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Experimental demonstration of a graph state
quantum error-correction code
B.A. Bell1, D.A. Herrera-Martı́2, M.S. Tame3,4, D. Markham5, W.J. Wadsworth6 & J.G. Rarity1

Scalable quantum computing and communication requires the protection of quantum

information from the detrimental effects of decoherence and noise. Previous work tackling

this problem has relied on the original circuit model for quantum computing. However,

recently a family of entangled resources known as graph states has emerged as a versatile

alternative for protecting quantum information. Depending on the graph’s structure, errors

can be detected and corrected in an efficient way using measurement-based techniques. Here

we report an experimental demonstration of error correction using a graph state code.

We use an all-optical setup to encode quantum information into photons representing a four-

qubit graph state. We are able to reliably detect errors and correct against qubit loss. The

graph we realize is setup independent, thus it could be employed in other physical settings.

Our results show that graph state codes are a promising approach for achieving scalable

quantum information processing.
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Q
uantum error-correcting codes (QECCs) constitute
fundamental building blocks in the design of quantum
computer architectures1. It was realized early on that

using QECCs2–6 to counteract the effects of decoherence and
noise provides a means to increase the coherence time of the
encoded information. This enhancement is crucial for enabling a
range of speedups in quantum algorithms. Here, the threshold
theorem7 ensures that a quantum computer built with faulty,
unreliable components can still be used reliably to implement
quantum tasks using QECC techniques8,9, so long as the noise
affecting its parts is below a given threshold. A great deal of
effort is currently being invested in designing new quantum codes
to increase the threshold. In this context, a computational
paradigm, especially well suited for quantum error correction, is
measurement-based quantum computation10–12 (MBQC), in
which a resource state consisting of many entangled qubits is
prepared before the computation starts. In MBQC, an algorithm
is enacted by performing sequential measurements on the
resource state in such a way that the output of the computation
is stored in the unmeasured qubits. Photonic technologies13

have enjoyed enormous success in the generation of a variety of
resource states for MBQC14–18 and in the implementation of
computational primitives19–32. Importantly, QECCs can be
embedded in the resource states for MBQC in several
inequivalent ways33–35, and of particular theoretical interest,
due to their large thresholds, are the topological QECC
embeddings36–42. However, while there has been an
experimental proof-of-principle for topological encoding43,
overall these codes remain largely out of reach of current
technologies due to the size and complexity of the resources
required. An alternative and more compact approach is offered
by the theory of graph codes44–47, where very general QECCs can
be used within the framework of MBQC to account for different
noise scenarios. Graph codes are based on the stabilizer
formalism and are thus relevant for both MBQC and the
original circuit model.

In this work, we report the experimental demonstration of a
quantum error-correcting graph code. We have used an all-
optical setup to encode quantum information into photons
representing the code. The experiment was carried out for the
smallest graph code capable of detecting one quantum error,
namely the four-qubit code48–50 [[4,1,2]]. Here, [[n,k,d]] is the
standard notation for QECCs, where n denotes the number of
physical qubits, k is the number of logical qubits encoded and d is
the distance, which indicates how many errors can be tolerated
and depends on information about the error: a code of distance d
can correct up to I(d� 1)/2m arbitrary errors at unspecified
locations. On the other hand, if we know where the error occurs,
the code can correct up to d� 1 errors (equivalently erasures or
loss errors), or it can detect up to d� 1 errors at unspecified
locations (without necessarily being able to correct them). The
four-qubit code used in our experiment has a distance of d¼ 2, so
it can correct up to one quantum error or a loss error at a known
location and can detect up to one quantum error at an unknown
location. This has applications in several key areas of quantum
technologies besides the obvious goal of fault-tolerance51–54,
for example in communication over lossy channels, lossy
interferometry and secret sharing. Previous experiments have
realized error-correcting codes of compact size, such as the
3-qubit code in an ion-trap setup55. One of the key benefits of
enlarging the code space size to the four-qubit code is that it
enables more general errors, in particular loss errors, to be
corrected. While the four-qubit code has been realized before in
several works, most notably in ref. 56, these studies have been
restricted to quantum error-correction with the four-qubit code
using the original circuit model. For example, in ref. 56 the logic

gates were applied sequentially using a series of polarizing beam
splitter (PBS) elements in a linear optics setup.

Here we go beyond this approach and show how to realize the
code using a different experimental setup that can generate an
entangled graph state in the promising context of MBQC and
fully characterize its performance. One of the key distinctions of
our work compared with previous studies is that the graph state
resource for the code is generated first and then the quantum
information is teleported into it, following closely the model for
MBQC. This allows us to transfer arbitrary qubits into the code as
well as preparing the logical subspaces in a given state. This is an
important distinction, as the quantum information to be encoded
is untouched during the generation of the code resource. In this
way, if the entanglement process fails, we can start again without
the quantum information being lost, which means that our
work cannot be re-interpreted as the quantum circuit used in
ref. 56. We show that by measuring an external ancilla qubit, its
information in the Bloch sphere can be transferred into the logical
subspace of the code, which after undergoing a noisy channel can
be decoded to retrieve the original information with high quality.
These encoding and decoding operations are straightforwardly
extended to larger codes, as they rely on an appropriate graph
state connectivity45–47 and can always be achieved via local qubit
interactions. Importantly, this procedure also lends itself to
variations where the number of encoded qubits can increase (in
the case of larger codes) at the expense of reducing the distance d,
by modifying the shape of the total graph. This is relevant in
order to boost the code rate, k/n, for the erasure channel7,50.
Recent experimental work incorporating quantum error
correction using a measurement-based approach with tree-like
graph state resources has considered basic protection against
loss56 and for the case of phase errors using a box-type graph
where the location of the error is known57,58. In this work, we lift
these restrictions and experimentally demonstrate a graph code
using a different type of graph state that can be described
within the MBQC framework to provide protection against
general errors and loss, where the location of the error is known,
as well as the detection of general quantum errors where the
location is unknown. In our experiment, we generate the graph
state resource via the method of fusion59. This has several
advantages over interferometric methods19, such as overall
stability of the setup and, in principle, scalability to larger
graph states. We successfully demonstrate all elements of error
correction in our experiment, including in sequence the encoding,
detection and correction of errors, and we verify the quality of
each of these steps separately. Demonstrations of compact QECC
schemes, such as the one we have performed, are of the utmost
importance to the design and characterization of noise protection
in a number of different physical architectures at present. They
constitute the necessary first steps towards large-scale quantum
computers. Our experimental demonstration and its full analysis
contribute to helping achieve these first steps.

Results
Resource state characterization. The resource state we used for
demonstrating the four-qubit graph code was generated as shown
in Fig. 1a using two photonic crystal fibre (PCF) sources60–62,
which each produce correlated pairs of photons via spontaneous
four-wave mixing when pumped by picosecond laser pulses.
One of the sources was in a Sagnac loop configuration, such that
the PCF is pumped in both directions, with one direction
producing horizontally polarized signal-idler pairs, Hii2

�� His2
�� ,

and the other producing vertical pairs, Vii2
�� Vis2

�� . When the
two paths are combined at a PBS, the polarizations of a pair
outside the loop are entangled in a Bell state (see Methods),
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1
� ffiffiffi

2
p

Hj ii2 Hj is2 þ Vj ii2 Vj is2
� �

. The other source is used
to produce a heralded signal photon in the state þj is1 , where
�j i ¼ 1

� ffiffiffi
2

p
Hj i � V ijð Þ. This is overlapped with the signal

photon from the entangled pair at a PBS, performing a post-
selected fusion operation59,63,64. Conditioned on a fourfold
coincidence detection, this will leave a GHZ state on three of
the photons, 1

� ffiffiffi
2

p
jHis1 Hii2 Hj is2 þ Vj is1 Vj ii2 Vj

�� is2
� �

. This
state is equivalent to a three-qubit linear cluster state up
to local rotations, which are applied to the end qubits using
half-wave plates on the two signal modes to give
1=

ffiffiffi
2

p
ð þj is1 Hj ii2 j þ is2 þ j� is1 jVii2 j � is2Þ. Additional path

degrees of freedom are then used to expand the state into a
five-qubit linear cluster18,22. Here, the signal photons are each
split into two paths using PBSs, so that the path they take is
correlated with their polarization, and the transmitted and
reflected paths, p1 and p2, are labelled as |0i and |1i for the
additional qubits. To detect a path qubit in a particular basis, the
paths are recombined at a 50:50 beam splitter (BS), which
performs a Hadamard rotation on the path, independent of the

polarization. By shifting the relative phase y before this, using
tilted glass plates, the path qubit can be detected after the BS in
any state in the equatorial plane of the Bloch sphere given by
1=

ffiffiffi
2

p
0j i þ eiy 1ij

� �
, for example, the Pauli X and Y bases.

Measurements in the Pauli Z basis can be achieved by blocking
one or the other interferometer path, in which case the BS reduces
the measurement rate by 50%. The polarization qubits are
measured after the path qubits using a quarter-wave plate (QWP),
HWP and PBS chain, followed by a detection of the photon using
single-photon avalanche photodiodes. This allows us to measure
in the X, Y and Z basis65. The state after a path qubit is added to
each signal photon, with Hadamard rotations applied to the
signal polarizations using a HWP in each path, can be written as

clinj i ¼ 1

2
ffiffiffi
2

p ½ þj i 0j i þ �j i 1j ið Þ 0j i 0j i þj iþ 1j i �j ið Þ

þ þj i 0j i � �j i 1j ið Þ 1j i 0j i þj i� 1j i �j ið Þ�12345;
ð1Þ

which is the five-qubit linear cluster state shown in Fig. 1b,
where the polarization of photon s1 represents qubit 1
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Figure 1 | Experimental setup. (a) Setup used to generate the graph state resource consisting of the four-qubit graph code plus ancilla qubit. Two PCF

sources are pumped using a Ti:sapphire laser producing picosecond pulses at 720 nm. The first source produces a pair of photons in the state Hj ii1 Hj is1
and the second produces photons in the state 1

� ffiffiffi
2

p
Hj ii2 Hj is2 þ Vj ii2 Vj is2

� �
. The signal photons from the first pair are rotated to the state |þi using

a HWP and both signal photons are then fused using a (PBS). The polarizations of the signal photons are then rotated using half-wave plates to form the

three-qubit linear cluster state 1
� ffiffiffi

2
p

þj is1 Hj ii2 þj is2 þ �j is1 Vj ii2 �j is2
� �

, where the first idler photon is used as a trigger to verify a fourfold coincidence

signifying the generation of the state. The path degree of freedom of the signal photons is then used to expand the resource to a five-qubit linear cluster

state using a Sagnac interferometer, as shown in the dashed boxes and explained in the main text. (b) Five-qubit linear cluster state and local

complementation steps (LC1 and LC2) to generate the graph code plus ancilla qubit. Here, the vertices correspond to qubits initialized in the state |þi and
edges correspond to controlled-phase gates, CZ¼diag(1,1,1,� 1), applied to the qubits. The LC operations are performed using half-wave plates, QWPs and

phase shifters in the relevant photon modes and correspond to LC1¼A1B2(AA)3B4A5 and LC2¼A1A2B3A4A5, where A ¼
ffiffiffiffiffiffiffiffiffiffi
� iZ

p
and B¼

ffiffiffiffiffiffiffiffiffiffi
� iX

p
. In the

steps shown in the figure, the operation A (B) is depicted as a dashed (solid) outline around the qubit. The background shading in the final step represents

the quantum resource used to perform the quantum error-correction schemes. (c) Expectation values of the operators used to verify genuine multipartite

entanglement in the graph state. Here Õ corresponds to measurements in the O basis with the eigenstates swapped. The ideal values correspond to the

dashed line. All error bars in the figures are calculated using a Monte Carlo method with Poissonian noise on the count statistics65.
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(|H/Vi - |0/1i) and its path represents qubit 2 (|p1/p2i-
|0/1i). Similarly for photon s2, whose polarization represents
qubit 5 and its path qubit 4. The polarization of photon i2
represents qubit 3.

The linear cluster state is then transformed into the resource
state consisting of the graph code plus ancilla qubit according
to the local complementation rules for graph states, as shown
in Fig. 1b and described in the caption. The resulting graph
state can be written compactly as 1

� ffiffiffi
2

p
0j i3 þj Liþ 1j i3 � Lij

� �
,

where the logical states of the four-qubit graph code are
given by 0Li ¼j 1

� ffiffiffi
2

p
f�j i15 f�j i42 � c� i15 c�j i42

��� �
and

1Li ¼j 1
� ffiffiffi

2
p

cj þ i15 fþ i42 þ fþ i15 cþ i42
������� �

, with the Bell
states given by f� i ¼

�� 1
� ffiffiffi

2
p

0j i 0j i � 1j i 1j ið Þ and c� i ¼
��

1=
ffiffiffi
2

p
0j i 1j i � 1j i 0j ið Þ. Here the logical Pauli operators on the

code space are �X ¼ Z1Z2X4I5 and �Z ¼ Z1Z2Z4Z5, with �Y ¼ iXZ
(see Methods). The total resource state can be written more
explicitly as

cresj i ¼ 1

2
ffiffiffi
2

p
�
ð þj i þj iþ i �j i �j iÞ � y

�� i þj i þj iþ i �j i �j ið Þ

þ i þj i þj i� i �j i �j ið Þ þ yi
�� þj i þj i� i �j i �j ið Þ

�
12345;

ð2Þ

where the states � y

�� i ¼ 1
� ffiffiffi

2
p

0j i � i 1j ið Þ are the Y
eigenstates. To obtain this state from equation (1) in our
experiment, a QWP on idler mode i2 carries out the required
rotation for qubit 3. The transformations for the signal path
qubits are implemented by a relabelling of the |0i and |1i
paths to |þi and |�i, and p/2 phase-shifts using tilted glass
plates. To check the entanglement of the resource, we use
an entanglement witness as described in ref. 66. Here, for
any GHZ or linear cluster state, it is possible to detect genuine
multipartite entanglement (GME) using correlations taken
from just two local measurement bases. Since the resource is
locally equivalent to a linear cluster state, making corresponding
changes to the reference frames of the measurements provides
an appropriate witness. The measurements are X1X2X3X4X5

and Z1Y2Y3Y4Z5 (see Methods), which result in a witness
value of

hcWi ¼ � 0:15 � 0:03; ð3Þ
where the error has been calculated using a Monte Carlo method
with Poissonian noise on the count statistics65. The negative value
of the witness indicates the presence of GME, confirming that all
qubits are involved in the generation of the resource. The
individual expectation values forming the expression for the
witness are shown in Fig. 1c. Using seventeen measurement bases
(see Methods) we obtain the fidelity of the graph state of
F¼ 0.70±0.01.

In order to check the persistency of entanglement in the
resource, we measure the ancilla qubit using a Z measurement,
thus removing it from the graph. For the case that the state |0i3 is
measured, the remaining four qubits should be left in the logical
code state |þ Li, which corresponds to a ‘box’ cluster state,

þ Lj i ¼ 1
2

�
þj i þj i 0j i 0j i þ þj i þj i 1j i 1j i

þ �j i �j i 0j i 1j i þ �j i �j i 1j i 0j iÞ1245:
ð4Þ

Using the relevant witness in ref. 66 (see Methods) we find the
value

hcWi ¼ � 0:16 � 0:03; ð5Þ
showing GME persists even when the ancilla qubit is removed.
Using nine measurement bases (see Methods), we obtain the

fidelity of the box cluster state of F¼ 0.73±0.01, consistent with
the quality of the initial five-qubit graph state.

Encoding logical states. In order to encode an arbitrary ancilla
qubit a|0i3þ b|1i3 into the four-qubit graph code, we measure it
in the X basis as shown in Fig. 2a. This is a basic quantum
information transfer primitive in MBQC and propagates the
qubit into the code while at the same time applying a Hadamard
operation, so that the qubit is encoded in the Hadamard basis,
that is, a 0j i3 þ Lj i þb 1j i3 � Lj i ! �Xs3 a þ Lj i þb � Lijð Þ. Thus,
the encoding of an arbitrary state can be carried out up to a
logical byproduct operation �Xs3 depending on the ancilla’s mea-
surement result, s3¼ (0,1). Alternatively, an unknown qubit could
be entangled with the ancilla qubit via a controlled-phase
operation, CZ¼ diag(1,1,1,� 1), after which both the unknown
state and ancilla are measured in the X basis, transferring the
quantum information into the code in the computational basis.
We start our characterization of the graph code’s performance by
analysing the quality of the logical encodings for general input
states. To do this, we encode the probe states |0i, |1i, |þi and
|þ yi onto the ancilla qubit and measure it in the X basis, as
shown in Fig. 2b. This is sufficient to reconstruct the encoding
process completely as a quantum channel and fully characterize
its quality.

The probe state |0i is encoded onto the ancilla qubit using a
polarizer in the idler mode i2 with the qubit then measured in the
X basis. This propagates the probe state into the code as the state
|þ Li. This is the box cluster state, which we find to have a
witness value of hcWi ¼ � 0:11 � 0:02. For convenience, we
have taken the case where no byproduct is produced during the
encoding measurement, that is, s3¼ 0. The density matrix for the
encoded logical state is shown in Fig. 2b and is obtained by
measuring in the collective �X, �Y and �Z bases of the code,
corresponding to local measurements of the four qubits. The
fidelity with respect to the ideal case is F¼ 0.78±0.01. Similarly,
using a polarizer in the idler mode, we encode the |1i probe state
that is propagated into the graph code as |� Li, a state equivalent
to the box cluster up to Z rotations on each physical qubit, as
þ Li ¼ �Z � Lijj . A witness value for GME is found to be
hcWi ¼ � 0:10 � 0:03. The density matrix for this logical state is
shown in Fig. 2b and the fidelity with respect to the ideal case is
F¼ 0.77±0.01

For the |þi probe state, we find that it is naturally encoded
into the ancilla qubit in the total graph resource and upon
measuring it, we expect the logical state |0Li to be encoded
into the four-qubit graph. For the physical qubits, this
logical state can be rewritten as a rotated GHZ state,
1
� ffiffiffi

2
p

þj i �j i �j i þj iþ �j i þj i þj i �j ið Þ. Using a GME
witness with two measurement settings (see Methods) we find
hcWi ¼ � 0:16 � 0:03. The logical density matrix is shown in
Fig. 2b and the fidelity with respect to the ideal case is
F¼ 0.78±0.01. Finally, for the |þ yi probe state we use a QWP
in idler mode i2 and expect the logical state |� y,Li to
be encoded into the graph. The |±y,.Li states are the only
encodings not expected to show GME under ideal conditions;
instead they are biseparable and composed of two maxi-
mally entangled pairs 1

� ffiffiffi
2

p
þj i þj iþ i �j i �j ið Þ12 and

1
� ffiffiffi

2
p

þj i þj iþ i �j i �j ið Þ45. For the state |� y,Li we find
an entanglement witness value for qubit pair (1,2) of
hcWi ¼ � 0:83 � 0:01 and for pair (4,5) a value of
hcWi ¼ � 0:70 � 0:02. The logical density matrix is shown in
Fig. 2b and the fidelity with respect to the ideal case is
F¼ 0.88±0.01.

Using the logical density matrices for the encoded probe states
we are able to reconstruct the encoding process as a quantum
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Figure 2 | Graph code. (a) Encoding logical states. In order to encode the state of the ancilla qubit into the graph it should be measured in the X basis. This

propagates the information into the graph code while at the same time applying a Hadamard operation. Thus, the ancilla state is encoded in the Hadamard basis.

The background shading represents the quantum state nonlocally encoded into the qubits in the graph resource. (b) Logical density matrices for the four

different probe states |0i, |1i, |þi and |þ yi once propagated into the code. These are calculated from the expectation values of the joint four-qubit logical

operators �X, �Y and �Z. (c) Encoding as a channel. Here, the Bloch sphere transformation is shown for the encoding of arbitrary ancilla qubits (points on the surface

of the sphere) into the code. Note that a Hadamard operation has been performed on the qubit, corresponding to a rotation of 180 degrees about the X–Z plane.
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channel using quantum process tomography28. In this case, the
encoding transforms a single-qubit input state r for the
ancilla into the output density matrix e(r) in the graph code’s
logical qubit basis and can be formally written as
r ! e rð Þ ¼

P
ij wijMirM

y
j . Here, the operators Mi correspond

to a complete basis for the Hilbert space allowing any physical
channel to be described. We choose the Pauli basis, Mi¼ (I, X, Y,
Z), for the operators so that the elements of the w matrix define
the channel completely. This allows us to determine the effect of
the MBQC information transfer process on the original qubit due
to imperfections in the experimental graph resource. In Fig. 2c we
show the original Bloch sphere for arbitrary input ancilla states
and the final reconstructed encoded Bloch sphere using
the experimentally determined values from the w matrix. The
Bloch sphere is reduced slightly in diameter, but overall, the
structure closely resembles that of the original input states rotated
by a Hadamard operation. The process fidelity for the encoding
quantifies how close the experiment is to the ideal case and is
given by Fp ¼ TrðwexpwidealÞ=TrðwexpÞTrðwidealÞ, where wexp
describes the experimental channel and wideal corresponds to a
Hadamard rotation. From the channel reconstruction we find
Fp¼ 0.70±0.01.

Loss tolerance. With the logical encodings characterized we now
analyse the performance of the graph code for providing pro-
tection against the loss of any of the qubits when the location of
the loss is known. In order to see how the graph code tolerates
loss, consider the case in which qubit 4 is lost, as shown in Fig. 3a.
Due to the symmetry of the state, any other qubit can be con-
sidered to be lost, with the same recovery procedure applied upon
an appropriate rotation of the labelling of the qubits. In the case
that we lose qubit 4, the state of the remaining three qubits is
found by tracing it out. From the initial state a|þ Liþb|� Li
one finds the state r251 ¼ 1=2 fj ihfj þ f?ihf?����� �

, where |fi¼
a0(|0i|f�iþ |1i|c�i)þb0(|0i|cþiþ |1i|fþi) and |f>i¼
� a0(|1i|f�iþ |0i|c�i)þ b0(|1i|cþiþ |0i|fþi). Here, the
coefficients are a0 ¼ 1

� ffiffiffi
2

p
aþ bð Þ and b0 ¼ 1

� ffiffiffi
2

p
a�bð Þ.

By measuring qubit 2 in the Z basis, we obtain the
state r51 ¼ 1

�
2 jj ihjj þ j?j ihj?jð Þ, with ji ¼j XS2

1 a0 f� iþjð
b0 cþ i
�� �

and j?j i ¼ XS2
1 � a0 c�j iþ b0 fþ i

��� �
. Next, measuring

qubit 5 in the X basis produces the state
r1 ¼ 1

�
2ð nj ihnj þ n?j ihn?jÞ, with nj i ¼ n?j i ¼ Xs2ðZXÞs5

Zða 0j i þ b 1j iÞ. Thus, the final state of qubit 1 is a pure state
r1¼ |nihn|, from which, if we remove the Pauli operators via
feed forward rotations19, we can recover the encoded qubit and
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Figure 3 | Loss tolerance. (a) General scenario of loss tolerance for the four-qubit graph code. Here any one of the four qubits may be lost. In the first case,

qubit 4 has been lost by combining the two paths corresponding to the computational basis of the qubit. The encoded qubit can be recovered on

qubit 1 using the measurements and results of the remaining qubits 2 and 5 as described in the main text. (b) Path qubit lost with the recovery treated as a

channel. Here the Bloch sphere representation is used to show the original qubit states and the recovered qubit states. (c) The w matrix representation of

the channel, showing the real part (left) and imaginary part (right). Ideally the w matrix has only one component, the entry I I, corresponding to the

identity operation. (d) In the second case, qubit 1 has been lost by combining the two polarizations corresponding to the computational basis of the qubit.

The encoded qubit is recovered on qubit 5 using the measurements and results of the remaining qubits 2 and 4. (e) Polarization qubit loss with the

recovery treated as a channel. Here the Bloch sphere representation shows the original qubit states and the recovered qubit states. (f) The w matrix

representation of the channel, showing the real part (left) and imaginary part (right).
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re-encode it for further processing, thereby correcting the loss
error. Note that even when there is no loss one can use this
method to decode the qubit. A more rigorous description of the
recovery procedure using the stabilizer formalism is given in the
Methods.

In Fig. 3b, we show the original Bloch sphere for the ancilla
qubit and the recovered sphere after qubit 4 is lost and the
recovery is carried out with feed forward rotations. In our graph
state qubit 4 is a path qubit and we lose it by incoherently
combining the two paths corresponding to its computational
basis states. This loss of information about which path photon s2
populates is equivalent to tracing out qubit 4 from the system.
Here we have used the four probe states discussed earlier to
reconstruct the combined encoding and recovery channel. The
recovered Bloch sphere is relatively consistent with the original
sphere, corresponding to a process fidelity of Fp¼ 0.70±0.01,
although slightly squeezed in the Z and X directions. This effect
can be seen more clearly in the w matrix shown in Fig. 3c. Here
there is a strong component of the identity operation, as expected,
but also a non-negligible contribution of a Y operation due to the
non-ideal graph resource used in our experiment. The combina-
tion of the identity and Y operation gives rise to the squeezing
effect seen in the Bloch sphere, which maintains the position of
the Y eigenstates, but sends the X and Z eigenstates towards the
maximally mixed state 1=2I. As any state can be written as a
combination of these eigenstates, the corresponding components
will be affected similarly. The average fidelity for an encoded

and recovered qubit is found to be �F ¼ 0:82 � 0:01, and the
fidelities for the individual probe states are F0¼ 0.80±0.01,
F1¼ 0.77±0.01, Fþ ¼ 0.75±0.01 and Fþ y ¼ 0:92 � 0:01. In
Fig. 3d we consider qubit 1 as lost and show the Bloch sphere
representation of the recovery in Fig. 3e, as well as the w matrix in
Fig. 3f. In this case, qubit 1 is a polarization qubit and we lose it
by removing the PBS at the polarization analysis stage for photon
s1, thus combining the two polarizations corresponding to the
qubit’s computational basis states. We find a process fidelity for
the encoding and recovery of Fp¼ 0.73±0.01. The average
fidelity for an encoded and recovered qubit is found to be
�F ¼ 0:81 � 0:01, and the fidelities for the individual probe states
are F0¼ 0.80±0.01, F1¼ 0.77±0.01, Fþ ¼ 0.78±0.01 and
Fþ y ¼ 0:88 � 0:01. One can see in Fig. 3e the recovered Bloch
sphere is similar to that of the path qubit loss. However, the
squeezing is now mainly in the X direction due to the additional
presence of a Pauli Z operation, as can be seen more clearly in the
w matrix shown in Fig. 3f.

Quantum error detection and correction. Finally, we check the
graph code’s ability to detect general quantum errors. To see this
note that the logical code states are all common eigenstates of the
stabilizer operators S1¼Y1Z2Z4Y5¼K1K5, S2¼Y1Z2Y4Z5¼K1K4

and S3¼Z1Y2Y4Z5¼K4K2, where the Ki are the original graph
state stabilizer operators10,11. If there is a phase flip Z on any one
qubit of the code, as shown in Fig. 4a, we can locate the error by
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Figure 4 | Error detection. (a) Z errors on one of the qubits of the code flips the sign of the expectation value of one or two of the stabilizer (syndrome)

operators S1, S2 and S3, as can be seen in the tables showing the experimental values for the four probe states. The values range from 0.66 to 0.79 in

magnitude. The syndrome operators correspond to joint measurements, thus they can in principle be measured without disturbing the state. If no error

has occurred the code can continue to be used. If an error has occurred then it will be detected and the ancilla can be encoded again to allow the

continuation of a given protocol. If the error is known to be a Z Pauli operation then its location can be detected and corrected. If it is not, the ancilla must

be re-encoded to allow the continuation of a given protocol. (b) Y errors on one of the qubits of the code also flips the sign of the expectation value of one

or two of the syndrome operators. If the error is known to be a Y Pauli operation then its location can be detected and corrected. If not, the ancilla can

again be re-encoded. (c) X errors on one of the qubits of the code flips the sign of the expectation value of all the syndrome operators. Note that

if the location of the error is known, then the type of error can be inferred from the pattern of the expectation values of the syndrome operators and the

error can be corrected.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4658 ARTICLE

NATURE COMMUNICATIONS | 5:3658 | DOI: 10.1038/ncomms4658 | www.nature.com/naturecommunications 7

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


measuring all three stabilizers without disturbing the graph code
and correct the error as hSii¼ 1 and hSiZji¼ � 1 for a given j
and two of the stabilizers. Thus measuring the stabilizers
performs the role of syndrome measurements for the graph
code. In Fig. 4a, we show the values of the stabilizers measured in
our experiment when there is a Z error on each of the qubits for
all the probe states. The experimental values agree well with the
theory with all having the correct sign and an error of 0.02 or less.
As an arbitrary state can be written as a superposition of the
probe states, the results show that any state can be encoded into
the code and the error detected. Similar arguments about the
stabilizers hold for Y errors, as shown in Fig. 4b with the
experimental values measured for the probe states. On the other
hand, if there is a bit flip X on any one qubit, it can be detected by
measuring the stabilizers, but it cannot be located, since an X
error anticommutes with all stabilizers: hSiXji¼ � 1 for a given j
and all i, as shown by the experimental values in Fig. 4c. This is
the reason (along with a degeneracy in locating Z and Y errors)
why the code can only detect general quantum errors (X, Y or Z)
acting on an unknown single qubit, but cannot correct them. If an
error is detected via the stabilizers, then the state is discarded and
one starts a given quantum protocol again by re-encoding. On the
other hand, if the location of the error is known, then the type of
error (X, Y or Z) can be determined from the pattern of the
stabilizer results and the error can be corrected. All expectation
values of the stabilizers were found to be consistent with those
expected when there was an error occurring on any one of the
qubits for all probe states, thus confirming the graph code’s ability
to detect unknown single-qubit errors and correct known single-
qubit errors.

Discussion
In this work, we have reported the experimental demonstration of
a graph state code using an all-optical setup to encode quantum
information into photons representing the qubits of the code. The
experiment was carried out for the smallest graph code capable of
correcting up to one general quantum error or a loss error at a
known location, or detecting a general quantum error at an
unknown location. We showed that the graph state code can be
used to correct and detect errors in a photonic setting with the
results in close agreement with the theory and limited only by the
quality of the initial resource state. Our demonstration and
analysis provides a stimulating outlook for several applications of
photonic quantum technologies besides the obvious goal of fault
tolerance, for example in communication over lossy channels,
lossy interferometry and secret sharing. In general, the versatility
of graph codes, such as the one we have demonstrated, can
further be increased by generalizing them to codeword-stabilized
(CWS) codes67, where a given graph is supplemented with a
(possibly non-additive) classical code that corrects the classical
errors induced by the stabilizer structure. The theory of CWS
codes is the most general theory of QECCs to date, as it
encompasses graph codes, of which the four-qubit graph code we
have realized is the simplest instance, and non-additive codes.
Thus, the graph encoding we have demonstrated is amenable to
be used with the more general CWS codes and helps to open up
the playing field to more general classes of graph codes, allowing
for more efficient constructions of error correction with
intermediate size and applications in the near future. Moreover,
the graph code and MBQC techniques we have introduced here
can be readily transferred to other promising physical setups,
such as ion traps, cavity-QED and superconducting qubits.
The next steps will be to design and realize QECC schemes
using larger graph states45–47 with enhanced error-
correction capabilities70, and introduce concatenation methods

against loss errors68–70. Our experimental demonstration and
characterization of a four-qubit graph code’s performance
contributes to the first steps in the direction of full-scale fault-
tolerant quantum information processing.

Methods
Experimental setup. The fibre source used was a birefringent PCF similar to that
described in refs 28, 59. For a pump wavelength of 720 nm launched into the fibre’s
slow axis, signal-idler pairs are generated on the fast axis at wavelengths of 626 and
860 nm, respectively. This is a turning point on the phase-matching curve for the
signal wavelength, where the signal spectrum becomes uncorrelated with the pump
wavelength, and hence also with the idler spectrum. This means the signal-idler
pair are generated almost without spectral correlations in a pure quantum state,
and do not require tight spectral filtering to show quantum interference.

To generate entangled pairs from the Sagnac loop source, the fibre axes are
rotated at each end. With the fast-axis vertical at the output of the clockwise path,
this direction will produce vertical photon pairs, whereas at the output of the
counter clockwise direction the fast axis must be horizontal in order to produce
horizontal photon pairs. These orientations also result in the pump light being
launched into the correct (slow) axis. Since the pump is always cross polarized
from co-propagating photons, it exits the loop from the opposite port, helping to
filter it out of the signal and idler channels. A Soleil-Babinet birefringent
compensator in the pump beam before the source was used to tune the relative
phase between the two terms of the entangled state. The total generation rate of
entangled photons (detected twofold coincidences) used in the experiment is
B9,000 per second.

The other PCF source produces horizontally polarized signal photons, which
are rotated to diagonal before being fused with the signal from the entangled pair,
leaving the three-photon GHZ state. It is necessary to detect the unentangled idler
photon from this PCF source in order to herald the signal. The idlers from both
sources are filtered with tuneable bandpass filters of B4 nm bandwidth to remove
Raman emission and other background, while 40 nm wide bandpass filters are used
for the signals’ wavelength which is relatively free of background. The total
generation rate of signal-idler pairs of photons for the second PCF source is again
B9,000 per second. The signal photons from both sources are fused using a PBS,
which transmits horizontally polarized photons and reflects vertically polarized
photons, as described in ref. 59. In order to optimize the fusion operation, we first
set the polarization of the signal photons to diagonal polarization and send them
through the PBS, measuring the twofold coincidences of the output photons in
diagonal polarization together with heralding by the idlers, that is, a fourfold
coincidence. As the arrival time of one of the input signal photons at the PBS is
delayed we find an antidip (or peak) in the coincidence rate. The visibility of this
antidip provides a value that can be used to quantify the indistinguishability of the
signal photons. We obtain a visibility of B62%. This non-ideal visibility affects the
overall quality of the fused state via an effective dephasing decoherence channel on
the qubits, as described in more detail in ref. 59. The visibility of 62% is consistent
with the measured fidelity of the final five-qubit graph state resource generated in
our experiment.

After the fusion operation at the PBS, all four photons are collected into single-
mode fibres. The signals are then relaunched into path-qubit setups, which consist
of displaced Sagnac interferometers built around hybrid BS cubes, with half of the
coating a PBS and the other half a 50:50 BS. The photons are split at the PBS side,
so their path is correlated with their polarization, and then recombined on the BS
side, while the displaced Sagnac configuration gives intrinsic phase stability
between the paths. Each path contains a half-wave plate, to carry out the local
polarization rotations for state preparation, then a 3mm glass plate, which can be
tilted to change the phase and hence the measurement basis.

The signal photons are again collected into single-mode fibres and launched
into a polarization analysis section. The entangled idler also goes into the
polarization analysis section, but with space for additional optics (a wave plate or
polarizer) to be inserted to encode the ancilla qubit state. Polarization analysis
consists of a QWP, HWP, then a PBS, with both outputs of the PBS collected into
multimode fibres coupled to silicon avalanche photodiodes65. The heralding idler
goes straight to a detector. The detectors are connected to an eight-channel
FPGA(MT-30A FPGA multichannel coincidence counter from Qumet
Technologies: http://www.qumetec.com), which allows all combinations of
coincidence to be monitored within a nanosecond-timing window. The detected
rate of fourfold coincidences is B0.25 per second.

Entanglement witnesses. For the graph state corresponding to the code
resource plus ancilla qubit we use the following entanglement witness on qubits
1, 2, 3, 4 and 5

cW ¼ 9
4
I� 1

8
~XI~XI~Xþ ~XI~X~XIþ ~X~XI~X~Xþ ~X~XIIIþ I~X~XI~Xþ I~X~X~XIþ III~X~X

� �

� 1
4
ðZ~YI~YZþZ~Y ~YIIþ II~Y ~YZÞ;

ð6Þ

where Õ corresponds to measurements in the O basis with the eigenstates swapped.
This is a locally rotated version of the witness given in ref. 66 for a five-qubit linear
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cluster state and takes into account the local complementation operations described
in Fig. 1b of the main text.

For the box cluster we use the following entanglement witness on qubits 1, 2, 4
and 5

cW ¼ 2I� 1
2
ðZI~X~XþZ~Z~XIþ II~X~Xþ ~X~XIZþ ~X~XIIþ I~X~ZZÞ; ð7Þ

which is a locally rotated version of the one given in ref. 66 for a four-qubit linear
cluster state and takes into account the local complementation operations needed
to rotate it into a box cluster.

For the rotated GHZ state, we use the following entanglement witness on qubits
1, 2, 4 and 5

cW ¼ 7
4
I�ZZ~Z~Z� 1=4ðXXIIþXIXIþXIIXþ IXXIþ IXIXþ IIXXþXXXXÞ; ð8Þ

which is a locally rotated version of the one given in ref. 66.
For the maximally entangled qubit pairs in the logical encoding of the

probe state |þ yi, we use the following entanglement witness on qubit pair (1,2)
and pair (4,5)

cW ¼ I� ~YZ�XX ð9Þ

which is a locally rotated version of the one given in ref. 66 for a two-qubit linear
cluster state.

Fidelity operators. For the five-qubit graph state resource, we decompose the
fidelity operator into a summation of products of Pauli matrices as

F̂ ¼ cresij hcresj ¼
1
32

ð1þXXIII�XIXXI� IXXXI�XIXIX� IXXIXþ IIIXX

þXXIXXþYYXYY þZYYIIþZYYXXþYZYIIþYZYXX�ZZXYY

�YYZXI�YYZIX�XIZYY � IXZYY þZZZXIþZZZIXþ IIYZY

þXXYZY þZYIZY þYZIZY þ IIYYZþXXYYZþZYIYZþYZIYZ

�YYXZZþZZXZZþXIZZZþ IXZZZÞ:
ð10Þ

Obtaining the expectation value of this operator requires 17 unique measurement
bases: XXXXX, XXYYZ, XXYZY, XXZYY, XXZZZ, YYXYY, YYXZZ, YYZXX,
YZYYZ, YZXZY, YZYXX, ZYYYZ, ZYZZY, ZYYXX, ZZXYY, ZZXZZ and ZZZXX.

For the four-qubit box cluster state we decompose the fidelity operator as

F̂ ¼ þ Lj ih þ Lj ¼
1
16

ð1þXXIIþ IIXXþXXXX�YYXI

�YYIX�XIYY � IXYY þZZXIþZZIXþZYZY

þYZZY þZYYZþYZYZþXIZZþ IXZZÞ:

ð11Þ

Obtaining the expectation value of this operator requires nine unique measurement
bases: XXXX, XXYY, XXZZ, YYXX, YZYZ, YZZY, ZYYZ, ZYZY and ZZXX.

Stabilizer picture of the graph code. The stabilizer description of QECC is a
compact and powerful way to gain insight on the symmetries of quantum codes.
A different way of writing the original state of the ancilla qubit 3 is
cj i3 ¼ 1=2 Iþ exX3 þ eyY3 þ ezZ3

� �
cj i3, where e2x þ e2y þ e2z ¼ 1. In order to see

how this description is equivalent to the one introduced in the Results section, note
that |ci3¼ a|0i3þ b|1i3¼U|0i3 for some unitary operation U. The projector will
transform accordingly, that is, ci3hcj

�� ¼ U 0j i3h0jUy ¼ 1=2ðIþUZ3UyÞ ¼
1=2 Iþ exX3 þ eyY3 þ ezZ3

� �
, since the Pauli matrices, together with the identity,

form a basis for all single-qubit density matrices. Specifically, we have that, for
a ¼ cos y=2 and b ¼ eijsin y=2, the correspondence ex¼ sin y cos j, ey¼ sin y sin
j and ez¼ cos y.

The four-qubit graph code [[4,1,2]] is the common eigenspace of the stabilizer
operators S1¼Y1Z2Z4Y5¼K1K5, S2¼Y1Z2Y4Z5¼K1K4 and S3¼Z1Y2Y4Z5¼K4K2,
where the Ki¼Xi#jAN(i)Zj are the original box cluster state stabilizer
operators10,11. We have chosen �X ¼ Z1Z2X4I5 and �Z ¼ Z1Z2Z4Z5 to be the logical
Pauli operators acting on the code space, respectively. Note that this choice is
independent from the labelling. Encoding information can be seen as expanding
the operators acting on the ancilla qubit into the four-qubit box cluster state
plus ancilla. For simplicity, we fix ey¼ 0, and restrict the logical state to be in the
X–Z equator of the Bloch sphere. After tracking how the X and Z operators
are expanded, we then find the expansion of Y¼ iXZ and remove the restriction.

Note that the controlled-phase gate acts like Cij
Z IiXj
� �

Cij y
Z ¼ ZiXj and

Cij
Z XiIj
� �

Cij y
Z ¼ XiZj. Applying the operation CT

Z ¼ C13
Z C23

Z C43
Z C53

Z to the qubits of
the four-qubit box cluster and an ancilla qubit to make the initial five-qubit graph
state resource (code plus ancilla) will change the shape of the logical ancilla

operators as:

�Xe ¼ CT
ZX3C

Ty
Z ¼

Z2 Z4

X3

Z5 Z1

ð12Þ

�Ze ¼ CT
ZZ3C

Ty
Z ¼

I2 I4
Z3

I5 I1
ð13Þ

Here, on the right hand side of equations (12) and (13), we represent the logical
operations by assigning the local operators to each qubit’s spatial location in the
graph, as shown in Fig. 2a. We can reshape these expanded logical operators by
multiplying them by expanded versions of operators O for which the box cluster is
an eigenstate, that is, �X0

e � �Xe ~O, where the operators ~O ¼ CT
ZOCTy

Z :

�X0
e ¼ �Xe~S1 ¼

Z2 Z4

X3

Z5 Z1

:
Z2 Z4

I3
Y5 Y1

¼
I2 I4

X3

X5 X1

ð14Þ

and

�Z0
e ¼ �Ze ~K5 ¼

I2 I4
Z3

I5 I1
:
Z2 I4

Z3

X5 Z1

¼
Z2 I4

I3
X5 Z1

ð15Þ

where the operator ~K5 ¼ Z1Z2I4X5 is a cluster state stabilizer. Since the expanded
logical operators do not have support on qubit 4, measuring this qubit will
not be needed to decode the information, and it can thus be lost. Qubit 3 will be
measured in the X basis, which leaves the four remaining qubits in the state
cLj i ¼ 1=2ðIþ ez �Xþ ex�ZÞ cLj i. It is straightforward to see that the encoding
operation entangles ancilla qubit 3 with the qubits of the code, and its
measurement in the X basis effectively teleports the information into the code
space, after an application of a Hadamard operation (note the unit vectors ex and ez
are swapped in the encoded state). We can then find the logical Y operator using
the relation �Y ¼ iXZ to generalize the result. Of the qubits in the graph code, one
can see from the form of the logical operators that we need to measure qubits 2 and
5 in the Z and X basis, respectively. That will leave qubit 1 in the state |ci, modulo
some known Pauli corrections. This method constitutes a generalization to logical
subspaces of the task for propagating information through a resource state in
MBQC. The above method also illustrates how decoding can be achieved.
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