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Crossover from random three-dimensional
avalanches to correlated nano shear bands
in metallic glasses
Jon-Olaf Krisponeit1, Sebastian Pitikaris1, Karina E. Avila2,3, Stefan Küchemann1, Antje Krüger1 & Konrad Samwer1

When applying mechanical stress to a bulk metallic glass it responds with elastic and/or

plastic deformations. A comprehensive microscopic theory for the plasticity of amorphous

solids remains an open task. Shear transformation zones consisting of dozens of atoms have

been identified as smallest units of deformation. The connexion between local formation of

shear transformations zones and the creation of macroscopic shear bands can be made using

statistical analysis of stress/energy drops or strain slips during mechanical loading.

Numerical work has proposed a power law dependence of those energy drops. Here we

present an approach to circumvent the experimental resolution problem using a waiting time

analysis. We report on the power law-distributed deformation behaviour and the observation

of a crossover in the waiting times statistics. This crossover indicates a transition in the

plastic deformation behaviour from three-dimensional random activity to a two-dimensional

nano shear band sliding.
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I
n recent studies, avalanche dynamics and crackling noise1

have been proven to be important concepts for the description
of plasticity in solid media2–6. Apart from that, avalanche

dynamics are well known to occur in a large number
of fundamentally different systems, including stick-slip
phenomena like earthquakes, Barkhausen noise owing to the
pinning/depinning of magnetic domain walls and martensitic
phase transitions to name but a few7–9. Despite the variety of
systems and the complexity of effects, they all exhibit a power law
behaviour in the distribution of the avalanche sizes D(s)ps� k

with a critical exponent k. The occurence of a power law
distribution indicates the lack of a characteristic length scale and
the system to exhibit self-organized criticality10.

When exposed to mechanical stress, bulk metallic glasses
respond as a viscoplastic material, comprising elastic, anelastic
and plastic contributions. In creep experiments, a sudden jump to
a constant tensile stress level is exerted and the strain is recorded
as a function of time. Whereas the elastic deformation occurs
almost instantaneously when the external stress is applied, the
creep response depicts the anelastic and plastic contributions.

For the serrated flow in bulk metallic glasses, stress drops in the
plastic regime of stress-strain characteristics can be attributed
to the motion and arrest of single shear bands11. They have
been shown to occur either with a Gaussian size distribution,
showing chaotic behaviour, or to obey a power-law-type size
distribution, indicating self-organized criticality12,13. The arrest
and reactivation of so-called shear bands, planar regions of
highly-localized shear deformation with a thickness of about
10–200 nm (ref. 14), has been discussed as the origin of avalanche
dynamics in the serrated flow regime.

Such concepts might play an important role also on a smaller
length scale. In the picture of microscopic plastic events, like
‘shear transformation zones’ (STZs) as introduced by Argon15,
stress relaxation is localized in ensembles of about 100 atoms16,17.
Although, in mean field descriptions of viscoplasticity18, STZs are
often regarded to act independently, it is known that they indeed
carry a long-range elastic stress field-like an Eshelby inclusion19

causing cooperative effects among single plastic events20,21.
Finally, their collective activation is responsible for the
emergence of macroscopic shear bands22, and hence plasticity
and failure. On the length scale of such interacting local plastic

rearrangements, avalanche statistics have been studied in
theoretical efforts and numerical simulations2,4,23–26.

In this article, we report on our observations of power
law-distributed waiting times between instrumentally resolvable,
equidistant length values in the macroscopically anelastic creep
response recorded by Dynamic Mechanical Analysis (DMA).
Despite DMA lacking the resolution for directly recording the slip
lengths of single microscopic plastic events, this waiting time
analysis presents an approach, which gives insight into the
statistic properties of microscopic shear deformation. We first
analyse the influences of temperature and applied stress on the
waiting time distributions obtained from the creep experiments.
We discuss these results in terms of a potential energy landscape
(PEL)27–31, where the applied stress assists the thermal activation
of STZs by lowering the energy barrier and hence might also
facilitate cooperative shear processes, that is, the propagation of
an avalanche. Finally, a crossover between two distinct power law
regimes is observed in the waiting time statistics of long-time
measurements. We argue that this crossover indicates an
exhaustion of random stress-assisted avalanche-like events in
three dimensions, which is followed by thermally-activated
correlated events like nano shear bands in two dimensions.

Results
Creep curves. Figure 1 shows the long-time expansion behaviour
of a Pd77.5Cu6.0Si16.5 bulk metallic glass ribbon during a typical
creep experiment as described in the methods section. As illu-
strated in the inset, the machine detects sample length changes
with a resolution of 15 nm. Of course, the discreteness of these
values does not imply the sample length to actually change in
15 nm steps. Although smaller length changes remain undetected,
they do accumulatively contribute to the 15 nm steps. Also note
that the creep curve is obviously afflicted with some instrumental
noise comprising up and down jumps—we want to emphasize
that actual down jumps, that is, a temporary shortening of the
sample under applied tensile stress—would be very counter-
intuitive. Nevertheless, one recognizes at first glance the strain
evolution to tread a rather bumpy path. The inset of Fig. 1 shows
an aperiodically-alternating behaviour with high and low strain
rates instead of a smooth creep curve.
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Figure 1 | Creep curve. A static force was applied to a Pd77.5Cu6.0Si16.5 ribbon and held constant for 1 week while recording the sample’s expansion

as a function of time. An irregular, step-like deformation behaviour in the microstructure can be observed as visible from the inset wherefore an

analysis of waiting times between successive machine resolution steps was motivated.
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Since we are unable to investigate the microscopic dynamics of
plastic deformation directly by measuring slip lengths, we
perform a waiting time analysis by computing the temporal
distance Dt between each pair of successive 15 nm length steps.
We set up statistics of waiting times by plotting their frequency of
occurence in a histogram.

By defining the step positions in the experimental data (see
methods section), it is possible to distinguish the actual signal
from the underlying machine’s noise. Then the distribution of
waiting times can be easily evaluated.

Short-time measurements. For the short-time measurements the
force was kept constant for 180min and the strain was recorded
as a function of time. Figure 2 shows the distribution of waiting
times for different stresses and temperatures, respectively.
At 320 �C, all distributions obey a power law followed by an
exponential decay for long waiting times. As illustrated by the
trend line, a power law exponent of t¼ � 1.4 holds for all curves
at this temperature. Increasing the stresses up to a characteristic
stress sc, the distributions tend to decay at shorter waiting times.
Beyond scE15MPa no significant further shift of the cutoff
positions is observed.

In addition, the waiting time distributions are sensitive to
temperature and tend to exhibit significantly shorter average
waiting times when approaching the glass transition temperature.
At 330 �C, the characteristic exponent becomes difficult to
determine owing to an earlier cutoff, lying still in the
neighbourhood of t¼ � 1.4. The characteristic stress sc is
reduced to B10MPa. In addition, we see a form of onset of a
plateau for small stresses, delaying the descent of the distribution
towards higher waiting times.

Long-time measurements. We used the same procedure as for
the short-time measurements except for applying the creep force
for 1 week instead of 180min. The corresponding experiments
were taken at T¼ 320 �C. We see the waiting time distribution
for the entire experiment extending towards longer waiting times
(see Fig. 3, grey curve), which simply reflects the contribution
from the later part of the creep experiment where the strain
increase is continuously slowing down. In contrast to the short-
time measurements, no cutoff can be seen as the creep extension
slows down and long waiting times gain in statistical weight in the
later part of the curve.

We finally report on a crossover observable in the waiting time
distributions obtained from long-time creep measurements. By
looking at the data before and after 100min experimentation time

separately, a crossover is revealed. We observe a transition from a
steeper descent (red curve) to a region declining more flatly (green
curve). The crossover between two distinct power law regimes is
illustrated by the trend lines in Fig. 3. The early part exhibits an
exponent of t(1)¼ � 1.4±0.1—as expected, since it is essentially
a short-time measurement. In the second power law regime,
which originates from the data recorded after 100min, the
exponent is changed to t(2)¼ � 0.8±0.1.

Discussion
The algorithm extracting the step positions in time from the
experimental data sets gives results where each two successive
data points are displaced by 15 nm. The waiting time here is the
horizontal interval of the two steps, that is, the time elapsed to
reach a constant length change of 15 nm.

First, we note that nearly instantaneous elastic deformation is
not depicted in our creep curves but has appeared already before.
Furthermore, the anelastic regime studied here is far off the
region where macroscopic- and system-spanning shear bands
appear, both in time and stress. It is known from simulational
approaches that correlated STZ activity, that is, inhomogeneous
deformation, typically occurs at temperatures below Tg and high
stresses23,32. Hence, we attribute the 15 nm length steps to the
occurrence of the so-called ‘nano shear bands’. This term
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Figure 2 | Short-time measurements. Waiting time distributions obtained from creep curves at 320 �C (a) and 330 �C (b). A power law behaviour with a

stress- and temperature-dependent cutoff is found. Beyond a characteristic stress sc, the cutoff exhibits no further shift.
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Figure 3 | Long-time measurements. The waiting time distribution can

be split up into two power law regimes with different slopes, originating

from the first 100min of the creep curve and the subsequent part.
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expresses the cooperative behaviour of STZs, which arrange in
small shear planes, as studied in recent theoretical works33,34. We
want to emphasize again that the restriction to this 15 nm length
changes is purely a consequence of the machine resolution. One
must of course assume nano shear bands to occur at various sizes.
An easy estimation illustrates that a 15 nm length change usually
cannot be attributed to a single event only: On the assumption of
a typical STZ size of about 1000 atoms or 3.5 nm diameter, which
exhibits a length change of 2% (the yield strain), a 15 nm length
change would correspond to a simultaneous activation of E200
layers of STZs (or E300 in form of a shear band oriented 45�
towards the stress axis) in a single process.

The formation of nano shear bands, where many STZs are
cooperatively activated under stress, can be regarded as an
avalanche-like process where the activation rate of STZs is
significantly enhanced during the avalanche process. Thus, the
waiting time is regarded as the time needed to establish a certain
amount of nano shear bands in the sample. The observed
variations in the waiting time or, analogously, the sometimes-
ragged form of the creep curve can then be attributed to a
changing activation rate of STZs, that is, avalanche dynamics.

According to the PEL model27–31 temperature and stress both
may drive the system over barriers. Hence, at a given
temperature, the applied stress plays an important role. Only
when assisted by the stress, the random thermal activation of
STZs might trigger small plastic avalanches in certain directions
mediated by short-range interactions23. These nano shear bands
are created independently and are distributed randomly in the
three-dimensional sample.

It is known from avalanche simulations that large events come
almost to an arrest several times before they finally stop, showing
them to be made up of several smaller subavalanches1,35. In our
case, one must take into account that the maximum avalanche
size is probably confined by the inhomogeneous mechanical
properties of Pd77.5Cu6.0Si16.5, as seen in elasticity maps, where
spatial distributions of the elastic moduli have been found on a
nanometre scale21,36,37.

With increasing stresses, larger avalanches are initiated and the
activation rate of STZs is increased—therefore the probability of
long waiting times gets reduced. However, the cutoff revealed in
the short-time measurements cannot be ascribed to a complete
extinction of long waiting times as we see a continuation of the
power law regime in the long-time measurements at identical
experimental conditions. This indicates the cutoff to have its
origin primarily in the temporal restriction of the short-time
experiment. Qualitatively, it can be related to stress-dependent
cutoffs as observed in the slip length distributions in other
works1,2. This comparison agrees in particular with the observed
shift behaviour of the cutoff position and its saturation at the
characteristic stress sc (see Fig. 2). Approaching this stress, the
cutoff in avalanche size distributions vanishes as system-spanning
events set in ref. 2. Intuitively, just the opposite must hold for
waiting times, where the cutoff becomes more significant for
increasing stresses because the stress-driven cascading activation
of STZs proceeds more rapidly. Before the crossover, at sc, an
avalanche does not come to an arrest before having formed the
largest uncorrelated shear event possible. These independent
processes determine the cutoff position and no further shift is
expected. Increasing temperature, the system can explore the PEL
more easily and, hence, the formation of even larger avalanches is
facilitated. This assumption is in good agreement with the
experimentally observed earlier cutoff and lower sc (see Fig. 2).

The crossover to another power-law-type distribution in the
long-time experiments indicates an exhaustion of the mechanical
stimulation of these three-dimensionally uncorrelated nano shear
bands. The short-time regime, where the mechanical stress assists

STZ activation owing to short-range cooperativity among STZs, is
followed by a regime dominated by stochastic thermal activation
of such STZs that are not able to cause an additional avalanche
in their environment. Nevertheless, the increased density of
preformed nano shear bands might still lead to long-scale
cooperative behaviour among them for even longer times or at
higher stresses and ultimately result in the formation and motion
of macroscopic shear bands. We hence ascribe the ongoing
anelastic deformation in the long-time regime to the cooperative
motion of a percolative network of preexisting nano shear bands.
Collective stick-slip-like processes might explain why the long-
time behaviour still exhibits avalanche dynamics, but now with a
different characteristic power law exponent. This cooperative
motion is a typical two-dimensional process, which continues the
deformation via thermal activation.

To conclude, the experimental data agrees with the assumption
of a crossover from an uncorrelated nano shear band regime,
formed by the stress-assisted short range cooperativity of STZs,
to a regime dominated by collective nano shear band activity. In
the first regime, large but three-dimensionally uncorrelated
clusters are frequently created in avalanche-like events. Their
size distribution determines the extension behaviour and its
statistical properties. The observed crossover reflects an exhaus-
tion in the formation of such nano shear bands. The subsequent
slow long-time creep behaviour is owing mainly to thermally-
activated cooperative motion, a two-dimensional process loca-
lized in a network of preformed nano shear bands.

Methods
Sample preparation. The measurements were performed on ribbons of a
Pd77.5Cu6.0Si16.5 metallic glass composition fabricated using arc-melting procedure
followed by melt-spinning method. The ribbons’ thicknesses are about 40 mm
whereby this value can vary within one batch. The glass transition temperature of
the Pd77.5Cu6.0Si16.5 samples is located at 340 �C.

DMA creep measurements. For the experimental procedure the samples were
mounted on two aluminium holders on either side and then clamped into a
PerkinElmer DMA 7. A small pre-stress of 1–1.5MPa was applied to keep the
ribbons stable while heating them up to temperatures between 320 and 330 �C at a
heating rate of 40 Kmin� 1. Then the mode was switched to creep at a certain force
for 180min or 9999min (short-time and long-time experiments), respectively.
By applying the force a corresponding tensile stress is induced on the sample.
The DMA 7 is located inside a glove box to avoid contamination of the sample.

Waiting time analysis. As shown in Fig. 1 machine noise and resolution create
the demand for an algorithm, which defines single length/time pairs for each 15 nm
step in the data set. We first collect the temporal occurences of each length value
into a separate data set. As sample contractions appear unreasonable under applied
tensile stress, we assume a monotonic increase of strain-overlapping data sets
ascribed to the machine noise. To detect the exact step positions for such overlaps,
the algorithm compares the percentages of data points before and after the step
positions for both data sets. In detail, the step positions are assigned to that specific
time value when, for the first time, less data points are remaining from the
upcoming step than data points have passed from the preceding step. The waiting
times studied throughout this report correspond to the time intervals between such
step positions. The errors bars for the exponents were estimated by 95% confidence
intervals.
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