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Local mapping of detector response for
reliable quantum state estimation
Merlin Cooper1, Michał Karpiński1 & Brian J. Smith1

Improved measurement techniques are central to technological development and founda-

tional scientific exploration. Quantum physics relies on detectors sensitive to non-classical

features of systems, enabling precise tests of physical laws and quantum-enhanced tech-

nologies including precision measurement and secure communications. Accurate detector

response calibration for quantum-scale inputs is key to future research and development in

these cognate areas. To address this requirement, quantum detector tomography has been

recently introduced. However, this technique becomes increasingly challenging as the com-

plexity of the detector response and input space grow in a number of measurement outcomes

and required probe states, leading to further demands on experiments and data analysis. Here

we present an experimental implementation of a versatile, alternative characterization

technique to address many-outcome quantum detectors that limits the input calibration

region and does not involve numerical post processing. To demonstrate the applicability of

this approach, the calibrated detector is subsequently used to estimate non-classical photon

number states.
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E
xperimental quantum optics relies on the ability to create,
manipulate and measure the state of the light field for
applications ranging from fundamental scientific research1–4

to the development of quantum technologies that harness the non-
classical behaviour of light5–8. Methods to characterize each step
of a quantum experiment are crucial to ensure appropriate
evaluation of tests of theoretical predictions and desired device
operation. Well-developed techniques for quantum state
estimation (QSE)9–11 and quantum process tomography12–15

rely on accurate knowledge of the detector response. Only
recently has the independent characterization of quantum
detectors with few outcomes been experimentally demonstrated
by means of quantum detector tomography (QDT)16–22.

Complete characterization of the detector response through
QDT becomes increasingly demanding as the number of detector
outcomes grows. The primary roadblocks arise from the need to
acquire and analyse expanded data sets to extract the mathema-
tical operators associated with each measurement outcome, which
becomes intractable with current experimental and computa-
tional capacity. This is due to experimental instability over the
time required to collect sufficient data, and the size of the
numerical inversion problem in terms of the number of distinct
measurement outcomes and unavoidable statistical noise that can
distort rare detection events23.

Here we present an experimental demonstration of an
alternative approach to QSE and QDT, known as the fitting of
data patterns (FDP)24,25, which enables calibration of detectors
with a sizable number of outcomes and their subsequent use in
state estimation. This technique does not extract the complete set
of operators that describe the detector, but rather uses the raw
measurement outcome distributions for known input states as the
detector calibration—negating the need for post processing. The
approach limits the input state space to a finite region of interest
set by the experimenter independent of the detector behaviour.
We apply the FDP method to a balanced homodyne detector
(BHD)9,11, a central resource in a broad class of quantum optical
experiments11,26, which is yet to be independently characterized.
The BHD employed here has more than 150 outcomes, which is
an order of magnitude more than any quantum detector
characterized to date. To demonstrate the FDP method as a
tool for complex detector calibration and QSE, we subsequently
present QSE of non-classical states of light using the
independently calibrated BHD.

Results
QSE with a calibrated detector. In quantum theory, the detector
response is mathematically represented by its positive operator-
valued measure (POVM) comprising a set of positive operators
{pn}, with n¼ 1, 2,...N, labelling the measurement outcomes.
The probability for detector outcome n given input state sx is
determined by the Born rule

pðxÞn ¼ TrðpnsxÞ: ð1Þ

QDT aims to determine the set of measurement operators {pn}
by taking the experimentally estimated outcome probabilities

fpðxÞn g for a set of known probe states {sx}, and inverting
equation (1) (refs 16–22,27,28). To reliably invert equation (1),
current QDT techniques depend on registering every measure-
ment outcome of the detector17,19,22,23, which requires an
increasingly large set of probe states as the number of
measurement outcomes and input state space of the detector
grow. This leads to greater experimental and computational
challenges for reconstruction of the complete POVM set17,19,22,23.
Although recent work has shown that it may be feasible to
address part of the POVM in a truncated input space by

artificially limiting the number of detector outcomes20, this relies
on the same techniques as standard QDT. Having determined the
POVM set by QDT, to reconstruct an unknown quantum state
one must employ the reconstructed measurement operators
within a separate QSE algorithm, for example, maximum-
likelihood (ML) estimation29–31. Thus, two separate algorithms
(and hence two optimization procedures) are employed to
perform QSE with calibrated measurements following this
approach.

The FDP approach begins by recording the detector response
to a set of M known input probe states {sx} that span the input
region of interest. Here sx is the density operator for the state
labelled by x¼ 1, 2,...M. Multiple copies of each probe state are
sent to the detector and the frequency distribution f ðxÞn of
measurement outcomes, labelled by n, associated with input state
sx, is determined as depicted in Fig. 1a. This procedure is similar
to mapping the impulse response function of a linear optical
system. The data pattern set ff ðxÞn g constitutes the detector
calibration within the field of view defined by the probe states. As
with QDT, the FDP method relies on the ability to reliably
produce a sufficient set of well-known probe states to characterize
the detector response24,25. However, unlike QDT, the data
patterns are obtained directly from the measurement outcomes,
requiring no additional analysis.

To estimate an unknown quantum state with density operator
r using the FDP approach, many identically prepared copies of
the state are measured with the calibrated detector. The frequency
distribution of measurement outcomes for the unknown state f ðrÞn

is determined from the acquired data. The unknown state density
operator is estimated as a weighted sum of the probe states

rfdp ¼
X
x

axsx; ð2Þ

where the real-valued expansion coefficients {ax} are found by
minimizing the functional

EðfaxgÞ ¼
X
n

f ðrÞn �
X
x

axf
ðxÞ
n

 !2

ð3Þ

subject to constraints
P

xax¼ 1 and
P

xaxsxZ0, which ensure
that the reconstructed operator corresponds to a physical state.
The FDP algorithm can be formulated as a semi-definite convex
program, which can be solved using standard software tools (see
Methods). The only assumptions are that the unknown state lies
within the calibration field of view defined by the probe states and
can be well-represented as a weighted sum of the probe states,
equation (2). Note that in the data pattern calibration and state
estimation by FDP, the detector POVM {pn} is never revealed,
hence the mathematical description of the measurements remains
unknown to the experimentalist.

The physical origin for the FDP state estimation approach,
encapsulated in the functional of equation (3), can be understood
by examining the Born rule, equation (1), applied to the
probe states and estimated state. Minimization of the
functional in equation (3) aims to reduce the difference
between the probability distribution for the unknown state,

pðrÞn � f ðrÞn , and that calculated from the estimated state

p
ðrfdpÞ
n ¼ TrðpnrfdpÞ ¼

P
x axTrðpnsxÞ �

P
x axf

ðxÞ
n , where prob-

abilities are approximated by their corresponding measured
frequencies.

The FDP method uses an operational characterization of the

detector response, encapsulated in the data pattern set ff ðxÞn g, to
perform reliable QSE by minimizing only one functional,
equation (3) (refs 24,25). The detector calibration consists only
of the directly obtained measurement outcome distributions and
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thus does not require further numerical analysis. The alternative
approach of performing QDT followed by QSE entails two
separate optimization procedures, each performed subject to
separate constraints and, in the case of QDT, often
regularization17,23,28. This two-step approach to QSE with an
unknown detector is not only more resource intensive, owing to
the two separate numerical optimizations, but also more likely to
suffer from artefacts introduced from one or both of the separate
optimization procedures32. Although ancilla-assisted detector
characterization techniques might offer simpler post processing
than standard QDT27,33, they are limited by the available
brightness of the requisite non-classical state33. Furthermore, as
in the case of standard QDT, a second optimization step to
perform QSE using the reconstructed POVM elements is
necessary.

Detector calibration by determination of data pattern set. To
experimentally demonstrate the data pattern calibration and its
subsequent application to state reconstruction for a detector with a
large number of outcomes, we examine a BHD. This vital resource
for continuous-variable quantum technologies is typically assumed
to have an output that is proportional to the electric field quad-
rature of a well-defined spatial-temporal optical field mode9,11.
Indeed, balanced homodyne detection was used in the first
quantum state and continuous-variable quantum process
estimation experiments14,34. Optical interference of a reference
beam called the local oscillator with the unknown signal field to be
examined defines the detection mode, as presented in Fig. 1b. The

balanced scheme suppresses the local oscillator technical noise and
shot noise, allowing ultra-sensitive sampling of the signal.

The BHD is characterized by a set of probe states comprising
48 phase-averaged coherent states with varying amplitudes. The
probe states are generated deterministically by attenuating and
phase randomizing a laser beam, as shown in Fig. 1c. The use of
phase-averaged probes to characterize the detector implies that
the calibration field of view enables access to the photon number
statistics of the unknown quantum states, which in the case of
phase-invariant states constitutes complete QSE.

For each probe state sx, an ensemble of K¼ 106 optical pulses is
measured sequentially by the BHD, yielding a set of voltages

fV ðxÞ
1 ;V ðxÞ

2 ; . . . V ðxÞ
K g recorded by a fast oscilloscope. In the

experiment, the probe state amplitudes |ax| range from 0.17 to 2.24
in approximately even steps of 0.043. The frequency distribution

f ðxÞn of measurement outcomes n for state sx is formed by binning
the voltage samples {V0} after rescaling (see Methods). Each
frequency distribution consists of 151 bins, implying as many
detector outcomes, which is more than an order of magnitude
greater than any QDT experiment to date. The procedure is
repeated for each probe state sx to give the detector data pattern

set ff ðxÞn g, as shown in Fig. 2a, constituting the detector calibration.
Note that no physical interpretation about the nature of the
measurement outcomes is necessary in the FDP method24,25.

Estimation of non-classical states using calibrated detector.
Several non-classical photon number (Fock) states35–38 are
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Figure 1 | FDP overview and experimental schematic. (a) Conceptual and (b–d) experimental diagrams of the FDP procedure. (a) Top: multiple copies of

known probe quantum states {sx} are separately measured by the unknown detector to form the data patterns ffðxÞn g. Bottom: multiple copies of the

unknown quantum state r to be estimated are measured giving the frequency distribution f
ðrÞ
n . (b) Balanced homodyne detection: probe states {sx} or

unknown states r are combined with the local oscillator (LO) on a 50:50 beam splitter (50:50 BS). The output modes are directed to a pair of photodiodes

whose photocurrents are subtracted, with the resulting difference current converted to a voltage measured with a digitizing oscilloscope (DSO)39. This

yields a set of voltages {V} for each state from which the frequency distributions ffðxÞn g and f
ðrÞ
n are determined. (c) Probe state preparation: the output of a

pulsed Ti:Sapphire laser oscillator is spatially and spectrally filtered with a single-mode fibre (SMF) and interference filter (IF). A motorized half-wave plate

(MHWP) and Glan–Taylor polarizer (GT) followed by neutral density (ND) filters control the probe state amplitude, while a piezoelectric transducer (PZT)

averages the phase. A calibrated power meter (PM) and compact spectrometer (CS) monitor the optical power and wavelength, respectively, to determine

the probe state amplitude. (d) Fock state preparation: the Ti:Sapphire laser output is frequency doubled (SHG) to pump a spontaneous parametric

downconversion source (SPDC). A spatially multiplexed detector comprising a fibre beam splitter (FBS) network and three avalanche photodiodes (APDs)

enables heralding of multi-photon Fock states r.
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examined using the calibrated detector. The density matrices r
are estimated by fitting the probe state data patterns ff ðxÞn g to the

frequency distribution of measurement outcomes f ðrÞn for
heralded one-, two- and three-photon Fock states according to
equation (3). The Fock states are generated by pulsed
spontaneous parametric downconversion (see Methods) and

measured by the BHD. Frequency distributions f ðrÞn for each
Fock state are obtained in the same manner as for the probe
states, shown in Fig. 2. The functional defined in equation (3) is
minimized for each state separately to determine the optimal set
of coefficients {ax}, shown in Fig. 2b–d.

The reconstructed Wigner functions W(X,P) and photon
number statistics P(n)¼/n|rfdp|nS for the generated Fock
states are shown in Fig. 3. To compare with the commonly used
ML method for QSE, the same homodyne data that yield the

frequency distributions f ðrÞn are used in a ML QSE algorithm11.
Here, a POVM of the form {pX}¼ {|XS/X|} and phase-invariant
states are assumed, where |XS is the quadrature eigenstate with
eigenvalue X (see Methods). The photon number distributions
reconstructed with the ML estimation are shown in Fig. 3. The

fidelity F ¼ Tr2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffirfdp
p rml

ffiffiffiffiffiffiffiffirfdp
pp� �

between density matrices

rfdp and rml estimated by the FDP and ML methods for each
Fock state is calculated, yielding fidelities F1¼ 0.96±0.02,
F2¼ 0.98±0.02 and F3¼ 0.92±0.02 for the one-, two- and
three-photon states, respectively. This agreement between FDP
and ML approaches indicates that the assumed quadrature
POVM used in the ML estimation is accurate within the field of
view experimentally examined by the probe state calibration set
and experimental uncertainties. It also provides a self-consistency
check between the two methods, thus demonstrating the
applicability of FDP method to characterization of many-
outcome detectors and QSE.

Discussion
The ability to accurately calibrate the response of detectors is
essential to the progress of quantum technologies. As quantum
devices grow in size and complexity, so too will the measurement
devices required for their operation and diagnosis. This necessi-
tates the development of techniques to characterize increasingly
elaborate detector responses. Standard QDT gives a complete
global view of the detector and thus constitutes its characterization
to all possible input states16,17,19,22,23. Such calibration requires
eliciting all measurement outcomes by probing the detector in
large regions of input space that potentially have no overlap with
states of interest to the experimenter. This leads to significant
overheads in terms of experimental effort associated with
preparing probe states and acquiring large data sets, and
computational resources required to perform the numerical
inversion of the data to extract the POVM set. Recent work has
indicated that reconstruction of a restricted POVM set in a finite
range may be possible20, but further investigation on the probe
state requirements and generalization to arbitrary detectors is
needed. Furthermore, QSE with a well-calibrated detector using
QDT requires an additional numerical inversion step that adds to
the computational tasks for state estimation.

The data patterns approach to detector characterization and
QSE represents a key conceptual shift in both detector calibration
and state estimation. This approach provides a direct character-
ization of the detector response in a finite region of input state
space in which we anticipate unknown states to exist. There is no
numerical inversion associated with the detector characterization.
The calibration consists only of the statistics of measurement
outcomes, the data patterns, and in no time is the formal
mathematical description of the detector, namely its POVM,
revealed. Restricting the calibration region can greatly decrease
the experimental and computational challenges, at the cost of
limiting the domain over which the detector is characterized. The
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Figure 2 | Data pattern set and fitting of data patterns. (a) Data patterns ffðxÞn g obtained for the set of 48 phase-averaged coherent state probes {sx}
with |ax| ranging from 0.17 to 2.24. (b–d) Optimal coefficients {ax} minimizing the functional defined in equation (3) for the one-, two- and three-photon

Fock states, respectively. (e–g) Measured frequency distributions f
ðrÞ
n (blue curves) and residuals between fitted frequency distributions and measured

frequency distributions f
ðrÞ
n �

P
x axf

ðxÞ
n (green curves) for the one-, two- and three-photon Fock states, respectively, where index x is in the order of

increasing probe state amplitude |ax|. The latter gives a measure of the deviation between the measured and predicted frequency distributions, which is

found to be within the statistical noise due to the finite number of measurements.
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single-step data processing for state estimation enables increased
inversion speed.

Here we have presented an experimental demonstration of a
novel method for quantum detector characterization and QSE
by the FDP. This approach enables calibration of many-
outcome detectors through direct, local measurement of the
characteristic detector response to a set of probe states.
The experimental calibration of a BHD and its subsequent
use in reconstruction of non-classical Fock states presented
here not only demonstrates successful implementation of this
new detector characterization approach, but also goes an order
of magnitude beyond any quantum detector characterization
previously demonstrated. The FDP approach is easily adapted to
a variety of measurement devices and the experimental
implementation presented shows its viability for detectors
with complex response. We anticipate that this approach
to detector calibration and QSE will become a standard method
to characterize measurement response in a local region of
input space, adding to and complementing the QDT followed by
QSE approach.

Methods
Balanced homodyne measurement. A time-domain BHD with a bandwidth of
80MHz and signal-to-noise ratio of 14.5 dB is used to perform measurements of
the probe and signal fields39. For each incident optical pulse, the BHD generates a
voltage pulse. The BHD voltage V is digitized by a computer-controlled digital
storage oscilloscope. Drifts in the detector balance and gain are compensated by
rescaling the measured voltage according to V0 ¼AV�B. Rescaling parameters A
and B are determined by acquiring pulses when the BHD input is blocked. Voltage
samples with the input blocked are constrained to satisfy /V0S¼C1 and
var(V0)¼/V02S�/V0S2¼C2, where C1 and C2 are constants, leading to the
relations A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC2=varðVÞÞ

p
and B¼A/VS�C1. The local oscillator repetition

rate is 80MHz, whereas the probe state repetition rate is B4MHz. This enables
continuous compensation for any drift39. In the case of the ML state
reconstruction, where a POVM is assumed, C1¼ 0 and C2¼ 1/2 is used, such that
V0 corresponds to a quadrature eigenvalue X for the case of a perfect BHD.

Probe state preparation. The phase-averaged coherent state probes are derived
from a mode-locked Ti:Sapphire oscillator (Spectra-Physics Tsunami) operating at
a central wavelength of 830 nm, full-width half-maximum bandwidth of 10 nm and
repetition rate of 80MHz, Fig. 1c. The beam is initially spatially filtered using a
single-mode fibre and spectrally filtered using an interference filter (Semrock LL01-
830-12.5), to match the spatial-spectral mode of local oscillator. A computer-
controlled motorized half-wave plate followed by a Glan–Taylor polarizer and
calibrated neutral density filters enables precise control of the probe state ampli-
tude. Phase averaging is achieved by driving a piezoelectric translator on which one
of the interferometer mirrors is mounted. The effective probe state amplitude |ax|
registered by the BHD is given by

jax j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pmeas;x

T
R

� �
10�OD1 �OD2V2 l0

hcn

s
; ð4Þ

where Pmeas,x is the average power measured on the calibrated power meter (NIST-
traceable Coherent FieldMaxII-TO power meter), R(T) is the reflectivity (trans-
missivity) of the beam splitter, OD1(2) is the optical density of neutral density filter
1(2), n is the laser repetition rate, l0 is the laser central wavelength and V is the
interference visibility between the local oscillator mode and probe state mode. The
interference visibility is measured by removing the neutral density filters and
directing one output of the 50:50 beam splitter used for balanced homodyne
detection using a flip mirror to a fast photodiode that records the classical inter-
ference pattern as the phase is modulated. A calibrated spectrometer (Thorlabs
CCS175) measures the central wavelength l0. The probe state spectrum has a central
value l0¼ 827.6 nm. The laser repetition rate n is measured using a high-precision
frequency counter. The repetition rate is decreased by a pulse picker (APE) and was
measured to be 3.997MHz for the duration of the probe state measurement.

Fock state preparation. A two-mode squeezed vacuum state of the form
j ci �

ffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
0; 0iþ gj j1; 1iþ g2 2; 2iþ g3j j3; 3iþOðg4Þð Þ, where g is the

squeezing parameter and |n,mS is a two-mode state with n (m) photons in the signal
(trigger) mode, is generated by type II pulsed spontaneous parametric down-
conversion in a bulk potassium di-hydrogen phosphate crystal40. The signal and
trigger modes are separated by a polarizing beam splitter. A spatially multiplexed
detector comprising a fibre beam splitter network and three avalanche photodiodes
(Perkin-Elmer SPCM-AQ4C) enables heralding of one-, two- and three-photon Fock
states conditioned on registering one, two and three ‘clicks’, respectively, from the
multiplexed detector38. The heralded Fock state in the signal mode is combined with
the local oscillator for performing balanced homodyne detection.
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Figure 3 | Non-classical state reconstruction. Reconstructed Wigner functions W(X,P) from FDP method (a–c) and photon number statistics P(n) (d–f)

from FDP (blue bars) and ML (green bars) methods for the (a,d) one-, (b,e) two- and (c,f) three-photon Fock states. The reconstructed Wigner functions

exhibit negative values, thus indicating the non-classical nature of the reconstructed states. Error bars indicate one-s confidence intervals and include both

systematic and statistical sources of error for both the FDP and ML state reconstructions (see Methods).
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Reconstruction and uncertainty estimation. Minimization of functional
equation (3) subject to constraints

P
xax¼ 1 and

P
xaxsxZ0 can be formulated as

a semi-definite convex programme. We used the YALMIP41 toolbox for MATLAB
with the solver SDPT3 (ref. 42) to perform the minimization of equation (3).

The uncertainties in the state fidelities between ML and FDP approaches are
estimated by taking into account both statistical and systematic sources of error.
Statistical errors arise due to the finite number of measurement events used to
generate data patterns and are given by

ffiffiffiffiffiffi
Nn

p
for each bin n with population Nn

in the histograms, forming measurement outcome frequency distributions f ðxÞn

and f ðrÞn . The bin width is chosen such that each bin is sufficiently narrow to
adequately sample the underlying probability distribution24. For the FDP state
reconstructions, there are also errors originating from the estimates of Pmeas and V
used to determine |ax| for each probe state. Uncertainties of 5% in Pmeas and 1% in
V are estimated, which give a total error for each |ax| of 2.7%. For the ML state
reconstructions, the primary source of error is the uncertainty in detector efficiency
Zbhd. This must be independently determined and explicitly taken into account
in the ML estimation to compare with the FDP method, which automatically
incorporates the detector efficiency. Monte Carlo simulation enables evaluation
of the uncertainties for the estimated state density matrix elements and hence also
the fidelities when comparing the FDP approach with the results from ML
reconstruction. The Monte Carlo simulation takes into account statistical errors in
the data patterns and state frequency distributions (as described above), as well as
the uncertainty in the probe state amplitudes |ax|, which impacts the probe state
density matrices {sx} and hence the estimated state rfdp, equation (2).
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