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Waveforms for optimal sub-keV high-order
harmonics with synthesized two- or three-colour
laser fields
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High-order harmonics extending to the X-ray region generated in a gas medium by intense

lasers offer the potential for providing tabletop broadband light sources but so far are limited

by their low conversion efficiency. Here we show that harmonics can be enhanced by one to

two orders of magnitude without an increase in the total laser power if the laser’s waveform is

optimized by synthesizing two- or three-colour fields. The harmonics thus generated are also

favourably phase-matched so that radiation is efficiently built up in the gas medium. Our

results, combined with the emerging intense high-repetition MHz lasers, promise to increase

harmonic yields by several orders to make harmonics feasible in the near future as general

bright tabletop light sources, including intense attosecond pulses.
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T
he bright, spatially coherent radiation emitted by a laser
can be found in numerous research applications, such as
spectroscopy, photochemistry, communications, imaging

and material processing. Because different applications often
demand light in specific spectral regions, large facilities have been
built that generate powerful broadband tunable light like
synchrotron radiation and free-electron laser. However, for such
lights to become widely available, it is desirable that they exist as a
tabletop equipment in individual laboratories.

From nonlinear optics, it has been well known for years that
laser light can be converted from one wavelength to another. In
particular, coupling of a laser with an optical waveguide can
generate a broadband supercontinuum1 spanning several octaves,
whereas the nonlinear interaction of infrared lasers with gas
media can generate high-order harmonics extending to soft and
hard X-rays2. High-order harmonic generation (HHG) in the
X-ray regime represents nonlinear optics at the extreme. When
amplified in intensity, HHG can offer valuable tabletop
broadband light sources. These light pulses, which can be
shorter than subfemtoseconds, can be used to probe the
structure and dynamics of atoms, molecules and materials with
unprecedented spatial and temporal resolution.

High-order harmonic generation is a universal response of
atoms and molecules when they are exposed to strong
femtosecond laser fields. The highest energy of HHG photon
emitted from a single atom is given by :oc¼ Ipþ 3.17UP, where
UP is the quiver energy of a free electron in the laser field, Ip is the
ionization energy of the atom and : is the reduced Planck’s
constant. With widely available Ti:sapphire lasers operating at a
0.8-mm wavelength, the HHG light has been limited to the
extreme ultraviolet (B100 eV). However, for a laser with intensity
IL and wavelength lL, UP � ILl2L. Thus, with mid-infrared lasers
of wavelengths of a few microns, the cutoff energy :oc can now
easily reach the X-ray region2.

Today the main limitation that prevents HHG from emerging as
a useful light source is its low conversion efficiency3. Most efforts to
enhance HHG yields with single-colour sinusoidal waves have been
directed at creating favourable phase-matching conditions in the
nonlinear gas medium to efficiently build up macroscopic high
harmonics4–6. Alternatively, enhancement of HHG can be achieved
by two-colour phase control, as first shown experimentally by
Watanabe et al.7 in 1994. Since then many such measurements
have been reported (Supplementary Discussion) using the
fundamental 800-nm laser with its second or third harmonic
where the phase between the two colours is locked but can be
tuned. Similarly, enhancement of HHG has been predicted in many
theoretical simulations (Supplementary Discussion). More recently,
advancement in optical parametric amplification (OPA) and optical
parametric chirped-pulse amplification (OPCPA) technology has
made it possible to perform coherent wavelength multiplexing of
ultra-broadband (over two or more octaves) pulses with full phase
and amplitude control, thus allowing the generation of any optical
waveform8–18. With so many ‘knobs’ accessible, it is of critical
importance to develop a general algorithm for optimal waveform
control for the efficient enhancement of high-harmonic generation
and for other strong field phenomena.

In this work, we address how to enhance HHG yields by one to
two orders by modifying the waveform of the laser to increase the
harmonics from each atom that are favourable for phase-
matching. This is accomplished by synthesizing ‘only’ two- or
three-colour laser fields without increasing the total laser power.
We remark that in an early study19 a ‘perfect wave’ was derived
that can be synthesized with five-colour fields. In comparison, our
optimized waveform generates higher harmonic cutoff than the
‘perfect wave’ (Supplementary Fig. 1 and Supplementary
Discussion) and is synthesized with only a two-colour field.

Results
Principle of waveform synthesis. High-order harmonics are
generated from an atom within each optical cycle. The generation
of harmonics can be described by a three-step model20,21: a
bound electron first tunnel-ionizes into the continuum; then it is
accelerated by the laser field; and finally it recombines with the
parent ion on reversal of the laser field, emitting a high-energy
photon. For each returning electron that leads to photon
emission, there are two trajectories, called the long and short,
depending on the excursion time. Harmonics from the
recombination of long-trajectory electrons accumulate large
phases. These harmonics are hard to phase-match, and they
usually do not contribute to the macroscopic HHG spectra.
Therefore, the strategies for modifying the waveform for optimal
macroscopic HHG are, first, to increase the laser’s electric fields at
ionization times to release more electrons that are needed for the
HHG and, second, to enhance short-trajectory electrons over
long-trajectory ones. The optimization should be carried out
under the constraint that the total ionization be less than 2–5%, to
avoid electron plasma in the gas medium that would defocus the
laser beam2. Another requirement is that the total energy of the
laser must not be greatly increased. Figure 1a depicts two
waveforms over one optical cycle: the single-colour sinusoidal
wave of the fundamental (black) and the waveform optimized
from synthesized two-colour fields (red). For an electron
returning with a kinetic energy of 2UP, the ionization time and
the recombination time for the long- (open circles) and short-
trajectory electrons (solid circles) are indicated for each
waveform. The inset gives the electric fields at ionization times
versus the returning electron energies. Comparing the two
waveforms, it is clear that the optimized one has higher electric
fields at ionization times that lead to more returning electrons,
and there are more short-trajectory electrons than long ones.
Figure 1b,c show the time-frequency wavelet analysis of HHG
calculated using quantitative rescattering theory22,23; see
Supplementary Methods for the quantitative rescattering theory
and the discussion of its validity. The strong enhancement of
short-trajectory electrons (labelled ‘S’ in the figure) and the
smaller attochirp (steeper slope)24 for the optimized wave is
clearly seen. In the simulation, the wavelength of the fundamental
was 1,600 nm and the wavelength of the secondary laser was
533 nm. The target was Ne. For the 1,600 nm alone, we chose an
intensity of 3� 1014W cm� 2. The carrier-envelope phase of
the fundamental was set at j1¼ 0. The optimization returned
the peak intensity for the fundamental as 1.98� 1014Wcm� 2

and 1.32� 1014Wcm� 2 for the secondary laser, which had the
optimized phase j2¼ 1.36p. Optimization was performed
such that the cutoff and total laser power for the single-colour
wave and the optimized wave were about the same. The
details of the optimization are given in the Supplementary
Information; see Supplementary Figs 2–9 for two-colour
optimization, Supplementary Figs 10–12 for three-colour
optimization, Supplementary Methods and Supplementary
Discussion. Laser parameters of waveforms obtained from the
optimization are given in Supplementary Tables 1–11. We
comment that optimization of harmonics only from short-
trajectory electrons was not considered in the previous study19.

Two-colour synthesized waveforms. To confirm that the one-
cycle result in Fig. 1 applies to realistic laser pulses, we synthesize
a three-cycle (16 fs of full width at half maximum), 1,600 nm mid-
infrared pulse and a visible 533 nm pulse with the same duration,
each with a Gaussian envelope. With the optimized pulse, we
calculated the HHG spectra generated from a single Ne atom, see
Fig. 2a. We observed an enhancement of about two orders in the
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optimized waveform over the single-colour case. In Fig. 2b we
show the HHG spectra after macroscopic propagation in the gas
medium. The HHG yields near the cutoff (at about 250 eV) from
the optimized waveform maintain two orders of enhancement,
but at lower photon energies near 100 eV the enhancement is
about three orders. The additional enhancement reflects that
there are more short-trajectory electrons contributing to HHG for
the optimized wave. Time-frequency wavelet analysis of the
harmonic spectra is shown in Fig. 2c–f. Clearly, at the single-atom
level the optimized pulse has much stronger contributions from
short-trajectory electrons (Fig. 2c). After propagation, all the
long-trajectory contributions vanish (Fig. 2d). In the single-colour
case, at the single-atom level the long-trajectory electrons dom-
inate (Fig. 2e); after propagation, the short-trajectory electrons
dominate, except for a small long-trajectory contribution for low-
energy electrons close to UP (Fig. 2f). This example demonstrates
the importance of optimizing harmonics from short-trajectory
electrons, not from both long- and short-trajectory electrons that
coexist in the total single-atom harmonics. Inspections of Fig. 2c,e
also show that multiple returns (the low-energy ‘bursts’ inside the
bigger high-energy ‘bursts’ from the single returns) are much
weaker for the optimized wave.

Three-colour synthesized waveforms. Can HHG yields be sub-
stantially further enhanced by synthesizing three sinusoidal waves
instead of only two? With the same simulation method, we
searched the optimized waveforms from three pulses with
wavelengths of 1,600, 800 and 533 nm. The top three sets of laser
parameters obtained from optimization (Supplementary Table 1)
resulted in nearly identical waveforms (see Fig. 3a) and they
generated more or less identical HHG spectra, as seen in Fig. 3b.
The single-atom HHG yields from this three-colour synthesized
waveform are only about two times higher than the yields from
the two-colour synthesized waveform examined in Fig. 2 (not
shown). For the optimized wave (Index¼ 1 in Supplementary

Table 1) in the three-colour case, the electric fields at the ioni-
zation times (inset of Fig. 3a) are larger for the long-trajectory
than for the short-trajectory electrons. In this example, the pre-
diction from the simple classical three-step model is incorrect.
That model fails to include quantum diffusion of electrons
between ionization and recombination. The diffusion effect is
roughly inversely proportional to the third power of the excursion
time, thus reducing more yields for long-trajectory electrons than
for short-trajectory electrons25. Time-frequency analysis of the
calculated HHG, which includes quantum diffusion, indeed
indicates that short-trajectory electrons dominate the harmonic
yields (Fig. 3c) for the optimized wave.

One important consequence of three-colour synthesis is that, in
each cycle, the optimized waveform generates only one high
energy harmonic burst, since the peak electric field of this
waveform in the second half cycle (see Fig. 3a) is 20–30% weaker
than the peak field in the first half cycle. Figure 3c shows a single
dominant burst of harmonic emission near the centre of the
pulse. The harmonics after propagation in the gas medium are
shown in Fig. 3d, at two gas pressures. For energies above 210 eV
until the cutoff near 250 eV, a continuum spectrum appears that
can support an isolated attosecond pulse with central energy at
around 230 eV. Figure 3d also shows that higher harmonics at the
higher pressure of 100 Torr drop faster than that for the 10 Torr.
This is caused by plasma defocusing since electron density in the
medium increases with gas pressure. (For other examples of
synthesizing three commensurate lasers, see Supplementary
Fig. 10 and Supplementary Discussion.)

Waveform synthesis in the laboratory. The optimization of a
waveform by synthesizing two- or three-colour fields usually
returns with a few sets of laser parameters that give comparable
enhancement of HHG, more so for three- than for two-colour
fields (see Supplementary Tables 1 and 2). For enhancing HHG,
any one of these sets of laser parameters can be implemented in
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Figure 1 | Principle of waveform synthesis for optimal high-harmonic generation. (a) Comparison of the electric fields over one optical cycle of the

fundamental for a single-colour (SC) sinusoidal wave and an optimally synthesized two-colour field. The optimized waveform (Opt. WF) is synthesized

from a fundamental and its third harmonic. The amplitude and phase of each colour field are chosen such that harmonics generated from the synthesized

wave are optimized with two constraints: (1) the emissions are dominated by the recombination of the so-called short-trajectory electrons; (2) the

total ionization fraction is restricted to below 2–5%. These two constraints guarantee that harmonics generated from each atom in the gas media are

favourably phase-matched. On the waveform curves, shown in open and filled circles, are the times when an electron is tunnel-ionized and when it

recombines to emit a photon, for an electron that returns with kinetic energy of 2 UP. Here UP is defined in terms of the single-colour sinusoidal wave. The

open circles are for long-trajectory electrons that have longer excursion time, and the filled circles are for short-trajectory electrons that have smaller

excursion time. The inset depicts the electric fields at ionization time versus the kinetic energies of the returning electrons for short- and long-trajectory

electrons. For the optimized wave, the field strengths at the ionization times are higher than the single-colour sinusoidal wave, and the fields for the

short-trajectory electrons are higher than the long ones. (b) The yields of harmonics emitted from the short- and long-trajectory returning electrons

versus the recombination times for the optimized wave, from time-frequency wavelet analysis of the calculated harmonics. (c) Same as b but for the

single-colour wave.
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the laboratory. For two-colour synthesis, we observed that the
wavelength of the second colour has to be close to the third
harmonic of the fundamental. If the second harmonic is used as
the second colour, the HHG enhancement is only about 10 times
instead of 100 times stronger (Supplementary Fig. 6). The
wavelengths of fundamental and secondary waves in the synthesis
do not have to be commensurate, nor do their bandwidths have to
overlap. For commensurate wavelengths, say, for three colours,
the synthesized wave repeats with a new optical period T, which is
the lowest integer multiple of the periods of all the three waves.
Optimization of waveform synthesis can then be carried out
only within this optical cycle T. If the wavelengths are incom-
mensurate, optimization has to be carried out for the whole
duration of the wave. In some laboratories, the wavelengths of the
wave fields to be synthesized are already fixed in their set-up.
Clearly changing the wavelengths in the experiment is harder
than changing the intensity and phase of each wave. In
Supplementary Information, we have performed optimization for
lasers reported in Huang et al.14 (Supplementary Fig. 9) and
Wirth et al.15 (Supplementary Figs 11 and 12 where the
generation of an isolated attosecond pulse is discussed) with
fixed wavelengths. Enhancement of HHG by two orders is

obtained if the waveforms in these experiments had been
optimized.

For each set of optimized laser parameters, small variations in
intensity of each wave have only small effects on the enhanced
HHG. However, the synthesized waveform depends critically on
the relative phases among the input waves. Simulation indicates
that if the relative phase deviates by more than 0.2 p from the
optimized value, the HHG yield begins to drop substantially
(Supplementary Fig. 3). In present-day laser technology, the jitter
of the carrier-envelope phase is about 0.1 p under good
conditions. Additional jitter may come from the time delay
between the pulses. Phase stability of each wave in the synthesis
will be the most important controlling factor in the experimental
realization of waveform optimization.

The optimized waveforms reported here are for optimization of
HHG with the constraint that the cutoff is not extended beyond
the limit set by the fundamental laser. If different criteria are
chosen for the fitness functions in the optimization, different
waveforms will be generated. For example, a very different
optimized waveform is obtained if long-trajectory electrons are to
be enhanced (Supplementary Fig. 8). The present optimization
algorithm is easily extended to include other criteria as well as
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Figure 2 | Harmonic generation by a sinusoidal and an optimized two-colour fields. The fundamental pulse is a three-cycle (duration is 16 fs), 1,600 nm

pulse. The secondary pulse is its third harmonic. For the single-colour wave, the peak intensity is taken at 3.0 I0 (I0¼ 1014Wcm� 2). The laser parameters

of the two colours for the optimized wave are given in the text. The total pulse energy for the synthesized wave is 10% higher than the single-colour pulse.

(a) Single-atom harmonic yields for the two waves, showing that the optimized wave is about two orders stronger than the single-colour one. (b) The

yields of high harmonics after macroscopic propagation. In the simulation, the lasers with beam waist of 40 mm are focused 2.5mm before a 1-mm long gas

jet. The gas pressure is 10 Torr. Blue curves in a and b show the smoothed spectra. (c) Time-frequency analysis of the bursts of harmonics generated by the

optimized wave at the single-atom level, showing short-trajectory electrons dominate over long-trajectory electrons. The weak signals (features inside each

‘burst’) at lower kinetic energies are contributions from multiple returns. (d) Time-frequency analysis of the bursts of harmonics after propagation in the

gas medium for the optimized wave. All the harmonics from long-trajectory electrons and from multiple returns disappear. This figure illustrates that

enhancing short-trajectory electrons from each single-atom response is essential for optimizing the yields of macroscopic harmonics. (e) Single-atom

harmonics generated using a single-colour sinusoidal wave, showing strong signals from long-trajectory electrons and from multiple returns (features

inside each ‘burst’). (f) Propagated harmonics generated using single-colour sinusoidal waves. This figure shows that most of the harmonics from

long-trajectory electrons and multiple returns do not survive phase-matching. Only harmonics from short-trajectory electrons are phase-matched. (o.c.

stands for optical cycle of a 1600-nm laser.)
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constraints in the simulation. When the synthesis with more
colours or direct manipulation of component phases of a
supercontinuum26 becomes practical, it would be interesting to
investigate whether further waveform control can significantly
enhance the HHG.

Finally, to generate usable lights with HHG the effect of phase
matching of the harmonics in the gas medium has to be further
studied. In a focused laser beam, the peak intensity of the pulse
varies in space, thus only the waveform near the laser focus is
optimized. In the Supplementary Information, we have carried
out a number of simulations to show that enhancement of
macroscopic HHG for an optimized wave versus the single-colour
one is equal to or higher than that at the single-atom level
(Supplementary Fig. 13). However, a more efficient optimization
of phase-matching is best done experimentally at individual
laboratories. With single-colour mid-infrared lasers, experiments
have shown that significant enhancement can be reached if the
harmonics are generated in a high-pressure capillary2. By
optimizing the gas pressure independently, harmonics generated
from a 2.0-mm laser versus from a 0.8-mm one have been observed
to increase by an order, as compared with harmonics generated
with the same pressure27. Unless proven otherwise, there is good
reason to believe that such additional enhancement can also be
accomplished by the synthesized waves with mid-infrared
lasers.

Discussion
Waveform synthesis using two- or three-colour fields provides
efficient modification of the electric field that enhances harmonic

yields from each atom by one to two orders (the factor is larger
for smaller total laser power) without much increase in the total
laser power. This result has an immediate impact on three
research areas in strong field physics. First, applications of mid-
infrared lasers for HHG from polyatomic molecules have always
been plagued by weak signals, such that data were taken near
saturation intensities28,29 where excessive ionization in the
medium will reshape the spectra. With waveform-optimized
lasers, HHG data can be taken at lower intensities such that the
experimental HHG spectra can be used to extract the target
structure of a polyatomic molecule directly. Similarly, waveform-
optimized lasers also can help laser-induced electron diffraction
experiments where the signal is proportional to the flux of laser-
driven returning electrons30. Laser-induced electron diffraction
offers potential for probing molecules with femtosecond temporal
and sub-Angstrom spatial resolution. Second, the one- to two-
order enhancement of HHG yields from waveform-optimized
mid-infrared lasers, if implemented with the emerging intense
high-repetition MHz lasers31, will increase photon yields
per second from what is available today by several orders, thus
making it possible to generate usable broadband tabletop light
sources in the laboratory. Since the optimized waves also readily
generate supercontinuum spectra, intense isolated attosecond
pulses are also generated after spectral filtering. Such isolated
attosecond pulses, covering photon energies from the extreme
ultraviolet to X-rays, can find many applications for probing
electron dynamics of atoms, molecules and condensed materials.
Finally, waveform-optimized lasers are expected to have
great impact on any intense laser-driven processes, including
THz generation32, laser-plasma interactions33 and particle
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acceleration. Clearly, progress in waveform synthesis and
optimization will have far-reaching effects on all aspects of
strong field physics in the coming years.
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