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Correlating interfacial octahedral rotations with
magnetism in (LaMnO3þ d)N/(SrTiO3)N
superlattices
Xiaofang Zhai1,2, Long Cheng1, Yang Liu3, Christian M. Schlepütz3, Shuai Dong4, Hui Li1, Xiaoqiang Zhang1,

Shengqi Chu5, Lirong Zheng5, Jing Zhang5, Aidi Zhao2,6, Hawoong Hong3, Anand Bhattacharya7,

James N. Eckstein8 & Changgan Zeng1,2

Lattice distortion due to oxygen octahedral rotations have a significant role in mediating the

magnetism in oxides, and recently attracts a lot of interests in the study of complex oxides

interface. However, the direct experimental evidence for the interrelation between octahedral

rotation and magnetism at interface is scarce. Here we demonstrate that interfacial octa-

hedral rotation are closely linked to the strongly modified ferromagnetism in (LaMnO3þ d)N/

(SrTiO3)N superlattices. The maximized ferromagnetic moment in the N¼6 superlattice is

accompanied by a metastable structure (space group Imcm) featuring minimal octahedral

rotations (a�a� c� , aB4.2�, gB0.5�). Quenched ferromagnetism for No4 superlattices is

correlated to a substantially enhanced c axis octahedral rotation (a�a� c� , aB3.8�, gB8�
for N¼ 2). Monte–Carlo simulation based on double-exchange model qualitatively repro-

duces the experimental observation, confirming the correlation between octahedral rotation

and magnetism. Our study demonstrates that engineering superlattices with controllable

interfacial structures can be a feasible new route in realizing functional magnetic materials.
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O
xides interface offers a remarkably rich playground for
creating new quantum states and functional properties
utilizing different interfacial reconstruction mechanisms.

Extensive studies have been focused on introducing novel
physical properties at the interface1,2. Recently, oxygen
octahedral rotation (OOR) manipulation in artificial
superlattices was made possible through accurate OOR
detection based on cutting-edge scanning transmission electron
microscopy3,4 and synchrotron X-ray diffraction (XRD)5,6. First-
principles calculations have demonstrated that interface OOR can
be altered or entirely different from the bulk phase by proximity
effects, electronic instabilities or OOR-strain coupling7–10. Since
the metal–oxygen bonds have an important role in determining
the orbital order and exchange interactions, novel magnetic
modulations are expected as a result of new interface OOR.
Earlier experiments have found that novel magnetic properties
such as high-temperature antiferromagnetic phase11 and uniaxial
magnetic anisotropy12,13 in ultrathin oxide films could be
explained by lattice symmetry changes associated with different
OOR patterns. However, a comprehensive study to accurately
determine the OOR and its role in the interface magnetic
structure has not been attained and is therefore pressing.

We conducted a combined experimental and theoretical study
to find the correlation between the OOR and the magnetic
properties in (LaMnO3þ d)N/(SrTiO3)N (N¼ 2, 3, 4, 6, 8, 16)
superlattices. The maximized ferromagnetic (FM) moment is
found in the N¼ 6 superlattice accompanied by minimal
octahedral rotations. Quenched FM for No4 superlattices is
correlated to a substantially enhanced c axis octahedral rotation.
Monte–Carlo simulation qualitatively reproduces the experimen-
tal observation, and suggests that the OOR is strongly correlated
to the double-exchange interaction. Details of the sample growth,
the measurements and theoretical calculation are described in
Methods section. At room temperature, bulk LaMnO3þ d exhibits
either orthorhombic structure with a�a� cþ type octahedral

rotation (if Mn valence is close to 3þ ), or rhombohedra
structure with a�a�a� rotation (if Mn valence is higher)14–17.
SrTiO3 in bulk exhibits a cubic structure above 105K with no
octahedral rotations. The details of the Glazer notation can be
found in ref. 18. The strong symmetry breaking at the interface
makes the LaMnO3þ d/SrTiO3 superlattice a prototypical system
to investigate the impact of interface OOR misfit.

Results
Interface structure and magnetic properties. Figure 1a shows
the schematic stacking order of (LaMnO3þ d)N/(SrTiO3)N
superlattices grown on (001) SrTiO3 substrates. The atomic force
microscopy images in Fig. 1b reveal smooth terraces on super-
lattice surfaces with typical roughness of 1.5 Å. The sharp inter-
faces with roughness smaller than 2Å are confirmed from the
low-angle X-ray reflectivity (Supplementary Fig. 1a). All super-
lattices are coherently strained to SrTiO3 substrates (Fig. 1c and
Supplementary Fig. 2). Figure 1d shows the specular rods (H¼
K¼ 0) for all superlattices and a reference LaMnO3þ d thin film.
Pronounced thickness fringes with well-defined superlattice peaks
(indicated by arrows) can be clearly observed and their positions
agree well with the expected values based on the reflection high-
energy electron diffraction (RHEED) oscillations, confirming the
high-quality epitaxy and smoothness of the interface.

The magnetic properties are shown in Fig. 2a–c. Bulk
stoichiometric LaMnO3 exhibits A-type antiferromagnetic order
with a spin moment of 4 mB per Mn site. The thin films usually
exhibit weak FM with the chemical composition of LaMnO3þ d
due to cation vacancies or strain effect19–23. If interfacial
magnetic reconstructions are absent, Ms (saturation
magnetization) of the superlattices should be same as that of
the reference LaMnO3þ d thin film (Ms*), and Tc (FM transition
temperature) should slowly decrease with Tc* (a Jexn, mean-field
estimate owing to less neighbouring MnO2 planes at the interface;
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Figure 1 | Characterization of (LaMnO3þ d)N/(SrTiO3)N superlattices grown on SrTiO3(001) substrate. (a) The stacking order of LaMnO3þ d (LMO) and

SrTiO3 (STO) in the superlattices; (b) 2� 2mm2 atomic force microscopy images for N¼4, 6, 8 superlattices; (c) HL (left) and KL (right) reciprocal

space maps near (H,K,L)¼ (2,2,2) for the N¼ 2 superlattice. The intensity is shown on a logarithmic scale. The slanted lines that cut through the SrTiO3 Bragg

peak are because of the insertion of attenuators for X-ray measurements near Bragg peaks. (d) Specular XRD data (H,K¼0) for all the superlattices with

different period N and supercell (s.c.) numbers near L¼ 3, in reciprocal lattice units (r.l.u.) of SrTiO3. The spectra are vertically shifted for clarity. The peaks

associated with the superlattice modulation are indicated by arrows. The data from a 25 unit cell (u.c.) LaMnO3þ d film is also shown for reference.
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Jex is the exchange energy and n is the number of nearest Mn
atoms.). The N¼ 16 superlattice follows the simple estimate of
Ms* and Tc*, but the No16 superlattices exhibit large deviations
from the estimate. In particular, the N¼ 6 superlattice exhibits a
maximal Ms of 2.97 mB/Mn, whereas the N¼ 2 superlattice
exhibits distinctly quenched FM with Tc¼ 25K and
Ms¼ 1.14 mB/Mn. In Fig. 2b, the N¼ 2, 3, 4 superlattices exhibit
small shoulders below 15K possibly originating from weak Ti
FM24. The non-monotonic relationship between Ms and the
period N indicates a complex interplay between the multiple
degrees of freedom (lattice-charge-spin-orbital).

Mn valence analysis. We performed X-ray absorption fine
structure (XAFS) measurements at the Mn K-edge to probe its
valence change. The K-edge threshold energy continuously
increases with increasing Mn valence25. Details of the XAFS
analysis are given in the Methods section and Supplementary
Fig. 3. The derived Mn valences are shown in Fig. 2d. The Mn
valence exhibits a sudden drop for N48, but stays more or less

constant for No8. The increased Mn valence can be explained by
electron leaking from LaMnO3þ d to SrTiO3 that enhances the
FM magnetization. Such charge transfer phenomena have been
observed at previous LaMnO3/SrTiO3 interfaces although the
detailed mechanism differ in different samples26–29. However,
the strongly suppressed FM for No4 cannot be explained by the
valence change alone, because Mn valences in these superlattices
are fairly high (Bþ 3.14), and, in particular, much higher than
that of the N¼ 16 superlattice or the LaMnO3þ d thin film.
Therefore, interfacial reconstruction mechanisms other than just
charge transfer have to be invoked.

Analysis of octahedral rotation from XRD. It has been
demonstrated that OOR gives rise to a unique XRD intensity
profile of half-order peaks, allowing for accurate determination of
the rotation angles5,6. Experimentally, we systematically
measured 55 half-order Bragg peaks and labelled each with an
index number X (the correspondence between X and its
associated (H,K,L) values can be found in Supplementary
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Figure 2 | Correlation between magnetic and structural properties of the (LaMnO3þ d)N/(SrTiO3)N superlattices. (a) The hysteresis loops measured at

T¼4K along the in-plane direction. (b) The magnetization as a function of temperature measured after field cooling along the in-plane direction. The

cooling field was 1,000Oe and the magnetization was measured during warming up in a field of 100Oe. (c) The saturation magnetization (Ms) and the FM

transition temperature (Tc) as a function of the superlattice period N. Ms* and Tc* are the mean-field estimates without the presence of interfacial

reconstructions. (d) The Mn K-edge threshold energy measured from XAFS and the derived Mn valence (see Methods section). (e) Half-order Bragg peak

intensity for four representative samples (N¼ 2, 6, 16 and LaMnO3þ d film). Each point in the data corresponds to one certain half-order Bragg peak with

assigned index X, whose HKL values can be found in Supplementary Table 1. Half-order peaks with their X index ranging from [0,12], [13,34] and [35,55]

correspond to peaks with one of H,K,L half-integer, peaks with all three-half-integers, and peaks with two-half-integers, respectively. (f) Pseudocubic lattice

constant along the c axis (cp) as a function of superlattice periodicity N deduced from half-order Bragg peaks. The results for two types of half-order peaks,

representing DR and DO phase, respectively, are generated by averaging all measured peaks. The error bars indicate statistical variance.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5283 ARTICLE

NATURE COMMUNICATIONS | 5:4283 | DOI: 10.1038/ncomms5283 | www.nature.com/naturecommunications 3

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Table 1). The measured intensities of these peaks are summarized
in Fig. 2e for four representative samples, that is, the N¼ 2, 6, 16
superlattices and the LaMnO3þ d film. Since bulk LaMnO3þ d
exhibits strong OOR and bulk SrTiO3 assumes an ideal cubic
structure with no rotations at room temperature (where the XRD
measurements were conducted), it is reasonable to believe that
the half-order Bragg peaks originate mostly from LaMnO3þ d
layers and (possibly) interfacial SrTiO3. All the peaks are
classified into three types: peaks with one-half-integer and two
integer indices (for example, (H,K,L)¼ (0.5,1,2)), peaks with two-
half-integer and one integer indices (for example,
(H,K,L)¼ (0.5,1.5,2)) and peaks with three-half-integer indices
(for example, (H,K,L)¼ (0.5,1.5,2.5)). For the N¼ 2 and 6
superlattices, the one-half-integer and two-half-integer peaks
are essentially absent, and the three-half-integer peaks exhibit
very large intensity variations (up to almost two order of
magnitude). This can be naturally explained by OOR without any
in-phase (þ ) rotations5,30, while neither cation displacements
nor cooperative Jahn–Teller distortion could give rise to such an
intensity pattern (Supplementary Fig. 4 and Supplementary Note
1). Owing to the biaxial strain from substrates, these layers
actually assume distorted rhombohedral (DR) structures with
a�a� c� rotations5,6. For the N¼ 16 superlattice and the
LaMnO3þ d film, the Mn valence is close to þ 3, and
correspondingly, a distorted orthorhombic (DO) phase emerges
with in-phase rotation around one of the in-plane axis15–17,31,32,
resulting in obvious two-half-integer peaks. The observed one-
half-integer peaks cannot be produced by OOR, and are probably
caused by La displacements31, which are well known to occur in
bulk orthorhombic phases14.

The pseudocubic lattice constant along the c axis (cp) of the
DR and DO phases, determined from the half-order peaks

(Supplementary Fig. 5), is summarized in Fig. 2f. The cp values
derived from the three-half-integer peaks show a relatively small
variation with N (within the experimental uncertainty), and are
always smaller than those obtained from one-half-integer peaks.
This suggests that cp obtained from three-half-integer peaks
mostly originates from the DR phase, which is smaller due to
larger Mn valences (Fig. 2d). The larger cp from one-half-integer
peaks are attributed explicitly to the DO phase with Mn valence
close to þ 3. The coexistence of the DR phase (stronger FM and
probably near the interface) and DO phase (weaker FM and
probably deep inside the LaMnO3þ d layer) in NZ8 superlattices
naturally explains the decrease of the FM moment.

Since the half-order Bragg peaks in the Nr6 superlattices are
expected to arise from the a�a� c� OOR, the rotation angles
could be determined by numerically fitting the intensity pattern
according to the model in refs 5,6. In this model, the positions of
24 oxygen atoms in a 2� 2� 2 supercell were individually
calculated based on the OOR, and their X-ray scattering
amplitudes were added up coherently to yield the best fit to the
experimental peak intensities (Supplementary Note 1). Indeed, we
are able to obtain excellent fits to the experimental data and the
results are summarized in Fig. 3a. Our fitting shows that the
rotation angle a (around in-plane pseudocubic axis) increases by
0.4� from N¼ 2 up to N¼ 6, whereas the rotation angle g around
pseudocubic c axis decreases sharply from B8� for N¼ 2 to
almost zero for N¼ 6 (Fig. 3b). From the rotation angles in
Fig. 3a, we can determine the in-plane and out-of-plane bond
angles and lengths as shown in Fig. 3c (ref. 6). As the FM
exchange interactions in manganites depends sensitively on the
bond angle33, the marked reduction in in-plane bond angles for
No4 superlattices would decrease the amplitude for electron
hops, and thereby suppress the FM order.
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Double-exchange model simulation. To establish a qualitative
understanding between magnetism and OOR in our experiment,
we performed a theoretical study based on the double-exchange
model. We assume a clean system without charge non-stoichio-
metry and focus on the effect of OOR. The main physical effect of
OOR to magnetism is the change of the Mn–O–Mn bond angles,
as revealed in Fig. 3c, which tunes the exchange coefficients and
bandwidth. To simulate this effect, the experimental bond angles
are taken as input for calculating both the double-exchange
hoppings and superexchange intensity (see Methods section
and Supplementary Note 2). By using a set of proper parameters

(see Methods section), the T-dependence of magnetization
obtained in the simulation are shown in Fig. 4a. With decreasing
T, the N¼ 2 case shows a quenched magnetization, while others
become FM finally. The N¼ 4 and 6 cases give stronger FM
(larger M and higher Tc) than the N¼ 3 case. Despite the FM
ground state, all of them are insulating. All these features agree
with the experimental observations, implying that our model
simulation captures the main physics. For comparison, the
simulation is re-done for all superlattices by adopting the
bond angles of the N¼ 6 case. As shown in Fig. 4b, the simulated
magnetizations display contrasting results: all of them are
strongly FM with similar Tc and saturated Ms. The qualitative
differences between Fig. 4a,b suggest the crucial role of bond
angles, or OOR, to determine the magnetism of LaMnO3 layers.

In addition, the pure dimensional effect is also further checked
since in the small N cases the two-dimensional-like LaMnO3

layers might be different from the thicker three-dimensional-like
one. However, our simulation result (Supplementary Note 3 and
Supplementary Fig. 6) rules out the dimensional reduction as the
main driving force to the quenched magnetism in the N¼ 2
superlattice. As a conclusion of above simulations, the suppressed
magnetism in small N superlattices, especially N¼ 2, is closely
related to the decreased double-exchange interaction due to the
enhanced OOR.

Coherence and inhomogeneity of the octahedral rotation.
When the SrTiO3 spacer layer is very thin, the OOR of
LaMnO3þ d could be correlated between neighbouring super cells
via rotation or slight structural distortion in the SrTiO3 spacer
layer, leading to coherent interference of OOR. Experimentally,
we do observe interference fringes near the half-order Bragg
peaks for N¼ 2–6 samples (Fig. 5a), while the superlattice peaks
remain clearly resolved. The absence of such features in the
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N¼ 16 superlattice could be because of sample quality or phase
mixture. The observation of thickness fringes implies that OOR
are somewhat correlated across the interface, while the presence
of the superlattice peaks indicates that the OOR is modulated by
the superlattice period. The long-range structural coherence and
large out-of-plane rotation in the N¼ 2 superlattice conspire to
give rise to in-plane structural modulations with large wave-
length, as evidenced by clear satellite peaks, B0.02 reciprocal
lattice units away from the half-order peak along both H and K
directions (Fig. 5b). No obvious satellite peaks can be seen for
superlattices of N¼ 4 and above. Similar long-range structure
modulation has been observed in an (SrMnO3)2/(LaMnO3)1
superlattice34. Possible explanations of the satellite peaks include,
for example, distortion of oxygen octahedra, although more work
is needed to confirm the underlying mechanism.

The fitting results in Fig. 3 describe the average effect of all the
involved octahedra, including all MnO6 and the interfacial TiO6.
Although half-order peaks in N¼ 2 sample should be dominated
by interfacial OOR, inhomogeneity of OOR could exist for
superlattices with larger N and affect the data analysis. On the
other hand, as the X-ray scattering intensity from OOR scales
roughly with the square of sine of the rotation angle (see
equation (2) in Supplementary Note 1), we would expect that the
observed half-order peaks mostly come from MnO6 and the
interfacial TiO6 with large OOR. Therefore, even in the presence
of OOR inhomogeneity, the fitting results obtained for N¼ 2–6
superlattices should represent the systematic change of the
rotation pattern in LaMnO3þ d layers: the derived bond angles in
the N¼ 2 superlattice feature the interfacial OOR; those in the
N¼ 4, 6 superlattices reflect an average bond angles of both the
interfacial and inner LaMnO3 layers. Note that the in-plane bond
angles in Fig. 3 are larger than bulk LaMnO3, which could be
possibly attributed to the strain or hole doping, or an averaging

effect from interfacial TiO6 octahedra with larger bond angles. In
general, a rigorous model incorporating all the separate rotations
at different layers is very difficult to verify from X-ray data.
However, the simple OOR model with few fitting parameters
describes the experimental data fairly well, implying that the
model is a reliable approximation and captures the essential
physics.

Additional proof from (LaMnO3þ d)N/(SrTiO3)2 superlattices.
To further test the validity of simple OOR model and confirm the
correlation between OOR and FM, we performed similar mea-
surements and analysis for another set of (LaMnO3þ d)N/
(SrTiO3)2 (N¼ 2, 4, 6) superlattices with constant SrTiO3 thick-
ness (Fig. 6 and Supplementary Table 2). The constant and thin
SrTiO3 thickness in the supercell enables the observation of a
more systematic evolution of the OOR pattern, and minimizes the
inhomogeneity of OOR across the superlattice. Again only half-
order peaks with all H,K,L being half-integers are observed, whose
experimental intensity are summarized in Fig. 6a, together with
the fits based on simple OOR model. The good fits again indicate
that this simple model works fairly well. The deduced bond
lengths and angles are summarized in Fig. 6b. The in-plane
Mn–O–Mn bond angle shows an increase of B5� from N¼ 2–6,
while the out-of-plane bond angle decreases B3�. The Ms for
both sets of superlattices are plotted in Fig. 6c for comparison. It
is interesting to see that Ms in the (LaMnO3þ d)N/(SrTiO3)2
superlattices show similar increase with N as (LaMnO3þ d)N/
(SrTiO3)N superlattices, albeit in a smaller magnitude. This seems
to correlate well with the change of the magnitude in the Mn–O–
Mn bond angles (compare Figs 3c and 6b). Therefore, these new
results provide another direct experimental evidence of the cor-
relation between OOR and FM in these superlattices.
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Discussion
The observed change of the Mn–O–Mn bond angles for small
N superlattices could be understood in terms of the OOR
proximity effect: the octahedral connectivity in the out-of-plane
direction requires the bond angle of interfacial layers to be large
in the vertical direction; this results in a reduction of in-plane
bond angle (via an enhanced c axis rotation) as predicted by
density-functional theory calculations10. In a structurally similar
(4 unit cell (u.c.) LaNiO3/3 u.c. SrTiO3)N superlattice (bulk
LaNiO3 has an a-a-a- rotation), enhanced bond angle along the c
axis accompanied by reductions of bond angle along in-plane
axes has been observed in the interfacial LaNiO3 layer, which was
explained by a combined effect of octahedral connectivity and
epitaxial strain35. A careful examination of our data suggests that
the two cases could be similar, as evidenced by a larger
pseudocubic c lattice constant in both cases, that is, cp/ap41
(Fig. 2f). In our case, the increase of the out-of-plane Mn–O–Mn
bond angle with decreasing N is apparent in (LaMnO3þ d)N/
(SrTiO3)2 superlattices and less obvious in (LaMnO3þ d)N/
(SrTiO3)N superlattices. The detailed quantitative difference has
not yet been understood.

The current finding may provide a new insight to the ‘dead’
layer issue that are commonly found at the interface between
manganite oxides and many perovskite substrates36, and has
attracted renewed interests. In recent studies, orbital ordering,37

polar discontinuity38,39, magnetic coupling to the titanate layer,40

stoichiometry41,42 and so on, have all been evidenced to couple to
the interface magnetic property of the manganite layer, while a
unified scenario is still lacking. Some recent studies on
La0.67Sr0.33MnO3/SrTiO3 interfaces have merged on the finding
of increased amount of Mn3þ near the interface43–45 and 3z2� r2

orbital ordering irrespective of the strained state37,45,46. Our study
suggests that the reconstructed OOR at the interface is another
nontrivial factor in determining the interfacial magnetic property.

Methods
Sample growth and magnetic measurements. The (LaMnO3þ d)N/(SrTiO3)N
(N¼ 2, 3, 4, 6, 8, 16) superlattices, (LaMnO3þ d)N/(SrTiO3)2 (N¼ 2, 4, 6) super-
lattices and thin-film LaMnO3þ d samples were grown on SrTiO3 (001) single-
crystalline substrates using stoichiometric LaMnO3 and SrTiO3 targets by RHEED-
assisted pulsed laser deposition. Substrates with atomically flat TiO2 termination
were obtained after buffered Hydrofluoric (HF) acid etching and annealing at
950 �C for 1 h. All samples were grown at the substrate temperature of 700 �C with
an oxygen pressure of 3� 10� 5mbar. The laser energy density was B1 J cm� 2

and the pulse frequency was 1Hz. The superlattice periodic structure was con-
trolled by monitoring RHEED oscillations and confirmed by the XRD measure-
ments. After growth, samples were cooled down to room temperature subject to the
same oxygen pressure as during growth. Magnetic measurements were performed
in a Quantum Design VSM system from 4 to 200K. The electric transport mea-
surements are taken in a Quantum Design PPMS system and the results are shown
in Supplementary Fig. 7.

XAFS measurements and analysis. Mn K-edge X-ray absorption spectra were
collected on the XAFS station (1W1B beamline) of the Beijing Synchrotron
Radiation Facility. The X-ray energy was calibrated with a standard Mn foil. High
harmonics were eliminated by detuning the double-crystal Si (111) mono-
chromator. The XAFS measurements were conducted in fluorescence mode using a
19-element high-purity germanium solid-state detector at room temperature.

In the XAFS study, we measured the Mn K-edge spectra of polycrystalline
Mn2O3 and MnO2 powder samples as references to the superlattices and the
LaMnO3þ d thin film. In ref. 47, Mn K-edge spectra of stoichiometric MnO2,
Mn2O3, LaMnO3 and CaMnO3 were measured in the same condition. By aligning
the spectra of the Mn2O3 and MnO2 of our study to those in ref. 47, we are able to
correct the energy scale and make accurate comparison of the superlattice and
LaMnO3þ d thin-film spectra to the stoichiometric LaMnO3 and CaMnO3 spectra
from ref. 47 (Supplementary Fig. 3), by shifting our measured spectra with the
amount of energy difference discussed above. The threshold energy (E0) of the
K-edge depends on the Mn valence and continuously increases with increasing Mn
valence48. The dependence of E0 on Mn valence can be roughly fitted by a linear
law. E0 is identified by finding the energy at which the first-order differentiation
dI/dE is the maximum and the second-order differentiation dI2/dE2 is zero. I is the
intensity of the absorption spectra and E is the X-ray energy. In ref. 47, E0 of Mn3þ

in LaMnO3 is 6,450.6 eV and E0 of Mn4þ in CaMnO3 is 6,454.8 eV. E0 of the
superlattices and the LaMnO3þ d thin film is marked in the inset of Supplementary
Fig. 3a. The Mn valence of the superlattice samples and the thin-film LaMnO3þ d
sample is inferred using the linear relation between E0 and the valence of Mn, as
shown in Supplementary Fig. 3b.

XRD measurements. Synchrotron XRD measurements were carried out at Sector
33BM of the Advanced Photon Source at room temperature, using 15 keV X-rays
(l¼ 0.8266Å). Geometric corrections and background subtraction are taken into
account for all the data. All the reciprocal space maps, displayed as image plots
using a logarithmic intensity scaling, were generated as k-space projections from
the three-dimensional volume data sets acquired during a single linear scan using a
Pilatus 100 K area detector, without background subtraction.

Double-exchange model and Monte–Carlo simulation. Our model includes the
double-exchange between two eg orbitals, electron-lattice coupling (both the Jahn–
Teller modes and breathing mode), and nearest neighbour superexchange between
t2g spins. In past decades, this model has been proved to be successful to give a
realistic description of manganites49. Customarily, the double-exchange hopping
coefficient t0 (B0.4–0.5 eV) refs 49,50 is taken as the energy unit all through the
simulation. According to previous literature, a set of parameter (JAF0 , l) is chosen as
(0.095,1.2) in our simulation if not noted explicitly, where JAF0 is the coefficient of
superexchange for 180�Mn–O–Mn bond angle and l is the coefficient for electron-
lattice coupling. Then the effects of Mn–O–Mn bending bonds to both the double-
exchange and superexchange have been taken into account, the formulas of which
can be found in Supplementary Note 2. The lattice used in Monte–Carlo simulation
is 4� 4�N. For exchanges, the boundary conditions are periodic in the x–y plane
but open along the z axis to simulate the isolated manganite layers, while for lattice
distortions, full periodic boundary conditions are imposed since the oxygen
octahedra are all complete in the superlattices. Owing to the strain effect, the
LaMnO3 thin film on SrTiO3 gives quite close values (3.905/3.905/B3.91Å)
between pseudocubic lattice constants (a/b/c). For simplicity, a cubic structure is
adopted in our simulation, which is a reasonable approximation. The valence of
Mn is fixed as þ 3, without any non-stoichiometry or charge transfer between Mn
and Ti. Thus, our model is a clean system to verify the effect of OOR. The model
Hamiltonian is studied by a sophisticated method in combination of exact
diagonazition of the Fermion sector and Monte–Carlo simulation of spins and
lattice degrees of freedom. The magnetizations shown in Fig. 4 are extracted from
the spin structure factor at the G point. Kubo conductances are also calculated,
which shows insulating behaviour for all studied superlattices with above
parameters. More details of our model used here can be found in Supplementary
Note 2 and references therein.

To solve the Hamiltonian described in Supplementary Note 2, the Fermion
sector, including the double-exchange and electron-lattice coupling, is solved by
exact diagonazition. Although the spin and lattice degrees of freedom (S and Q) are
simulated by Monte–Carlo method49,51. 1� 104 Monte–Carlo steps are used for
thermal equilibrium and the following 1� 104 steps are used for measurement.
The Kubo conductance is calculated based on the linear response theory52. The
spin structure factor is calculated as:

C kð Þ ¼ 1
V2

X

r

X

i

Si � Siþ rexp ik � rð Þ; ð1Þ

where V is the number of total sites, or namely the volume. Periodic boundary
conditions are used here. The magnetization shown in Fig. 4 is calculated as

ffiffiffiffiffiffiffiffiffiffi
Cð0Þ

p
.
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