in every subject in a 5-mm sphere centred on the right
dlPFC (44, 25, 37). Subsequently, to model inference at the
group level, we applied a random effects approach to construct
the exceedance posterior probability (that is, how likely a
specific model generated the data of a random subject) for each
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Figure 2 | Model values P and D predict choices. (a) Trial-by-trial example of the actual choices made by Subject 7 (black vertical bars: left actions
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are both significant predictors of choice across all tertiles of P.
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signal in the right dlPFC. The results found the P signal
provided a better account of neural activity in the right dlPFC
than the D or p signal (exceedance posterior probabilities 0.84,
0.12, 0.04, respectively). Thus, the weight of evidence suggests
that right dlPFC activity represents the likelihood of the best
action, rather than the difference in action–outcome
contingencies or a policy based on that difference.

Chosen action values and the ventromedial prefrontal cortex.
We also tested whether the contingency of the chosen action
could be distinguished in separate brain regions (QChosen). This
test represents an important (positive) control since chosen action
values, or expected reward values, have been widely reported in
the ventromedial prefrontal cortex. However, chosen values are
not the focus of the present study as they can only be established
post-decision and so cannot serve as an input into the decision
process. The peak voxel corresponding to the chosen value in the

whole-brain occurred in a single cluster in the medial frontal
gyrus in the orbitofrontal cortex (OFC: � 11, 47, � 11; t¼ 23.73,
FWEc Po0.0001). Figure 4a shows the extent of the cluster
extending rostrally to the ventromedial prefrontal cortex. No
other regions were significant (FWEc P40.05). To further
explore the effect of post-decision values, we tested the con-
tingency of the unchosen action. Figure 4b shows a cluster slightly
dorsal to the effect of chosen action in the anterior cingulate (AC:
3, 50, � 2; t¼ 5.76, FWEc P¼ 0.001). The fact that chosen action
values occurred in a cortical area regionally distinct from the
action-value comparisons we found in the right dlPFC indicates
we were able to successfully distinguish pre-choice and
post-choice values. The finding of chosen action values in the
ventromedial prefrontal cortex replicates a number of other
findings12,14,19,27–33, and is consistent with the suggestion that
the output of the decision process is passed to ventral cortical
regions for the purpose of updating action values, perhaps via
reinforcement learning.
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Action control of motor cortex is modulated by right dlPFC.
To compare the role of the regions indicated by the GLM analyses
of action-value comparisons (right dlPFC) and chosen values
(OFC) on the control of actions in the motor cortex, we com-
pared competing dynamic causal models using DCM10 (ref. 34)
and tested inferences on model space using Bayesian model
selection. The goal was to determine whether motor cortex
activity, representing the output of the decision process, was
better explained by action-specific modulation from the right
dlPFC or the OFC. We extracted activation time courses from
each individual’s peak voxel in the right dlPFC, OFC and motor
cortex, and constructed eight different models of potential
connectivity between each area (Supplementary Fig. 2), as well
as a null model with no modulation (model 0). Each model varied
the location of action-specific modulation of motor cortex
activity, as well as the driving inputs to the dlPFC and OFC. The
results of the Bayesian model selection (Fig. 5) established that
the winning model was model 1 (Fig. 5a inset), with an excee-
dance probability of 99.02 per cent (Fig. 5a). Only this model
specified action-specific modulation of the motor cortex from the
right dlPFC in combination with P values as the driving input.
The expected probability, that is, how likely a specific model
generated the data of a random subject, for each model is
shown in Fig. 5b. The expected probability for the winning model
(model 1) was 54.15 per cent, meaning that evidence for model 1
is likely to be obtained in the majority of any randomly selected
subjects, and indicates the generalizability of these findings.
Overall, the results of the DCM analysis provided clear evidence
that the action executed by the motor cortex is guided by the
action-value comparisons computed by the right dlPFC likely via
the caudate. Indeed, ROI analysis of caudate activity in the cur-
rent study confirmed that, as described previously, the anterior
caudate covaried with the experienced correlation between
response rate and reward32 (peak voxel in ROI: 16,18,4; t¼ 6.74,
P¼ 0.002 svc—see Supplementary Fig. 3).

Discussion
A critical question in decision neuroscience is how and where in
the brain actions are compared to guide choice12. The present
results provide evidence that actions are compared on the basis of
their relative advantage (P) in a two-armed bandit task, that is,
the probability that an action is more likely to lead to reward than
another action, and this comparison is utilized by the right dlPFC

to control choice behaviour. Activity in the right dlPFC tracked
the relative advantage (P) over other comparison signals (for
example, the relative strength of the best action, D), which also
could be used to predict choice. Furthermore, activity in this
region was not differentially modulated by post-choice values,
such as the chosen action contingency, or the actions taken (for
example, a right or left button press). Effective connectivity
analysis showed the right dlPFC-modulated activity in the motor
cortex, the major output pathway for choice behaviour, in an
action-specific manner. As a consequence, this directional signal
may represent an important input into the decision-making
process, enabling the subject to choose the course of action more
likely to lead to reward.

The dlPFC is also connected with the orbitofrontal cortex,
which represents important value signals such as the expected
reward value29. In particular, we found that activity in the OFC
tracked the chosen action contingency, which is equivalent to the
expected reward value in this task. A number of studies have
found expected reward signals in this region14,27–33, as well as the
medial prefrontal cortex32,35 and amygdala36. Some studies have
also found that the reward signal in the OFC precedes the dlPFC
response37, which implies that reward value information is
relayed from the OFC to the dlPFC. Our DCM analysis did not
indicate this direction of effect (albeit, the parameters of our task
did not provide sufficient temporal resolution to distinguish the
order of effect). However, expected reward values are necessary to
compute a prediction error in model-free reinforcement learning
to update action values before the next trial10. As such, they are
quite distinct from action values and cannot serve as inputs to the
comparison process because they reflect the value of actions
already selected in the decision, that is, expected reward values
reflect decision output rather than input, which was the focus of
the present study.

We also tested the relative roles of the right dlPFC and the
OFC in action selection by comparing DCMs with relevant
variations in action-specific modulation between regions. The
most likely models, given our data, indicated the dlPFC
modulated motor cortex activity in an action-specific manner.
We failed to find any substantive evidence for models in which
the right dlPFC modulated OFC activity, or the OFC modulated
motor cortex activity. It is worth noting that effective connectivity
does not reflect or require direct connections between regions, as
the effective connectivity can be mediated polysynaptically38. We
speculate the effect of the right dlPFC on motor cortex is
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mediated via connections with the caudate, given the evidence of
anatomical connections between these regions39,40, and the
caudate’s established role in goal-directed choice41. We did not,
however, observe action-specific value signals in the dorsal
striatum, as has been reported in single-unit studies in
primates18,20,42. Nevertheless, it is likely that connections
between the dlPFC, the OFC and the striatum32,35 participate
in a circuit to compare action values, select actions and update
action values once a choice has been made.

Single-unit studies in primates have found that a number of
neurons in the dlPFC are predictive of an animal’s decision in
choices between discriminative cues37,43,44, and stimulation of
dlPFC neurons can bias a decision45,46. A prevalent idea about
the functional specialization of the prefrontal cortex is that the
OFC processes information about reward value31,47,48, whereas
the dlPFC functions in the selection of goals and actions44,49,50.
The dlPFC is heavily interconnected with areas responsible for
motor control51–53 and so may represent an area where
information about reward value and action converges to allow
action comparisons to take place; however, there are other regions
that could integrate reward information and motor action, such
as anterior cingulate54 and the parietal cortex5. Overall, our
results extend the established role of the dlPFC in the selection of
goals and actions to include the computational comparison of
action values. Furthermore, the dlPFC determines that this
comparison occurs in terms of relative likelihood of the best
action rather than the relative strength of the best action.

Evidence that action-value comparisons occur in the human
brain has been scarce12. Wunderlich et al.21 identified action-
specific values in the supplementary motor cortex and premotor
area using very distinct motor actions in order to discriminate
between choices (for example, hand versus eye movements).
Wunderlich et al.21 also found that post-choice values (unchosen
over chosen values) were compared in the anterior cingulate
cortex, where we found unchosen action values were tracked.
Although such results clearly distinguish separate action-specific
value signals in different regions of the motor cortex, the
regressors tested involved post-choice values and so were not
precursors to choice. Evidence of a neural signal representing the
difference between Q values and that could act as an input into a
decision comparator has been provided by another study using
magnetoencephalography14. This study reported that the
direction of comparison was contralateral to the hemisphere of
the delta signal (that is, QContralateral�QIpsilateral); however,
whether this comparison reflected action values or stimulus
values is uncertain due to the discriminative cues provided by the
task. Even so, it is worth noting that the comparison we found
(that is, QLeft4QRight) in the right prefrontal cortex is consistent
with evidence that decision values occur in the contralateral
hemisphere14,19. We did not find the inverse direction in the left
hemisphere (that is, QRight4QLeft), presumably because our
participants only used their right hand to respond; however, there
are many differences in the task and temporal dynamics of the
image data that may account for this. Ultimately, a single
bidirectional signal is sufficient to guide choice, so the unilateral
effect we found may reflect an innate bias in right-handed actions
or right-handed subjects seeking neural efficiency.

Our modelling of choice performance implied people used
more than one strategy for selecting between actions—both P and
D were predictive of choice; however, when the difference
between action values (D) was small, participants used the relative
advantage (P) to select the best action (Fig. 2b). We cannot
determine from our data alone whether the use of relative
advantage (P) occurs generally or only when D is difficult to
compute or uncertain. Likewise, we cannot determine whether
the right dlPFC computes the best action on the basis of each

response or whether P is computed over a set of responses.
However, as discussed by others (and above)3,55,56, when action
outcomes are uncertain, a good heuristic solution in a multi-
armed bandit problem is to restrict estimation of each action
contingency until the values indicate a likely winner rather than
to continue estimating each action contingency after an
advantage is known. This strategy is represented by the relative
advantage comparison, which has also been shown to scale well
when the number of choices increases above two (for example,
10-arm bandit3). Thus, the fact that the neural signal in the dlPFC
reflected P, even under conditions in which D was predictive
(Fig. 2c), represents a dissociation consistent with a unique role
for this neural region in this task. To our knowledge, this is the
first demonstration of such a computational comparison in
humans or other animals.

Finally, our results have implications for neural models of
decision-making. We used a model-based form of Bayesian
learning that directly estimates the action contingencies (state
transition probabilities) from the conditional probabilities of
reward, rather than a model-free approach that uses prediction
errors to estimate action values. The model-based method was
chosen on the basis of prior evidence that the cortical regions of
interest are sensitive to contingency changes32,35. Although our
modelling was not able to determine conclusively whether or not
people adopted a model-free or model-based strategy, the
subjective causal ratings of each action corresponded closely
with the action contingencies, demonstrating participants were
aware of the contingencies in each block. Under such conditions,
people may be more likely to adopt a model-based strategy, rather
than an implicit model-free strategy. Recent model-based
accounts of decision-making assume uncertainty around each
action/stimulus value determines how quickly the value is
updated (that is, the learning rate)57,58. In such models,
uncertainty is represented separately in the decision process, as
well as the brain58,59. By contrast, the relative advantage signal we
found summarizes the difference between action values as well as
the uncertainty around them in a single value. The implication for
models of decision-making is that action values and uncertainty
are not always represented separately at the decision-point, but
instead are combined to indicate the best action.

In conclusion, the present report provides direct evidence of an
action-specific comparison signal in the human cortex. It is
striking that existing studies of action-specific values using
human fMRI have not previously succeeded in revealing a
comparison signal in the cortex that is regionally homogenous. As
such, these results may also suggest that the comparison process
revealed here is a unique feature of goal-directed decision-making
and may not reflect a more general action-value comparison
strategy based, for example, on predictive stimuli.

Methods
Subjects. Twenty-three right-handed subjects (11 females), age range 17–32 years,
were recruited for the study. Three participants were removed due to excessive
head movement (4 2mm). Thus, n¼ 20, and all participants were unmedicated,
free of neurological or psychiatric disease and consented to participate. The study
was approved by the Human Research Ethics Committee at Sydney University
(HREC no. 12812). After scanning, all participants were reimbursed $45 in
shopping vouchers, in addition to the snack foods that they earned during the test
session.

Stimuli and task. The instrumental learning task (Fig. 1a) involved choosing
between two action, left and right button presses, for a snack food reward (M&M
or BBQ shape) and was conducted in a single replication. Participants were
instructed to press the left or right button with their right hand, and try to earn as
many snacks as they can. Actions were taken by pressing separate buttons on a
Lumina MRI-compatible two-button response pad. The session was arranged in 12
blocks of 40-s duration, and in each block the participant responded freely for
reward32,35. Reward was indicated by the presentation of a visual stimulus
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depicting the outcome (for example, M&M) for 1,000ms and the visual tally of the
total number of rewards was increased. No feedback was provided in the absence of
a win. At the end of each block, participants were given 12 s to rate how causal each
action was with respect to the outcome on a visual analogue scale from 1 to 10.

Blocks differed according to their outcome contingencies on the left and right
actions but only one outcome was available in each block. Thus, there were six
pairs of action contingencies [0.25, 0.05], [0.05, 0.25], [0.05, 0.125], [0.125, 0.05],
[0.08, 0.05] and [0.05, 0.08], and each was repeated twice, once for each outcome
(M&M and BBQ shapes). Importantly, no cue indicated which action was the high
contingency action at the time of the decision. As the contingencies changed
between blocks and the beginning of each block was cued, participants had to learn
anew within each block which action led to more rewards. At the end of the
session, participants received the total number of snack foods they had earned.

Bayesian learning model. To estimate the action contingencies on the basis of
experience for each participant, we used a Bayesian learning method. This method
treats the contingency as a random variable, and calculates its probability
distribution.

We assumed the probability of receiving reward by executing each action is a
binomial distribution with parameters pLeft and pRight for left and right actions,
respectively. These probabilities were then represented with Beta distributions:

pLeft � Beta a1; b1ð Þ
pRight � Beta a2; b2ð Þ

We assumed uninformative priors over the parameters that roll off at boundaries,
(a1, a2, b1, b2¼ 1.1). After executing each action i (i¼ Left, Right) and receiving
the outcome, the underlying distributions update according to Bayes rule:

pi  
Beta ai þ 1; bið Þ; r ¼ 1
Beta ai; biþ 1ð Þ; r ¼ 0

� �

Where r¼ 1 is reward, and r¼ 0 is non-reward. Finally, we define delta as
D¼ pLeft� pRight. By denoting:

D0 ¼ D
2
þ 0:5

We will have:

D0 � Beta aD0 ; bD0ð Þ
Where

aD0 ¼ m2
1�m
s2
� 1

m

� �

bD0 ¼ aD0
1
m
� 1

� �

Where m and s2 are mean and variance of D0 , respectively, and can be calculated in
a straightforward manner. Based on this, the relative advantage is equivalent to:

P D40ð Þ ¼ P D040:5ð Þ
Hereafter, we will represent the relative advantage P(D40) as P.

In this manner, we modelled the action-specific comparisons that allow the
decision-maker to make choices without perfect knowledge of the contingencies.
In fact, the relative advantage will change as the certainty around each contingency
estimate changes, as well as the distance between the most likely estimates of each
contingency changes. The relative advantage also reflects the assumption that once
an action is estimated to be more likely to lead to reward than the other action with
absolute certainty, that is, P¼ 1, the advantage does not further increase with
increases in contingency.

Q-learning model. As an alternative to the Bayesian learning model, we used a
Q-learning method, which estimates a value for each action. After executing each
action i (i¼ left, right) and receiving outcome, the value of each action updates
according to the temporal-difference rule:

Qi  Qi þ a r�Qið Þ
where a is the learning rate. If the action is rewarded r¼ 1, otherwise r¼ 0.
We defined the difference between action values as follows:

D ¼ QLeft �QRight

The values for QLeft and QRight were initially set to zero.

Action selection. To model individual choices according to experience, we
assumed that the probability of taking each action is proportional to its values, and
its relative advantage over the other action. Using the softmax rule, the probability
of taking the left action, p(left) will be:

p Leftð Þ ¼ etpPþ tqQLeft þ k Leftð Þ

etpPþ tqQLeft þ k Leftð Þþ etp 1� pð Þþ tqQRight þ k Rightð Þ ð1Þ

where tp and tq are the ‘inverse temperature’ parameters, and controls exploration–
exploration balance. tp and tq control the contribution of the P and Q values to the

choice probabilities, respectively. k(A) is the action preservation parameter and
captures the general tendency of taking the same action as the previous trial60,61.
k(A) is equal to k when the chosen action in the previous trial is the same as A, and
otherwise it is equal to zero.

We generated the model described in equation (1) as well as two nested models
by setting tp¼ 0 and tq¼ 0, and fitting them to the subject’s behaviour individually,
using the maximum-likelihood estimate. For optimization we used the Ipopt
software package62. We compared models using the likelihood ratio test and
measured the overall goodness of fit by computing pseudo R2 using the best fit
model for each subject. Pseudo R2 was defined as (R–L)/R for each subject, where L
and R are the negative log likelihoods of the hybrid model (1) and a null model of
random choices, respectively28.

For the purpose of generating model-predicted time series for fMRI regression
analysis, D and p values for each individual were generated using the restricted
model tp¼ 0 with parameters (tq, a and k) set to the maximum-likelihood estimate
over the whole group63, similar to other work in this field64. Simulations
determined these Q-learning parameters could be accurately recovered from choice
data (Supplementary Table 3). We also tested D values using the hybrid model but
since it made no difference to the final result, only the test of the nested model
values are provided here. P values were generated using the restricted model tq¼ 0

and are independent of model parameters (note: P values generated from the
hybrid model and nested model did not differ). Each individual’s P and D values
were entered as a parametric modulator of responses in the fMRI analysis below to
identify brain areas where the value comparison computation might be carried out.

fMRI data acquisition. Gradient-echo T2*-weighted echo-planar images (EPI)
were acquired on a Discovery MR750 3.0T (GE Healthcare, UK) with a resolution
of 1.88� 1.88� 2.0mm. Fifty-two slices were acquired (echo time 20ms; repetition
time 3.0 s; 0.2mm gap) in an interleaved acquisition order. The acceleration factor
(ASSET) was 2, which allowed data acquisition from a whole-brain volume with
240mm field of view angled 15� from AC-PC in each subject to reduce signal loss.
In each session 260 images were collected (B13min each).

Image analysis. Preprocessing and statistical analysis were performed using SPM8
(Wellcome Trust Centre for Neuroimaging, London, UK; www.fil.ion.ucl.ac.uk/
spm). The first four images were automatically discarded to allow for T1
equilibrium effects, then images were slice-time-corrected to the middle slice and
realigned with the first volume. The mean whole-brain image was then normalized
to MNI space and the resulting normalization parameters applied to the remaining
images. Images were then smoothed with a Gaussian kernel of 8-mm FWHM.

Based on our behavioural analysis, we estimated several general linear models
(GLM) for each individual. Block duration, rating periods, responses and rewards
were included as separate subject-specific regressors in each GLM. Responses were
parametrically modulated by the relative advantage value P in the first GLM.
Separate GLMs modulated responses by D (the expected value of the difference
between action contingencies), which replicates methods used in other reports13.
We also tested the chosen action contingency as this represents the expected
reward value of the chosen action and serves as a useful comparison to other
reports of expected values in the prefrontal cortex30,65. The chosen action
contingency was calculated as the experienced contingency between the current
action and its accumulated rewards since the beginning of the block. The resulting
stimulus functions were convolved with the canonical hemodynamic response
function. Regression was performed using standard maximum likelihood in SPM.
Low-frequency fluctuations were removed using a high-pass filter (cutoff 128 s) and
remaining temporal autocorrelations were modelled with a two-parameter auto-
regression model.

To enable inference at the group level, we calculated second-level group
contrasts using a one-sample t-test in SPM. Regions exceeding a voxel-wise
threshold Po0.001, along with an FWEc threshold Po0.05 to correct for multiple
comparisons are reported. As P and D are action-specific values, that is, a
comparison of one action over another action, the values must provide a direction
of comparison in order to ultimately guide action selection (for example,
QLeft4QRight or QRightoQLeft). Determining the direction of comparison each
subject employed a priori was not possible, so we assumed a single direction of
comparison for all subjects in a unidirectional t-test (SPM default) and then
determined the direction of comparison by examining the eigenvariate of each
subject at the group peak voxel. The neural responses from only three subjects had
an inverse relationship with P and D relative to the rest of the group and reversing
their direction did not change the imaging results, so we report here the results of
our initial analysis, assuming the same direction for all subjects.

Dynamic causal modelling. To compare the role of the regions associated with
action comparisons and choice on the control of choice behaviour in the motor
cortex, we specified seven competing models of functional architecture using
DCM10 (ref. 34) and tested inferences on model space using Bayesian model
selection. The goal was to determine whether motor cortex activity, representing
the output of the decision process, was better explained by action-specific changes
in effective connectivity from the right dlPFC or the OFC, since both these regions

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5390

8 NATURE COMMUNICATIONS | 5:4390 | DOI: 10.1038/ncomms5390 |www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

www.fil.ion.ucl.ac.uk/spm
www.fil.ion.ucl.ac.uk/spm
http://www.nature.com/naturecommunications


were indicated in the GLM analysis of action comparisons and chosen action
contingencies described above.

The analysis was carried out in several steps66. First, activation time courses
were extracted from each individual’s peak voxel within 5mm of the global peak
voxel coordinates of the group in each of three analyses: action-specific
comparisons using the relative advantage values, peak MNI coordinates [þ 44, 25,
37]; the chosen action contingency, peak MNI coordinates [� 11, 47, � 11] and
button presses (responses), peak MNI coordinates [� 4, 25, 70]. Second, we
specified eight different models of potential connectivity between each area, with
varying locations of action-specific modulation of motor cortex activity
(Supplementary Fig. 2, models 1–8), as well as a null model with no modulation
(model 0). For each model tested, two driving inputs were included: (1) an input
representing the relative advantage values to the right dlPFC and (2) an input
representing the chosen action contingency to the OFC. As we wished to explain
activity in the motor cortex in terms of connectivity, no driving input was included
for the motor cortex. In addition, action-specific changes in coupling strength were
modelled by specifying left and right button presses separately. Note, only models 1
and 2 (Supplementary Fig. 2) included action-specific coupling between the right
dlPFC and motor cortex. We then identified the best model using Bayesian model
selection67. Briefly, this technique treats the models as random variables and
computes a probability distribution for all models under consideration. This
procedure permits the computation of the exceedance probabilities for each model,
which represents the probability that each model is the most likely one to be
correct. The exceedance probabilities add to one over the comparison set, and thus
generally decrease as the number of models considered increases.
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