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Genome-wide analysis captures the determinants
of the antibiotic cross-resistance interaction
network
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Understanding how evolution of antimicrobial resistance increases resistance to other drugs

is a challenge of profound importance. By combining experimental evolution and genome

sequencing of 63 laboratory-evolved lines, we charted a map of cross-resistance interactions

between antibiotics in Escherichia coli, and explored the driving evolutionary principles. Here,

we show that (1) convergent molecular evolution is prevalent across antibiotic treatments,

(2) resistance conferring mutations simultaneously enhance sensitivity to many other drugs

and (3) 27% of the accumulated mutations generate proteins with compromised activities,

suggesting that antibiotic adaptation can partly be achieved without gain of novel function. By

using knowledge on antibiotic properties, we examined the determinants of cross-resistance

and identified chemogenomic profile similarity between antibiotics as the strongest predictor.

In contrast, cross-resistance between two antibiotics is independent of whether they

show synergistic effects in combination. These results have important implications on the

development of novel antimicrobial strategies.
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E
volutionary adaptation to a specific environment may result
in correlated fitness changes in other environments1,2.
While such evolutionary interactions are widespread in

nature, the general principles and underlying molecular
mechanisms remain poorly understood3. Antibiotic resistance
in bacteria offers a platform to systematically investigate
evolutionary adaptations. The evolution of antibiotic resistance
is frequently mediated by the accumulation of mutations across
the genome during therapy4. The accumulation of such mutations
can potentially change the sensitivity to many antibiotics
simultaneously5. Despite their clinical relevance, the altered
sensitivity profiles of antibiotic resistant strains have not been
investigated systematically, except for a pioneering but largely
phenomenological study published 60 years ago6. Recent works7,8

investigated the frequency and mechanisms underlying collateral
sensitivity (that is, when genetic adaptation under antibiotic
stress yields enhanced sensitivity to other antibiotics). The aim of
the current paper is to provide insights into the general principles
driving cross-resistance interactions. Here, we (i) chart the
network of such evolutionary cross-resistance interactions,
(ii) explore the underlying molecular mechanisms and
(iii) investigate the extent to which cross-resistance is
predictable based on the knowledge of antibiotic properties and
the set of accumulated mutations.

To accomplish these goals, we initiated parallel laboratory
evolutionary experiments with Escherichia coli to adapt to
increasing dosages of one of 12 antibiotics, and inferred a
network of cross-resistance interactions. Laboratory-evolved lines
were subjected to whole-genome sequence analysis and biochem-
ical assays to decipher the underlying molecular mechanisms of
these interactions.

The following main conclusions were reached. First, the cross-
resistance network was dense, indicating that exposure to a single
antibiotic frequently yields multidrug resistance. Cross-resistance
between two antibiotics is largely independent of whether they
show synergistic effects in combination. Second, evolution of
resistance is partly achieved through the accumulation of
genomic rearrangements and loss-of-function mutations. Third,
as parallel evolution at the molecular level is prevalent, cross-
resistance patterns are predicable based on the set of accumulated
mutations and chemogenomic profile similarities between

antibiotics. Taken together, resistance evolution is governed by
mutations with highly pleiotropic, but predictable side-effects.

Results
High-throughput laboratory evolutionary experiments. In a
previous work7, we initiated high-throughput laboratory
evolutionary experiments starting with E. coli K12. Parallel
evolving bacterial populations were exposed to 1 of 12 antibiotics
(Table 1). Starting from a single ancestral clone, populations were
allowed to evolve to successively higher antibiotic concentrations.
Evolved populations reached up to 328-fold increases in the
minimum inhibitory concentrations relative to the ancestor
(Supplementary Table 1). For each antibiotic, 10 independently
evolved, resistant populations were subjected to further analysis.

Using an established high-throughput and highly sensitive
protocol7, we previously measured the corresponding changes in
susceptibilities of the 120 laboratory-evolved populations to all
other 11 antibiotics (Supplementary Data 1). The reliability of the
detected cross-resistance interactions was confirmed by
measuring changes in minimum inhibitory concentrations using
standard E-tests (Fig. 1b): the rates of false positives and negatives
were around 5 and 16%, respectively (Supplementary Data 2).
This allowed us to calculate the frequency of cross-resistance
(FCR) interactions for each antibiotic pair (see Methods) and
ultimately chart a map of cross-resistance between antibiotics
(Fig. 1a).

Properties of the cross-resistance network. Three main patterns
emerged from our map (Fig. 1a). First, the evolution of multidrug
resistance was frequent under a single antibiotic pressure: on
average, 52% of all investigated antibiotic pairs showed cross-
resistance in at least one direction. However, the strength of
cross-resistance interactions in the data set was highly variable
and caused 2 to 128-fold increases in minimum inhibitory con-
centrations (Fig. 1b). Antibiotic pairs belonging to different
functional classes also showed evidence of cross-resistance
(Supplementary Data 2). For example, lines adapted to the gyrase
inhibitor ciprofloxacin displayed 48 to 68-fold enhancements in
resistance to a cell wall inhibitor (cefoxitin).

Table 1 | Antibiotics employed and their modes of actions.

Bactericidal or Bacteriostatic

Ampicillin AMP Cell wall Bactericidal 

Cefoxitin FOX Cell wall Bactericidal 

Ciprofloxacin CPR Gyrase Bactericidal 

Nalidixic Acid NAL Gyrase Bactericidal 

Nitrofurantoin NIT Multiple mechanisms Bactericidal 

Kanamycin KAN Protein synthesis, 30S, Aminoglycosides Bactericidal 

Tobramycin TOB Protein synthesis, 30S, Aminoglycosides Bactericidal 

Tetracycline TET Protein synthesis, 30S Bacteriostatic

Doxycycline DOX Protein synthesis, 30S Bacteriostatic

Chloramphenicol CHL Protein synthesis, 50S Bacteriostatic

Erythromycin ERY Protein synthesis, 50S Bacteriostatic

Trimethoprim TRM Folic acid biosynthesis Bacteriostatic

Mode of ActionAbbreviationAntibiotic name

Functional classification is based on refs 12,20. These antibiotics are widely deployed in the clinic, well characterized, cover a wide range of modes of actions and were subjects of chemogenomic studies
in this species20.
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Second, antibiotics differed in their numbers of cross-resistance
interactions (Fig. 1c). For instance, adaptation to doxycycline or
fluoroquinolones generally led to multidrug resistance. As
expected, the corresponding evolved lines frequently accumulated
mutations in putative multidrug resistance genes (see below). In
sharp contrast, lines adapted to aminoglycosides had few if any
cross-resistance interactions, reflecting unusual resistance
mechanisms and a unique pathway for cellular uptake9. Next,
we investigated the other side of the coin: the extent to which
resistance to a given antibiotic was achieved by selection to other
antibiotics. For each antibiotic, we calculated the number of
different antibiotic treatments that select for increased resistance
against a given antibiotic (see in-degree on Fig. 1c). In this case,
nitrofurantoin was an interesting outlier: nitrofurantoin
resistance was reached in only 3% of the populations adapted
to other antibiotics (Supplementary Data 1).

Third, prior works indicated that concurrent application of two
antibiotics could be used to counter resistance evolution10. The
efficiency of such combination treatment is determined by at least

two factors. It depends on whether the two antibiotics show a
synergistic or antagonistic effect on bacterial growth when used in
combination (that is, their combined effect is above or below the
sum of their individual effects)11. Furthermore, it depends on the
availability of mutations that confer resistance to both antibiotics.
Therefore, it is important to establish whether the antibiotic cross-
resistance map overlaps with results of a previous antibiotic
combination screen12. Aminoglycosides displayed an especially
large number of synergistic interactions on growth when used in
combination with other antibiotics and, as noted above, were also
depleted of cross-resistance with other antibiotic classes (P¼ 0.008,
N¼ 55, Kruskal–Wallis test). After excluding this antibiotic class,
neither synergistic nor antagonistic antibiotic pairs were enriched
in cross-resistance interactions (P¼ 0.35, N¼ 45, Kruskal–Wallis
test; Fig. 1d). Thus, networks based on evolutionary and
physiological antibiotic interactions show little overlap.

Adaptive mutations dominate in the laboratory-evolved lines.
To gain insights into the underlying molecular mechanisms, we
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Figure 1 | Cross-resistance interactions and their general properties. (a) Network of cross-resistance interactions. Antibiotics are grouped according to

their mode of action. An arrow from antibiotic A to antibiotic B indicates that adaptation to A decreased sensitivity to B in at least 50% of the evolved

populations. (b) Distribution of the strength of cross-resistance interactions, as estimated by E-tests. (c) Cross-resistance interaction degrees of antibiotics.

In-degree measures the number of antibiotic treatments which select for increased resistance against a given antibiotic while out-degree is defined as the

number of antibiotics to which cross-resistance evolves when adapting to a given drug. The data are based on that of a. (d) The frequency of cross-

resistance interactions between antibiotics is independent of whether they show physiological interactions (that is, synergy or antagonism), P¼0.35,

N¼45, Kruskal–Wallis test. Aminoglycosides are excluded from the analysis as they show an especially large number of synergistic interactions and are

strongly depleted in cross-resistance interactions with other antibiotics). Box plot presents the median and first and third quartiles, with whiskers showing

either the maximum (minimum) value or 1.5 times the interquartile range of the data, whichever is smaller (larger).
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selected 63 independently evolved lines from the final day of
experiments (5–6 lines per antibiotic). These lines were subjected
to whole-genome sequencing using the Applied Biosystems
SOLiD platform. We implemented an established computational
pipeline to identify mutations relative to the ancestral genome
(see Methods). To ensure that our pipeline correctly identified
true mutations, a set of randomly chosen structural variants, such
as point mutations, deletions, inversions and duplications, were
validated by independent methods, that is, Sanger sequencing and
qPCR. Altogether 16 validations were performed and the results
are in complete agreement with the whole-genome sequencing
data (Supplementary Table 2). Mutator bacterial populations
have frequently been associated with decreased antibiotic sus-
ceptibility in clinics13,14 and laboratory evolution15. In agreement
with this general trend, two evolved lines exerted elevated
genomic mutation rates due to mutations in methyl-directed
mismatch repair and in the DNA proof-reading subunit of DNA
polymerase III (Supplementary Fig. 1). As a consequence, these
lines accumulated exceptionally large numbers of mutations
(synonymous and non-synonymous alike), many of which were
unlikely to be functionally relevant (Fig. 2a and Supplementary
Data 3). Therefore, these lines were excluded from all further
analyses.

For the remaining 61 lines, we identified 402 independent
mutational events (SNPs, insertions, small and large genomic
rearrangements). On average, we detected 4.2 point mutations,
1.2 deletions, 0.26 insertions and 0.07 duplications per clone
(Fig. 2a,b). Deletions were generally short (1–100 bp), with 19
major exceptions that span over 0.3–58 kb and eliminated 1–61
genes (Fig. 2c and Supplementary Data 3). Insertion sequences
(IS) initiated large-scale genomic rearrangements (inversion,
transposition or duplication) and were observed in 59% of the
laboratory-evolved lines (Supplementary Data 3).

Several lines of evidence indicate that the accumulation of the
mutations in protein-coding regions was largely driven by
selection towards increased resistance. First, 87% of point
mutations were non-synonymous. Second, at least 19% of the
mutated genes showed significant sequence similarity to known
antibiotic resistance genes16 (Fig. 2d and Supplementary Data 4),
and several observed substitutions were previously found in
natural or clinical isolates (Supplementary Data 5).

Consistent with prior studies17, antibiotic resistance generally
conferred a measurable fitness cost: at least 41% of the laboratory-
evolved lines showed a significantly reduced growth in antibiotic-
free medium compared to the wild-type. As expected, lines with
especially low fitness values in antibiotic-free medium have
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Figure 2 | Mutations identified in independently evolved lines. Distribution of mutational events according to antibiotic (a), type (b) and size of DNA

deletions (c). Laboratory-evolved mutator lines have accumulated exceptionally large numbers of mutations. The total number of putative loss-of-function

mutations among point mutations, insertions and small deletions is 27% (b). (d) Observed mutations and known antibiotic resistance genes.

Genes mutated in evolved lines are more likely to show significant sequence similarity to known antibiotic resistance genes16 than non-mutated ones

(28 out of 143 versus 120 out of 4,358, Po10� 14, Fisher’s exact test). Furthermore, genes showing sequence similarity to known resistance genes

are enriched among genes mutated in multiple lines compared with those mutated in a single line (17 out of 47 versus 11 out of 96, Po0.005, Fisher’s exact

test). We identified genes showing significant sequence similarity to a set of genes curated in the Comprehensive Antibiotic Resistance

Database16 using BLASTP search. In brief, we used the standalone NCBI BLASTPþ tool to identify E. coli genes that show highly significant similarity to

any of the curated resistance or target genes (a conservative E-value cutoff of 10� 30 was applied).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5352

4 NATURE COMMUNICATIONS | 5:4352 | DOI: 10.1038/ncomms5352 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


accumulated large numbers of mutations, including deletions of
large genomic segments (Supplementary Fig. 2).

Loss-of-function mutations are prevalent. Over 27% of the
observed point mutations, small deletions and insertions gener-
ated in-frame stop codons, frameshifts or disruption of the start
codon. These mutations were most likely to yield proteins with
compromised or no activities (Fig. 2b and Supplementary
Data 3). This figure is significantly higher than that observed in
a previous large-scale laboratory evolutionary experiment towards
high temperature18 (90 out of 329 versus 145 out of 1,030,
Fisher’s exact test, P¼ 1.017� 10� 7). Furthermore, the
frequency of nonsense mutations among point mutations is
three-fold higher than expected, based on the spontaneous
mutation rate inferred from whole-genome sequencing of
mutation-accumulation lines19 (26 out of 258 versus 8 out
of 233, Fisher’s exact test, Po0.005). This result indicates
widespread positive selection on inactivating mutations in our
data set. Comparison with chemogenomic data20 indicated that
inactivation of the corresponding genes tends to reduce antibiotic
susceptibility compared with that of all other genes in the E. coli
genome (14 out of 43 versus 321 out of 3,933, Fisher’s exact test,
Po10� 5). In many cases, the null mutations enhanced resistance
to multiple drugs (Supplementary Data 6). For example, loss-of-
function mutations occurred repeatedly in transcriptional
repressors of antibiotic stress response (for example, acrR,
marR and mprA). Similarly, IS-related inversions and
transpositions frequently disrupted genes with known influence
on antibiotic susceptibility. For instance, loss-of-function
mutations in the NADPH nitroreductase genes (nfsA and nfsB)
cause resistance to nitrofurantoin and related agents21. These
genes were disrupted four times independently in nitrofurantoin-
evolved lines (for other examples, see Supplementary Data 3).

Evidence for parallel evolution. A strong pattern of parallel
evolution emerged at the level of amino-acid sites, genes and
functional modules. Eight per cent of the point mutations were
shared by at least two lines, and some were shared extensively
(Supplementary Data 3). For example, a specific mutation
(Val1127Gly) in a subunit (acrB) of the AcrAB/TolC efflux sys-
tem was shared by four lines adapted to three different antibiotics
(CHL, AMP and FOX). A total 35% of the affected genes were
mutated repeatedly (Fig. 3a and Supplementary Table 3). These
repeatedly mutated genes were especially likely to show sig-
nificant sequence similarity to known antibiotic resistance
genes16 (Fig. 2d and Supplementary Data 4), and some were
frequently found in clinical multidrug-resistant strains22–28.
Similarly, 2% of the observed small deletion events (1–82 bp)
and 75% of the large deletion events (0.3–58 kbp) were at
identical or nearly identical positions in two or more lines
(Supplementary Data 3). These large deletions were generally
flanked by homologous IS elements, suggesting that these
deletions were mediated by recombination events between IS
elements (Supplementary Data 3).

The above figures are all the more surprising as 66% of all
parallel mutated genes occurred in lines adapted to different
antibiotics. These results indicate that despite substantial
differences in antibiotic treatments, the ultimate targets of
antibiotic selection are overlapping functional modules. To
investigate this issue further, we grouped 88% of the mutations
into several major resistance mechanisms based on literature data
(Table 2). The following major conclusions can be drawn.

First, mutations in the subsystem targeted by the antibiotic were
only found in 49% of the laboratory-evolved lines. The absence of
target mutations in the remaining lines may reflect unusually high

associated fitness costs5, rarity of appropriate mutations and/or
the efficiency of alternative resistance mechanisms (such as
modification of efflux mechanisms, see Table 2). Mutations
putatively affecting enzymatic modification of the antibiotic were
observed in nitrofurantoin-adapted lines only (Table 2).

Second, genes involved in membrane transport, porin
biosynthesis and membrane permeability were repeatedly
mutated (Table 2), especially in lines adapted to protein synthesis
inhibitors and quinolones. In sharp contrast, such mutations were
conspicuously absent in aminoglycoside-resistant populations
(Table 2, see also ref. 7).

Third, transcriptional regulatory genes were highly enriched in
the set of accumulated mutations (Table 2). Many of them belong
to specific two-component regulatory systems, and mediate
general cellular defence against stressful conditions. These
conditions include osmotic (OmpR/EnvZ, AcrR), acidic (PhoQ),
metal (ComR), membrane (CpxR), antibiotic and oxidative
stresses (MarA/SoxS/Rob regulon). Consistent with their roles
in antibiotic tolerance29, global transcriptional regulatory proteins
(RpoC, Crp and Fis) were also occasionally mutated.

Fourth and more generally, nutrient and oxidative stress
response pathways were mutated in response to several different
antibiotic stresses (Table 2). Consistent with prior studies on
antibiotic tolerance30,31, central components of the stringent
response (SpoT and SspA) were occasional targets of selection.
Antioxidant stress response (SoxR and AhpF)32 and production
of antioxidant molecules33, such as putrescine and spermidine,
were also selected under antibiotic selection (Supplementary
Data 3). In response to DNA-damaging antibiotic stress,
populations mutated members of the SOS regulon (dinB, yafO
and yafP) and cryptic prophages (cryptic prophage CP4-44).
Indeed, prophages provide enhanced survival of the bacterial host
in times of antibiotic stress34.

Cross-resistance and parallel molecular evolution are linked.
Despite differences in antibiotic selection pressure, parallel evo-
lution was prevalent at multiple levels. This pattern is very
unlikely to reflect adaptation unrelated to antibiotic treatment, as
such parallel mutations generally incurred a fitness cost in anti-
biotic-free medium (see below). We hypothesized that parallel
evolving mutations have an important contribution to the
observed cross-resistance interactions. To investigate this issue,
we calculated the average fraction of mutated genes shared by two
strains for each pair of antibiotics (Fig. 3b).

Adaptation to certain antibiotics proceeds through diverse
combinations of mutations (for example, on average, pairs of
nitrofurantoin-adapted strains show 16.5% overlap in their sets of
mutated genes), while the number of evolutionary trajectories
appear to be more limited in other cases (for example, the same
figure for chloramphenicol is 38%). Antibiotic pairs that have an
especially low overlap in the corresponding sets of their mutated
genes rarely displayed cross-resistance (Fig. 3c; Po10� 10,
N¼ 66, Wilcoxon rank-sum test when pairs with a mutation
profile similarity of o0.01 were compared with the rest). This
pattern can be largely, but not exclusively, attributed to
aminoglycosides: the sets of genes mutated under aminoglycoside
selection pressure displayed practically no overlap with those
detected in other laboratory-evolved lines (Fig. 3b), and cross-
resistance was also absent. However, the association between low
mutational overlap and scarcity of cross-resistance remains even
when aminoglycosides are excluded from the analysis (Po0.005,
N¼ 45, Wilcoxon rank-sum test).

To investigate the role of parallel evolving mutations in cross-
resistance further, we selected seven genes for further character-
ization, all of which were mutated in multiple laboratory-evolved
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lines and cover a wide range of molecular functions. The selected
mutations were inserted individually into wild-type E. coli. The
mutations generally conferred mild, but significant declines in
susceptibilities to several antibiotics (Table 3). For example, a

mutation in PhoQ, a member of the two-component regulatory
system involved in acid and low Mg2þ stress tolerance35,
increased resistance both to cell wall inhibitors and to the folic
acid inhibitor trimethoprim. Beyond their beneficial effects, the

Table 3 | Selected individual mutations and their sensitivity profiles across antibiotics.

Gene Amino acid.
change 

Relative fitness in 
antibiotic free 
medium (± s.e.)

Relative MIC change

Cell wall Gyrase Multipl e 50s 30s Folic 
acid Aminoglycoside

AMP FOX CPR NAL NIT CHL ERY DOX TET TRM TOB KAN

mprA Arg110Leu 0.99±0.016 1.0 1.0 0.8 3.1 1.4 1.0 1.5 0.9 1.0 1.0 0.8

marR Val84Glu 0.95±0.008* 2.0 3.3 1.9 2.1 1.0 2.2 2.0 1.9 1.8 1.3 1.0 1.0

envZ Ala396Thr 0.90±0.007* 1.7 2.7 2.2 1.0 0.9 1.0 1.2 0.8 1.3 0.8 0.7

envZ Val241Gly 0.87±0.030* 2.6 2.7 2.6 0.8 1.0 1.5 1.6 0.5 1.0 0.8 0.7

soxR Leu139* 0.72±0.023* 1.2 1.0 1.3 2.2 0.6 1.1 4.7 0.6 1.1 1.8 1.9

phoQ Gly384Cys 0.94±0.032* 2.0 1.7 1.3 0.7 1.0 1.1 1.4 1.0 1.3 2.3 1.4

trkH Thr350Lys 0.57±0.011* 0.5 0.8 0.6 0.3 0.8 0.6 0.9 0.5 0.5 0.6 3.4

gyrA Ser83Leu 1.02±0.025 1.0 1.0 7.7 30.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

gyrA Asp87Gly 1.04±0.006 1.8 1.3 7.7 30.1 0.9 1.0 1.0 0.8 1.0 1.0 1.4

0.9

0.6

0.6

3.6

1.4

2.1

1.9

TrkH antibiotic sensitivity data was partly based on results of a previous paper7. Relative fitness values are presented with the corresponding s.e. values.
*stands for cases of significance (Po0.05, N¼ 14, t-test).

Table 2 | Map of repeatedly mutating functional units across antibiotic treatments.

Functional category Cell wall Gyrase Multiple 50s 30s
Folic 
acid

Aminoglycoside

AMP FOX CPR NAL NIT CHL ERY DOX TET TRM TOB KAN

6 10 6 9 9 16 5 7 7 4 1 3

Changes in metabolism

Alteration or overexpression of
efflux pump

3 2 3 3 5 1 0 1 1 0 2 6

Changes of membrane 
permeability

6 12 6 0 13 1 3 0 1 3 6 4

Defence against DNA stress 0 1 1 2 0 0 0 0 0 1 0 0

Defence against Membrane 
stress

0 0 0 0 1 0 0 0 0 0 1 1

Defence against Nutritional stress

Defence against Oxidative stress

0 0 2 0 1 0 0 0 0 0 0 0

0 0 3 1 2 0 2 0 0 2 7 3

Enzymatic modification of the 
drug

1 0 0 0 8 0 0 0 0 0 0 0

Modification of respiration 
and/or membrane potential 2 1 0 1 3 0 1 1 0 0 32 15

Modification of the cellular 
subsystem targeted by the drug

1 4 7 14 0 0 0 2 0 5 14 10

Prophage activation 0 0 1 1 0 1 0 0 0 0 1 1

Transcriptional rewiring 1 1 3 1 1 1 3 0 1 1 3 5

The numbers indicate the total sum of independent mutational events found in lines adapted to a given antibiotic.
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selected mutations frequently had significant fitness costs in
antibiotic-free medium (ref. 17) and enhanced sensitivity to
certain antimicrobial agents (Table 3). The cross-resistance
patterns conferred by individual mutations and the
corresponding laboratory-evolved lines showed 62% overlap
(45% would be expected by chance, randomization test,
P¼ 0.002, N¼ 144 and Supplementary Data 7).

Antibiotic features and cross-resistance patterns. By compiling
a data set on the chemical and functional properties of antibiotics,
we next examined the extent to which similarities in individual
antibiotic properties shape the distribution of cross-resistance
interactions in the network. One might argue that cross-resistance
occurs mainly between antibiotics that target the same cellular
subsystems. However, target mutations were present in less than
half of the evolved lines and 88% of the cross-resistance inter-
actions occurred between antibiotics with different cellular
targets.

Relatedness of chemical structures (as captured by chemical
fingerprint similarities as measured by the Tanimoto coeffi-
cient36) emerges as a weak predictor of antibiotic cross-resistance
(Spearman’s r¼ 0.4, Po10� 3, N¼ 66, Fig. 4a). Furthermore,
this marginal effect is entirely attributable to aminoglycosides,
which have low chemical similarity with other antibiotics
and rarely show cross-resistance interactions with them
(Spearman’s r¼ 0.21, P¼ 0.17, N¼ 45 when excluding
aminoglycosides).

Last, the intrinsic resistome (that is, the set of genes that
influence antibiotic sensitivity) provides an unbiased description
of antibiotic action37. We, therefore, asked how the overlap in the
intrinsic resistome shapes the distribution of cross-resistance
interactions. Our molecular and phenotypic results were
integrated with data from a previous chemogenomic screen20.
That study exposed a nearly complete mutagenized E. coli library
to each of 17 antibiotics and determined the fitness contribution
of individual genes. Using this data set, we calculated the sets of
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Figure 4 | Antibiotic properties and cross-resistance. (a) Weak association between chemical structural similarity between antibiotic pairs and cross-

resistance frequency (Spearman’s r¼0.40, Po10� 3, N¼66), which disappears when aminoglycosides are excluded (r¼0.21, P¼0.18, N¼45).

Structural similarity between antibiotics was estimated by the Tanimoto similarity of their molecular fingerprints. (b) Correlation between chemogenomic

profile similarity and overlap in the set of accumulated mutations during laboratory evolution (Spearman’s r¼0.67, Po10� 5, N¼ 36). (c) Antibiotic pairs

that frequently display cross-resistance interactions show relatively high overlap in their chemogenomic profiles (Spearman’s r¼0.77, Po10� 7, N¼ 36).

Dashed red curves on scatterplots A–C indicate smooth curves fitted by Loess regression56. (d) Predicting antibiotic resistance phenotypes from genome

sequences. Prediction performance for each antibiotic based on the set of accumulated mutations was measured by the area under the receiver operating

characteristic (ROC) curve (AUC). This gives an overall measure of accuracy by taking into account both true positive and false positive rates

across all possible cutoffs of the prediction score. Random prediction gives an AUC of 0.5. Variation in resistance among evolved strains can be

predicted with 55–88% (76% average) accuracy, depending on the antibiotic studied. Special care was taken to avoid circularity in the

predictions.
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genes that influence susceptibility for each antibiotic used in our
study (chemogenomic profile). Strikingly, antibiotic pairs that
showed substantial overlap in their chemogenomic profiles also
accumulated similar sets of mutations during the course of
laboratory evolution (Spearman’s r¼ 0.67, Po10� 5, N¼ 36;
Fig. 4b), and frequently displayed cross-resistance interactions
(Spearman’s r¼ 0.78, Po10� 7, N¼ 36; Fig. 4c). Importantly,
these results remained when excluding antibiotic pairs targeting
the same subsystem (Spearman’s r¼ 0.59, Po10� 3, N¼ 33 and
Spearman’s r¼ 0.73, Po10� 5, N¼ 33, respectively) or those
involving aminoglycosides (Spearman’s r¼ 0.57, Po0.005,
N¼ 28 and Spearman’s r¼ 0.75, Po10� 5, N¼ 28, respectively).

Mutational analysis captures antibiotic resistance profile. Our
data indicate that the molecular mechanisms of antibiotic resis-
tance evolve in a repeatable manner. This raises the question
whether it is possible to predict antibiotic resistance phenotypes
from the genome sequences of the laboratory-evolved lines. We
employed a simple procedure that uses gene sets derived from
our sequenced evolved lines to predict differences in resistance
phenotypes among individual strains. Briefly, for each antibiotic,
we compiled the complete list of genes that were mutated
at least once in lines evolved under the given antibiotic selection
pressure. This gene–antibiotic association set was compared with
the set of genes mutated in each strain with known antibiotic
resistance profile, resulting in a set of 12 scores measuring the
likelihood of resistance of the evolved line against the complete
panel of 12 antibiotics. The above procedure was repeated for
each of our 61 sequenced evolved lines in turn. To quantify
the agreement between this simple prediction score against
experimentally determined resistance profiles (that is, increased
resistance compared with wild-type), we used a combined
measure of sensitivity (true positive rate) and specificity (true
negative rate)38. In particular, we measured how accurately our
prediction procedure separates resistance and sensitivity to a
given antibiotic when averaged across all 61 evolved lines. The
analyses demonstrated that variation in antibiotic resistance
among evolved strains can be predicted with an average 76%
accuracy, while only 50% would be expected by chance (Fig. 4d
and Supplementary Fig. 3). For example, the method is able to
discriminate doxycycline-resistant and sensitive strains with 84%
accuracy. We emphasize that our attempt to predict resistance
profiles is preliminary and future works should investigate
whether incorporation of more antibiotics, a greater diversity of
genomes or usage of more refined prediction algorithms could
improve prediction success.

Discussion
By combining experimental evolution, genome sequencing and
functional analyses, this work charted a map of cross-resistance
interactions between antibiotics in E. coli, and explored, on a
genome-wide scale, the mechanisms driving these evolutionary
patterns. The following general conclusions can be drawn from
our study.

First, our work indicates that the progressive accumulation of
spontaneous mutations under antibiotic selection simultaneously
changes the organism’s sensitivity to many other antimicrobial
agents (Fig. 1a). It also revealed differences in the efficacy by
which different antibiotics can inhibit growth of resistant
bacterial populations or select for the emergence of multidrug-
resistant strains (Fig. 1c). Cross-resistance between two anti-
biotics was largely independent of whether they show synergistic
effects in combination12,39. Thus, the networks based on
evolutionary and physiological antibiotic interactions are
generally governed by distinct mechanisms. As both synergism

and cross-resistance interactions between antibiotic pairs can
potentially influence long-term evolutionary pathways4,
combination of these two maps could be especially informative
for future development of novel antimicrobial strategies.

Second, a strong signature of parallel evolution emerged across
populations adapted to different antibiotics (Table 2), although
the molecular mechanisms underlying antibiotic resistance and
cross-resistance were diverse. Our work identified several genes
where the observed mutations delivered resistance to multiple
antimicrobial agents (Supplementary Table 3). In several
instances (phoQ, envZ, soxR and trkH), the potential roles of
these genes in multidrug resistance are yet to be investigated in
the clinic. Unexpectedly, even a mutation in the molecular target
of the antibiotic can alter sensitivity to multiple, unrelated
antibiotics. Laboratory-evolved fluoroquinolone resistant lines
frequently exhibited a specific mutation in the target topoisome-
rase gene (gyrA: A87G). This single mutation influenced
sensitivity to several non-quinolone drugs (Table 3), probably
through altering patterns of supercoiling and hence global
expression of stress response pathways40. Strikingly, in several
instances, individual mutations simultaneously enhanced
sensitivity to other drugs (Table 3), indicating that negative
trade-offs (collateral sensitivity interactions) are prevalent during
antibiotic selection6–8,41–43. More generally, the presence of
parallel mutations allowed us to predict the resistance profiles of
evolved lines from their genome sequence based on catalogues of
genes mutated under different antibiotic selection pressures.

Third, as high as 27% of the observed mutations generated
proteins with compromised or no activities (Fig. 2b). While
potential roles of loss-of-function mutations during antibiotic
evolution have been suggested22,44,45, our work provides the first
estimate on the relative importance of this mutational class.
Given their high rates and potential beneficial effects, loss-of-
function mutations could play an important role during the early
stage of resistance evolution (see also ref. 46).

Fourth, chemogenomic profile similarity between antibiotics
emerges as the most significant determinant of cross-resistance
(Fig. 4c). Thus, beyond their pivotal role in elucidating the
mechanisms of drug actions47, systematic chemogenomic studies
could also be used in the future to infer general trends of
resistance evolution.

Taken together, our analyses indicate that resistance evolution
is governed by highly pleiotropic mutations in a relatively limited
set of functional modules. The prevalence of mutations with
pleiotropic effects indicates that the phenomenon of cross-
protection may be more general and extend to other stressful
conditions unrelated to antibiotic pressure48. Indeed, genes
mutated in our study were enriched in the set of E. coli genes
that influence sensitivity to toxic metal (for example, copper and
nickel) and detergent exposure (Supplementary Table 4). Given
the documented associations between levels of metal
contamination and specific patterns of antibiotic tolerance in
nature49, future evolutionary studies should investigate how
frequently metal and antibiotic resistance are co-selected in the
laboratory. It will also be important to establish to what extent
cross-resistance interactions remain conserved across
(pathogenic) species or depend on the introduction of novel
genes by horizontal transfer. As most laboratory-evolved lines
displayed relatively low fitness in antibiotic-free medium, it will
also be important to establish the extent to which adaptation
through compensatory mutations can mitigate the costs of
resistance.

More generally, understanding the fitness consequences of
genetic adaptations to different environments remains an
important challenge for evolutionary biology1. Thanks to the
recent availability of the necessary computational tools and
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experimental techniques, it has become possible to predict certain
aspects of genomic evolution50. Integrating experimental
evolution, systems biology and genomics in a framework
similar to that presented in this paper could result in the
inference of general rules underlying the evolutionary trade-offs
observed in nature.

Methods
Laboratory evolutionary experiment. Details of the laboratory evolution
experiments have been described elsewhere7. Briefly, populations of E. coli K12
were grown in MS-minimal medium supplemented with glucose, casamino acids
and 1 of 12 possible antibiotics. Parallel cultures were propagated in 96-well
microtiter plates. Bacterial cells were transferred every 24 h by inoculating B1% of
the culture to 100 ml fresh medium. Starting with a subinhibitory (IC50) antibiotic
concentration, antibiotic dosage was increased gradually (1.5 times the previous
dosage) at every fourth transfer. We propagated 96 independent populations in the
presence of each antibiotic up to B336 generations. As expected, population sizes
differed significantly across treatments and antibiotic dosages, reflecting
independent evolutionary trajectories. For each antibiotic, the experiment halted at
the last antibiotic dosage that permitted growth of at least 10 out of 96 parallel
evolving populations (criteria was defined as the failure to obtain growth OD
600o0.05) or when the antibiotic concentration had reached its upper solubility
limit (Supplementary Table 5). For each antibiotic, 10 populations with the highest
final cell densities were selected for further analysis, resulting in 120 parallel
evolved lines. We also established 10 parallel populations growing in an
environment devoid of antibiotics for the same number of transfers, referred to as
adapted control lines.

Measurement of antibiotic susceptibilities. Given a panel of resistant strains,
our next goal was to detect changes in their sensitivity towards other antimicrobial
agents. We developed a highly sensitive high-throughput screening and a robust
statistical methodology7. Briefly, we tested the susceptibility of each evolved and
control lines against the entire set of antibiotics by measuring their growth in liquid
cultures at sublethal doses of antibiotics. Bacterial growth was monitored by
measuring optical density (OD 600) of the liquid cultures at a single time point
after 14 h of growth7. Prior experiments demonstrated that a single reading of
optical density shows very strong linear correlation with the area under the growth
curve7.

To identify statistically significant cross-resistance interactions, we tested
whether each evolved line showed a significant growth difference from the set of 10
control lines. To do this, for each evolved line, we calculated the median value of
the four technical replicates and compared it with the distribution of the median
growth values of the four technical replicates of the 10 control lines using a Z-test.
This yielded a matrix of evolutionary interactions between evolved strains and
antibiotics (Supplementary Data 1). Where multiple independent experimental
runs were available, we used Fisher’s method to aggregate P-values. All statistical
analyses were carried out in Matlab. The results were confirmed by E-test assays,
using standard protocols. Finally we calculated the the frequency of cross-resistance
(FCR) for each antibiotic pair as follows: FCR¼ (NA-BþNB-A)/(NAþNB),
where NA-B and NB-A are the number of populations adapted to antibiotic A
showing enhanced resistance to B, and vice versa. NA and NB are the total number
of populations adapted to antibiotic A and B, respectively.

Chemical and chemogenomic profile similarities. Chemical similarities of
antibiotics were computed using an R implementation of the cheminformatics
library CDK (Chemistry Development Kit)51. Chemical relatedness was captured
by chemical fingerprint similarity as measured by the standard Tanimoto
coefficient52. Chemogenomic similarity was calculated as pair-wise Jaccard
similarity coefficient between sets of genes that influence antibiotic susceptibility
based on a published chemogenomic screen20. This chemogenomic screen covered
9 of the 12 antibiotics employed in our study, and as it relied on a highly sensitive
competition assay, it was particularly useful to identify genes whose inactivation
increased antibiotic tolerance. MIC and dose response curve measurements were
performed as described previously7.

Whole-genome sequencing. The ancestral and 63 selected evolved strains were
subjected to next-generation sequencing to identify mutations. Genomic DNA
(gDNA) was extracted from selected E. coli strains (SIGMA GenElute Bacterial
Genomic DNA kit) and the subsequent library preparation was performed using
the 5500 SOLiD Fragment Library Core Kit (Life Technologies; LT). Briefly, 3 mg of
purified bacterial gDNA was fragmented by Covaris S2 System to 100–250 bp. The
fragmented DNA was end-repaired and ligated to P1 and P2 adaptors, which
provide the primary sequences for both amplification and sequencing of the sample
library fragments; the P2 adaptor contains a 10-bp barcode sequence that provided
the basis for multiplex sequencing (5500 SOLiD Fragment Library Barcode
Adaptors; LT). The templates were size-selected using Agencourt AMPure XP
system (Beckman Coulter), nick-translated using Platinum PCR Amplification Mix

and the template library was quantified by qPCR using SOLiD Library TaqMan
Quantitation Kit (LT). The templates were clonally amplified by emulsion PCR
(ePCR) with P1 primer covalently attached to the bead surface. Emulsions were
broken with butanol and ePCR beads enriched for template-positive beads by
hybridization with P2-coated capture beads. Template-enriched beads were
extended at the 30 end in the presence of terminal transferase and 3’ bead linker.
Beads with clonally amplified DNA were then deposited onto a SOLiD Flowchip
and the slide was loaded into a SOLiD 5500xl System (LT) and the 50-base
sequences were obtained according to the manufacturer’s protocol.

Bioinformatic analysis of genome sequences. The obtained sequences from each
strain were first trimmed in order to filter out low-quality reads that were shorter
than 50 bp. The remaining high quality sequences from each strain were then
aligned to the E. coli K-12 substr. MG1655 chromosome (GenBank Accession No.
NC000913; Version NC_000913.2 GI:49175990) in colour space using Genomics
Workbench 6.5 (CLC Bio). Within a single read, the maximum gap and mismatch
count was set to two and the similarity fraction was set to 0.8. Two mappings were
performed for each strain which differed in setting the length fraction to 0.5 for
relaxed or 0.6 for stringent analysis. Minimum coverage ofZ51-fold andZ44-fold
was accomplished for each strain when using relaxed or stringent parameters,
respectively. A minimum of six reads were required to call a point mutation or
short indel (o15 bp) upon relaxed analysis; in contrast, 20 reads were required to
call a structural variation (SV; for example, inversion, duplication, replacement,
translocation) upon stringent analysis.

For quality-based variant detection we used an approach based on the
Neighbourhood Quality Standard algorithm that is implemented in Genomics
Workbench. Relaxed alignment was used to identify point mutations or short
indels; the minimum variant frequency was set to 50%. Variants identified in the
ancestral genome were excluded from further analyses. All remaining potential
variants were manually checked with a visual output in order to exclude false
variant calls due to insufficient mapping accuracy.

The soft-clipped, unaligned ends of the sequence reads were used to map SVs
and long indels. For this, stringent alignment was used and the resulting self-
mapped, cross-mapped, multiple, close and paired breakpoints (for details see
http://www.clcsupport.com/clcgenomicsworkbench/current/) were identified and
manually checked; indels and SVs identified in the ancestral genome were again
excluded. All identified breakpoints were validated by re-mapping: consensus
sequence resulting from large indel or SV was extracted, re-mapping was
performed using stringent setup and the breakpoint considered valid if perfectly
matching sequence tags overlapped the breakpoint.

Validation of whole-genome sequencing data. Several structural variants were
randomly chosen and validated by either PCR followed by Sanger sequencing (for
example, point mutations, deletions and inversions) or by quantitative PCR (for
example, duplications). For this latter, DNA levels were determined using StepOne
Plus Real-Time PCR system (LT). Reactions were performed by using Power
SybrGreen Master Mix (LT); the primer sequences are available on request. All of
the measurements were performed in duplicates; the ratio of each amplicon relative
to the normalizing control was calculated using the 2�DDCT method.

Allele replacements. Allele replacements were constructed by a suicide plasmid-
based method. Standard steps and plasmids (pST76-A, pSTKST) of the procedure
were described previously53. In brief, an B800-bp long targeting DNA fragment
carrying the desired point mutation in the middle was synthesized by PCR, then
cloned into a thermosensitive suicide plasmid. The plasmid construct was then
transformed into the cell, where it was able to integrate into the chromosome by
way of a single crossover between the mutant allele and the corresponding
chromosomal region. The desired cointegrates were selected by the antibiotic
resistence carried on the plasmid at a nonpermissive temperature for plasmid
replication. Next, the pSTKST helper plasmid was transformed, then induced
within the cells, resulting in the expression of the I-SceI meganuclease enzyme,
which cleaves the chromosome at the 18-bp recognition site present on the
integrated plasmid. The resulting chromosomal gap is repaired by way of RecA-
mediated intramolecular recombination between the homologous segments in the
vicinity of the broken ends. The recombinational repair results in either a reversion
to the wild-type chromosome, or in a markerless allele replacement, which can be
distinguished by sequencing of the given chromosomal region. For all primers, see
Supplementary Table 6.

As other methods failed, the oligonucleotide-mediated l Red recombination
was used to generate the gyrA variant S83-L and D87-G in E. coli BW25113.
The applied wild-type strain contained the pBADabg l Red expression plasmid for
inducible l Red recombinase production. Oligonucleotides for allelic replacement
were designed according to standard guidelines54. Briefly, oligos applied for allelic
replacement have complementary sequences to the replicating lagging strand and
have minimized secondary structure (less than � 12 kcal mol� 1). Additionally,
each oligo contained two subsequent phosphorothioate linkages at both 50 and 30

termini for endogenous nuclease evasion. Oligos were ordered with standard
purification and desalting from Integrated DNA Technologies (IDT). To perform
allelic replacement, cells were grown in 10ml Luria Bertani (LB) broth,
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supplemented with 100mgml� 1 ampicillin, from overnight starter culture at 37 �C,
250 r.p.m. to OD550 0.5–0.7. Expression of l Red proteins were induced by the
addition of L-Arabinose at 0.2% concentration for 30min. For recombination, cells
were pelleted (3,800 r.p.m. for 7min) and washed twice in ice-cold dH2O,
resuspended in 160 ml dH2O. 40ml cell suspension was electroporated with oligo
GyrAS83L or GyrAD87G at 2.5 mM final concentration. Electroporated cells were
allowed to recover in 10ml LB at 37 �C overnight. Cells were plated on LB agar
plates supplemented with 100 ngml� 1 ciprofloxacin. Clones with desired mutation
were identified by sequencing target site in gyrA using GyrA2F and GyrA2R
primers.

Mutation rate measurements. Mutation rates of two laboratory-evolved lines
(AMP6, CPR6) were measured by using rifampicin (Rifs to Rifr) forward fluctua-
tion test. The rifampicin minimum inhibitory concentration (MIC) for the two
evolved lines does not differ from that of the control line. Overnight cultures
(grown in LB broth, on 30 �C) were diluted to 104 cells per ml and six parallel
cultures per each line were started in glass tubes. After 24 h incubation at 30 �C,
appropriate dilutions were plated to LB agar plates for CFU determination, and to
LB agar plates containing 100 mgml� 1 rifampicin for detection of rifampicin
resistant mutants. Colonies were counted after 24 and 48 h, respectively. Mutation
rates were calculated by using the MSS maximum-likelihood method55.

Predicting antibiotic resistance phenotypes from genomic data. To predict
antibiotic resistance phenotypes from genome sequences of the evolved lines, we
employed a procedure that uses gene sets derived from our sequenced evolved lines
to predict differences in resistance phenotypes among individual genomes. First,
for each antibiotic, we compiled the list of genes that were mutated in at least one
of our lines evolved under the given antibiotic selection pressure (for example,
genes mutated in ampicillin-evolved lines for ampicillin). To avoid circularity in
the predictions, these gene–antibiotic association lists were defined by leaving out
the genome (Gx) for which resistance prediction was attempted (that is, yielding
slightly different association lists for each Gx). Next, for each antibiotic, we counted
the number of protein-coding genes that are both mutated in Gx and present in the
gene–antibiotic association list of the given antibiotic. This procedure results in a
set of 12 scores measuring the likelihood of resistance of evolved line Gx against our
panel of 12 antibiotics. Finally, the above procedure was repeated for each of our 61
sequenced evolved lines in turn. To quantify the agreement between this simple
prediction score against experimentally determined resistance profiles (that is,
increased resistance compared to wild-type), we used a combined measure of
sensitivity (true positive rate) and specificity (true negative rate)38. In particular, we
measured how accurately our prediction procedure separates resistance and
sensitivity to a given antibiotic when averaged across all 61 evolved lines. We note
that not all gene–antibiotic association lists were equally informative in the
prediction process as mutations occurring in aminoglycoside-evolved lines were
especially relevant to discriminate between the presence and absence of resistance
to a number of antibiotics (Supplementary Table 7). This is unsurprising given the
distinct mutational profiles and resistance mechanisms of aminoglycoside-adapted
lines.
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