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Activation pathway of Src kinase reveals
intermediate states as targets for drug design
Diwakar Shukla1,2, Yilin Meng3, Benoı̂t Roux3,4 & Vijay S. Pande1,2

Unregulated activation of Src kinases leads to aberrant signalling, uncontrolled growth and

differentiation of cancerous cells. Reaching a complete mechanistic understanding of large-

scale conformational transformations underlying the activation of kinases could greatly help

in the development of therapeutic drugs for the treatment of these pathologies. In principle,

the nature of conformational transition could be modelled in silico via atomistic molecular

dynamics simulations, although this is very challenging because of the long activation

timescales. Here we employ a computational paradigm that couples transition pathway

techniques and Markov state model-based massively distributed simulations for mapping the

conformational landscape of c-src tyrosine kinase. The computations provide the thermo-

dynamics and kinetics of kinase activation for the first time, and help identify key structural

intermediates. Furthermore, the presence of a novel allosteric site in an intermediate state of

c-src that could be potentially used for drug design is predicted.
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P
rotein kinases are a family of enzymes that catalyse the
transfer of the g-phosphate group from ATP to the
hydroxyl group of specific serine, threonine or tyrosine

residues. Their ability to alternate between catalytically active
(upregulated) and inactive (downregulated) states in response to
specific signals provides a central switching mechanism in cellular
transduction pathways, such as in those regulating cellular
growth, proliferation and differentiation1. Deregulation of
kinases can lead to uncontrolled cell proliferation and
malignant transformation as observed in numerous cancers1,
which makes them an important target for therapeutic
intervention2,3. Selective inhibition of kinases using small
molecule inhibitors is gaining importance as an effective
therapeutic regimen for treatment of a wide range of cancers
with the successful approval of imatinib (Gleevec) for treating
chronic myeloid leukaemia4,5. However, despite these
encouraging results, this remains very difficult for a number of
reasons. Most of the small molecule inhibitors target the ATP-
binding pocket in the active/inactive state of the kinase, which is
highly conserved owing to the functional similarity between
kinases, and therefore provides limited selectivity. Furthermore,
targeted protein kinases develop resistance owing to the point
mutations in the important structural regions such as the drug-
binding site6–9. One of the strategies to overcome molecular
resistance and selectivity issues involves targeting kinases by
allosteric inhibitors that bind outside the ATP-binding pocket
and affect kinase activity by eliciting long-range conformational
transformations. While this represents a very promising avenue,
the design of allosteric inhibitor is challenging because it not only
requires identification of novel allosteric binding sites but also a
detailed dynamical picture of allosteric network of residues
involved in long-range coupling and activation. Therefore,
mechanistic and structural insights into the molecular aspects
of kinase conformational change are desired for rational design of
selective and robust kinase inhibitors6,9.

The c-src kinase from the Src family of cytoplasmic tyrosine
kinases presents an ideal system for mechanistic investigations
not only because of its medical and historical relevance10 but also
because of the availability of extensive experimental data related
to this kinase including several crystal structures of both inactive
and active states11. The key structural differences between active
and inactive states are the changes in the orientation and
conformation of the C-helix in the amino-terminal lobe and the
unfolding of the activation loop (A-loop) in the carboxy-terminal
lobe (Fig. 1). In the inactive state, the A-loop with
unphosphorylated Tyr416 is closed and folded to occlude
substrate entry into the active site. In the active state, an
outward movement of the A-loop opening up the active site to
substrate binding is accompanied by an inward rotation of the
C-helix recruiting the residues needed to form a catalytically
competent active site. The function of the catalytic domain of
c-src is to phosphorylate the tyrosine side chain in a downstream
substrate protein, which can also include the Tyr416 in the
A-loop from another kinase. It is the process of
transphosphorylation of Tyr416 in the A-loop via a bimolecular
encounter with another active Src kinase that ‘locks’ the domain
in its catalytically active state. To become accessible as a substrate,
the A-loop of an inactive kinase must transiently adopt
conformations that expose Tyr416 to the solvent. These large-
scale conformational changes in the structural elements of kinases
are also accompanied by subtle changes in the positions and
interactions of specific residues. The active and inactive crystal
structures of c-src tyrosine kinase show switching of hydrogen
bonding partners of Glu310 from Arg409 to Lys295 (Ozkirimli
et al.12,13), and the alignment of residues comprising R-spine14 on
activation (Fig. 1). These crystal structures reveal differences

between inactive and active conformations but fail to provide
insights into the activation mechanism, presence of key
intermediates along the activation pathway, the ensemble of
pathways connecting the two end states and the timescales of
activation/deactivation5. It is critical to understand the molecular
underpinnings of the kinase activation process to relate these
static structures to the kinase function and to provide levers for
controlling the activation of aberrant kinase signalling
pathways2,3,9.

Atomistic molecular dynamics (MD) simulations have been
used to study conformational transitions in proteins such as the
flipping of ‘DFG’ motif15,16 in kinases, calculation of the binding
free energy of inhibitors15, elucidating activation pathways17–19.
However, owing to the large system size and long timescales
associated with kinase conformational dynamics, most of
these studies employ simplifications such as coarse-
grain representations of enzymes, ‘enhanced sampling’
techniques, studying mutants with fast conformational
transition kinetics20–27 and so on. While simulations have been
successful at identifying metastable states of proteins, estimates of
the kinetics of conformational transitions have remained elusive
because of the challenges outlined above.

In the present study, we employ a computational framework
that couples transition pathway generation techniques, massively
distributed MD simulations (550 ms) on Folding@home28,
Markov state models (MSMs) and novel adaptive sampling
algorithms for mapping the conformational landscape of c-src
tyrosine kinase. To sample the conformational landscape more
efficiently, we start a large number of relatively short simulations
from configurations along an optimal pathway connecting the
active (pdb id:1Y57 (Cowan-Jacob et al.29)) and inactive (pdb
id:2SRC30) states determined using the string method with
swarm-of-trajectories. A theoretical framework based on MSM in
which conformational dynamics is modelled as transitions
between kinetically metastable states is then used to investigate
the slow kinetics (B100 ms) of conformational transitions of
kinases by using statistical methods to combine a very large
number of short trajectories (B20 ns) into a single model31,32.
The MSM analysis of c-src conformational dynamics reveals the
presence of key intermediates along the ensemble of c-src
activation pathways and for the first time, timescales associated
with activation and deactivation processes. The results presented
in this study would not only considerably increase our knowledge
of the structures of possible intermediate conformations sampled
during the kinase activation but also provide an extensive
database of c-src conformations for design of future novel
kinase inhibitors.

Results
Simulations reveal multiple intermediate states of c-src.
Simulations of c-src catalytic domain are performed in this study.
The regulatory SH2 and SH3 domains, which are involved in the
autoinhibited inactive state, are not included in the simulations
performed in this study to mimic the disassembled upregulated
form of the enzyme complex17,30,33. ATP molecule is bound in
the nucleotide-binding pocket in the study because of the high
likelihood of ATP binding at its physiological concentration of
2–8mM (Frankel et al.34). The transphosphorylation of Tyr416
locks the kinase domain in the catalytically active state. Tyr416
is phosphorylated owing to encounter with another kinase
only when it is exposed to the solvent in an open active-like
state as compared with the inactive state of c-src kinase in which
it is buried inside the protein surface. In all our simulations,
Tyr416 is in an unphosphorylated state. Therefore, the activation
transitions observed in this study represent transition between
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inactive state and an open ‘active-like’ conformation that exposes
Tyr416 transiently to another kinase18. The starting structures
were taken from a minimum free energy pathway (MFEP)
connecting the active and inactive state of c-src kinase generated
using the string method with swarms-of-trajectories24. Analysis
of the raw trajectories and MSMs built from the simulation data
reveal a detailed conformational landscape of the transitions
between active and inactive states of c-src kinase including the
kinetics of the dynamical processes occurring on the landscape.
The overall strategy that consists of combining the information
from multiple trajectories through the use of MSM bears some
similarities to that used by Yang et. al.18, although the massive
configurational sampling involved in the present computations
far exceeds any previous study by several orders of magnitude.

Analysis of the conformational landscape based on order
parameters reveals key intermediates between inactive and active
states but fails to provide detailed sequence of events leading to
activation, probability of transitions between them, elucidating
parallel activation paths and so on. MSMs provide a natural

framework for simplified analysis of large simulation data sets by
discarding dynamics faster than a certain timescale called lag
time35 instead of projecting the data along a chosen set of order
parameters. The Markov state-building process involves
separation of the conformational landscape into states with
high structural similarity. The transitions between states and the
population of each state are obtained by recording the states
visited along individual trajectories. A maximum likelihood
estimate of the state population and transition probability
between states is then obtained, which provides the best model
for the kinetics possible, given the data at hand36. To ascertain the
robustness of the MSM analysis, MSMs with 1,000, 2,000, 3,000,
4,000, 5,000 and 10,000 microstates were built from the
simulation data. The implied timescale of the 2,000 state model
were converged indicating that the model is Markovian in nature
(Supplementary Fig. 1). Therefore, the 2,000 microstate model
was chosen for further analysis.

Two-dimensional conformational landscape of the c-src
tyrosine kinase with respect to several order parameter pairs are
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Figure 1 | Conformational changes associated with the c-src activation. The (a) inactive and (b) active crystal structures show structural changes in the

activation loop (A-loop; red) and C-helix (orange), switching of the electrostatic network formed between Lys295, Glu310, Arg409 and Tyr416, and

alignment of residues L325, M314, F405 and H384 (shown in licorice and surface representation) to form a hydrophobic regulatory spine (R-spine) in

active state (d) as compared with the inactive state conformation (c). R-spine forms a continuous hydrophobic region linking the two lobes of the

catalytic domain and it is critical for the catalytic activity of the kinase.
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shown in Fig. 2 and Supplementary Fig. 2. Two intermediate
states (I1 and I2) are found along the pathway linking the inactive
and active states of c-src kinase. In the intermediate state I1
(Fig. 3c), the A-loop is unfolded but the electrostatic network
involving Lys295, Glu310 and Arg409 is in its inactive
configuration. In the intermediate state I2 (Fig. 3d), the Glu310-
Arg409 hydrogen bond is broken but C-helix has not rotated and
moved inwards to facilitate the formation of Lys295-Glu310
hydrogen bond.

These results suggest that the A-loop has to unfold before the
conformational changes in the C-helix. This observation is
broadly consistent with previous computational studies related to
not only Src family tyrosine kinases17,18,23–25,27 but also serine-
threonine kinases22. In particular, the Src kinase conformational
landscape obtained from independent umbrella sampling
simulations by Meng and Roux27 also reveals similar
intermediate states. In the current study, extensive sampling of
possible catalytic domain conformations is obtained, whereas
Meng and Roux27 have reported conformational landscape with
the A-loop in only open conformation. To present a direct
comparison between these studies, we have now reported a
conformational landscape obtained using MSM and umbrella
sampling results27 including all conformations of A-loop
(Supplementary Fig. 3). The computed population of active
(unphosphorylated active-like) conformation from the umbrella
sampling calculations reported by Meng and Roux27 was found to
be 0.002, which is in agreement with the value of 0.0018 obtained
in this study. Similarly, a previous computational study of Hck
kinase (a member of the Src family of tyrosine kinases with high
structural similarity to c-src) also reported the existence of two
intermediate states along the pathway between the inactive and
active state kinase18. However, there are noteworthy differences
with the intermediate states reported in the present study that
could be potentially exploited for drug design purposes. The

intermediate (I1) of Hck involves partial unfolding of A-loop and
has an intact Glu310-Arg409 ion pair, which is similar to the
Intermediate I1 of c-src (the difference lies in the extent of
unfolding of A-loop). However, the second intermediate of Hck is
distinct from the intermediate I2 of c-src. The A-loop in Hck
intermediate I2 is not fully unfolded, whereas it is completely
unfolded in c-src. The Lys295-Glu310 ion pair is not formed in
c-src, whereas it is formed in the Hck kinase. The binding of
8-anilino-1-napthalene sulphonate (ANS) to the allosteric site in
c-src requires complete unfolding of A-loop. Furthermore,
Glu310-Arg409 ion pair stabilizes the partially unfolded states
of A-loop, with the DFG-motif end of the A-loop in its inactive
conformation. Therefore, ANS can only bind to intermediate I2
of c-src with broken Glu310-Arg409 ion pair. Therefore,
intermediate states of Hck kinase would not be able to bind
ANS molecule because both these intermediate states have
partially unfolded A-loop. Furthermore, intermediate I2 of Hck
kinase has partially formed Lys295-Glu310 ion pair that blocks
the primary ANS-binding site. These observations and the
simulation results show that the methods outlined in this study
could be used for successfully identifying the subtle structural
differences between the kinases with high structural and sequence
similarity. Recent computational studies on epidermal growth
factor receptor kinase have revealed a partially unfolded
conformation of C-helix. Our results indicate that for the Src
kinase, the C-helix remains folded during activation as indicated
by the high helical content and stable solvent accessible surface
area of the C-helix (Supplementary Fig. 4). This observation is
consistent with the H-D exchange experiments and bioinformatic
analysis of the intrinsic disorder at the C-helix in Src kinase37.

Diversity within intermediate states of c-src. The conforma-
tional landscapes also show a rich diversity within the inter-
mediate states because of the partially unfolded states of A-loop
and the multiple conformational states of DFG-motif (Asp404-
Gly406) and R-spine(Leu325, Met314, Phe405 and His384;
Supplementary Figs 5–8). DFG residues (Asp404, F405 and
G406) at the N-terminal end of the A-loop play a critical role in
activation of kinases. The crystal structures of active and inactive
states of c-src have the DFG motif in the ‘DFG-in’ states29,30. The
DFG-out state is not accessible in the conformational landscape
of ATP-bound c-src (Supplementary Fig. 8) owing to the
interaction between the DFG-aspartate residue and the Mg2þ

ions bound to the phosphate groups of ATP and steric clash
between DFG-phenylalanine and the ATP in the DFG-out state.
The DFG motif does not completely flip in the simulations but it
still shows considerable fluctuations along the activation
pathways. The variation of root mean squared deviation
(r.m.s.d.) of the DFG motif (from the active state) with respect
to the r.m.s.d. of the A-loop (from the inactive state) shows that
DFG motif adopts multiple intermediate conformations because
of the movement of the individual loop residues during activation
(Supplementary Fig. 6). In the active ‘DFG-in’ state, F405
participates in the formation of the R-spine, which is the
hallmark of the active c-src. For the formation of R-spine, F405
has to flip partially to make space for the M314 (in the C-helix) to
occupy the gap between L325 and F405 (Fig. 3f). The fluctuations
of the positions of these individual residues also show that a rich
diversity of conformations exists within individual metastable
basins corresponding to active, inactive and intermediate states.

Deactivation timescales are faster than activation timescales.
The first eigenvector of the transition probability matrix Tij
(includes transition probabilities from state i to state j) provides
the estimate of the equilibrium population of all states in MSM.
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Figure 2 | Conformational landscape of c-src tyrosine kinase. The

conformational landscape generated using r.m.s.d. of A-loop residues

(404–424) and difference of the distance between Glu310-Arg409 and

Lys295-Glu310 residue pairs as the order parameters reveals multiple

intermediates along the activation pathway. The free energy values are

reported in kcalmol� 1. The landscape is obtained by summing over all the

microstates of the 2,000 state MSM from i¼ 1 to N using the following

equation Wðx; yÞ¼kBTln
PN

i pihiðx; yÞ
h i

where pi is the probability of state i

in the MSM, and hi(x,y) is the normalized histogram of the variables x and y

restricted to the MSM state i.
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The equilibrium probabilities estimated from the microstate
MSM with respect to the r.m.s.d. of the state from the inactive
and active states show that the inactive state is the most populated
state (PinactiveB0.56) and the active state is one of the least
populated states (PactiveB0.001; Supplementary Fig. 9). These
observations are consistent with a free energy barrier of
3.8 kcalmol� 1 between the inactive and active states. These
values also suggest that the active state is visited transiently in the
conformational landscape and requires either binding of a sub-
strate or phosphorylation of Tyr416 to remain in the active
state11. The A-loop remains extended in the intermediate and
active states, thereby increasing the possibility of stimulatory
transphosphorylation of Tyr416. The slowest process occurring
on the conformational landscape of c-src involves population
flow from inactive state to a partially active state with A-loop fully
unfolded and R-spine partially aligned. (Supplementary Fig. 10)
Furthermore, the Glu310-Arg409 were hydrogen bonded in the
partially active state indicating that the slowest dynamical process
involves transition between the inactive state and a microstate
with a fully unfolded A-loop.

Figure 3a shows a 100-ms trajectory generated from the MSM
using kinetic Monte Carlo scheme starting from the inactive state.
Two activation events are observed in this trajectory as denoted

by an asterisk. Colours of the dots indicate the four macrostates
(active, inactive, I1 and I2) as shown in Fig. 3b–e. The mean first
passage time (MFPT) for activation (defined as transition
between states with r.m.s.d. closest to the inactive and active
state crystal structures) is calculated to be B106 ms, whereas the
MFPT for deactivation is found to be B21 ms. Such long
timescales extracted from MSM analysis may appear inconsistent
with the relatively small free energy barriers between the inactive,
active and intermediate states observed in the potential of mean
force (PMF) plot shown in Fig. 2. However, it is worth pointing
out that absolute transition rates in complex multidimensional
systems depend on a multiple structural and dynamical factors
that may remain hidden in a PMF projection onto a subspace of a
few order parameters. Other projections for the 100-ms trajectory
are shown in Supplementary Fig. 11. The R-spine alignment is
coupled to the C-helix rotation and displacement but the
couplings are loose. The R-spine fluctuates between active,
inactive and intermediate conformations (Fig. 3f) regardless of
the conformation of the catalytic domain. R-spine alignment
takes place more frequently in the intermediate states indicating
that partial unfolding of the A-loop facilitates the rotation of the
C-helix. Our results indicate that, although there is one broad
pathway connecting the active and inactive states but if the
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trajectory obtained using the MSM. MSM trajectories are calculated using a kinetic Monte Carlo algorithm to generate a trajectory of (t¼ 5 ns) microstate

jumps, and selecting at random (uniformly) a simulation snapshot to report observables at each time step. The r.m.s.d. of the activation loop is

calculated using heavy atoms of residues 404–424. The following atoms were used for the calculations of distances between residues: Lys295(NZ atom in

the NHþ
3 group), Glu310 (CD atom in the COO� group) and Arg409 (CZ atom in the guanidinium group). Different colours represent the different

conformational states of the c-src kinase. Inactive (b), intermediate states I1 (c), I2 (d) and active (e) states are shown in magenta, green, black and blue,

respectively, with active state also marked with an asterisk. (f) These four conformational states could be further subdivided into states with

different conformations of DFG-motif and R-spine.
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fluctuations in individual residues comprising ‘DFG’-motif and
R-spine are considered, it leads to an ensemble of activation
pathways with comparable flux, which provides a more fine-
grained view of the kinase activation (Supplementary Fig. 12).

Relating fast activation to slow rate of autophosphorylation.
The experimentally observed timescale for Src-family tyrosine
kinase autosphosphrylation at residue Tyr416 is on the order of
minutes38, whereas the timescale of the conformational
transitions associated with kinase activation obtained from the
present computational analysis is 110 ms. To relate these vastly
disparate timescales, we constructed a kinetic model describing
the time evolution of activated kinase population using the
thermodynamic and kinetic data extracted from the atomistic
simulations following the reaction scheme included below.

I,
kIA

kAI
A )

ktrans� p

A� ð1Þ

where I is the inactivated state, A is the unphosphorylated active
state, A* is phosphorylated (locked) active state, kIA is the
activation rate and kAI is the deactivation rate. The rate ktrans� p is
the rate of kinase phosphorylation, which requires intermolecular
encounter with another active kinase (see Methods for model
description). A key result from the present analysis is that the
catalytic domain undergoes fast exchange between the inactive
state and an active-unphosphorylated conformation. Because of
the low bimolecular encounter frequency with catalytically active
kinases, the fast exchange effectively leads to kinase populations
that are in pseudo equilibrium. Time evolution of active
phosphorylated kinase population shows a lag or induction
time, which is an experimentally observed feature
(Supplementary Fig. 13a)38,39. The lag time indicates the slow
initial build up of active kinases. As some kinases reach active
state by fluctuations, they become available to seed and initiate
the autophosphorylation of other kinases, which then leads to a
sharp increase in active kinase population. The model also
correctly predicts the experimentally observed relationship
between time evolution of active kinase population and enzyme
concentration, rates of autophosphorylation and activation. Our
model results predict that the time evolution of active kinase
population is sensitive to changes in the effective equilibrium
constant (Keq) between inactive and active-unphosphorylated

states (Supplementary Fig. 13). The typical experimental values of
t1/2 (time taken for half the kinases to be in active state) is in
minutes. Under conditions that are representative of experiments,
the limits on Keq values consistent with the range of experimental
t1/2 values can be estimated using the model. Assuming the
rate of autophosphorylation to be 10 mM� 1 s� 1, total enzyme
concentration [Ctot]¼ 1 mM and the value of Keq¼ 740 calculated
from the MSM equilibrium populations, the t1/2 values is found to
be 8.2min, which lies in the experimental observed range of
5ot1/2o10min (Moarefi et al.38).

Keeping c-src inactive by stabilizing intermediate states.
Mechanistic understanding of the kinase activation process could
be harnessed for the design of novel inhibitors. In this study, we
have predicted the existence of metastable intermediate states I1
and I2, which could be stabilized to block the activation process.
Coincidently, a recent crystal structure of cyclin-dependent
kinase 2 (CDK2; from the CMGC family of the serine/threonine
kinases) bound to ANS has structural features similar to the
intermediate I2 of c-src (Supplementary Fig. 14)40. Furthermore,
ANS molecules were bound to the pocket between the C-helix
and b4, which is different from typical kinase inhibitors that bind
to the ATP-binding pocket or the adjacent hydrophobic pocket
(Supplementary Fig. 15)41. From the activation mechanism of
c-src kinase, it is evident that the binding of any drug in the
region between C-helix and the b-sheets in the N-terminal lobe
would block the displacement and/or rotation of the C-helix,
thereby trapping the kinase in a partially active intermediate state.

Simulations of ANS-bound intermediate I2 from c-src were
performed to assess the interactions of the drug molecule with the
c-src residues and to ascertain structural changes induced by the
drug binding. The structures obtained from the simulations of
ANS-bound c-src reveal outward movement of the C-helix as
compared with the ATP-bound c-src, which is significantly
different from both the active and inactive crystal structures of
c-src (Fig. 4). The displacement of the C-helix would not only
block the activation of the kinase but also interfere with the
binding of the substrate. The R-spine alignment is also disrupted
owing to ANS binding, indicating that the ANS also interferes
with the rotation of the C-helix, which could potentially suppress
the catalytic activity of the kinase (Supplementary Fig. 16).
The simulations also show that ANS molecule sits directly

R409

C-helix

E310

K295

ATP

Mg2+

ANS C-helix

ATP

Mg2+
ANS

Figure 4 | Mechanism of ANS-induced stabilization of intermediate I2. (Left) ANS binding to the allosteric site adjacent to C-helix in c-src kinase

stabilizes the intermediate conformation by blocking the interactions between Lys295 and Glu310. The hydrogen bond formation between Lys295 and

Glu310 is required for the locking of the C-helix in the active conformation. The sulphonate group in the ANS forms a hydrogen bond with the

Lys295, thereby locking it in its inactive conformation. (Right) ANS binding also pushes the C-helix away from the ATP-binding pocket. Superimposition

of the crystal structures of the inactive (cyan) and active (green) states of ATP-bound c-src kinase with the ANS-bound src-kinase (orange)

reveals the distinct conformation of the C-helix in presence of ANS.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4397

6 NATURE COMMUNICATIONS | 5:3397 | DOI: 10.1038/ncomms4397 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


between the Lys295 and Glu310 residues, thereby blocking any
possibility of hydrogen bond formation between these residues,
which is essential for the inward movement of C-helix
(Supplementary Fig. 17). Furthermore, strong hydrogen bond
formation is observed between the sulphonate group of ANS and
Lys295 (Fig. 4). The primary ANS-binding pocket is hydrophobic
in nature that interacts favourably with the naphthalene and the
phenyl rings in the ANS molecules (Supplementary Fig. 18). The
phenyl ring was found to interact with Phe278, Phe307 and
Leu297 residues, whereas the naphthalene ring interacts with
Phe405, Ala403, Val323, Leu325 and Ile336 residues.

Long range dynamic coupling between residues in c-src.
Allosteric communication lies at the heart of the kinase activation
process with long-range inter and intradomain communication
networks controlling the conformation of the enzyme42. Mutual
information analysis that provides a measure of long-range
coupling between residues by calculating the correlation between
the motions of their backbone and side-chain torsion angles is
used to identify allosteric couplings in c-src kinase43. Variation of
mutual information as a function of Ca atom distance between
residue pairs shows that there is significant correlation between
residue pairs even 20Å apart from each other (Supplementary
Fig. 19). The long-range coupling between residues is also evident
from the mutual information values between each residue pair in
c-src kinase (Fig. 5). Furthermore, a visual inspection of the
matrix also shows the presence of strong local coupling in
different regions of kinase (Supplementary Fig. 20). For example,
activation segment (residues 404–432) not only shows long-range
coupling, but it also forms a strong local network of coupled
residues indicating a cooperative unfolding during activation. The
second locally coupled network of residues comprises the loop at
the C-terminal end of aE, which forms a b-sheet with the
unfolded A-loop in the active state. Mutual information values for
the key residues in catalytic domain show that all the residues in
electrostatic network, R-spine and DFG motif are strongly

coupled with the A-loop (Supplementary Figs 21,22).
Furthermore, residues F405 (DFG motif), Glu310, Arg409 and
Tyr416 also show a strong coupling with C-terminal lobe
residues. Such strong coupling not only offers an avenue for
targeted drug design but also explains the origin of the molecular
resistance and the deleterious effects of large number of point
mutations in the catalytic domain on the kinase activity.

The A-loop region is also coupled to myristate-binding pocket
region in c-src at the base of the C-terminal lobe. Myristoylation
has been shown to regulate c-src activity and stability44 but there
are no crystal structures of the myristoylated c-src. It has been
shown via NMR experiments that myristate can bind to a pocket
in c-src, which is similar to the myristate-binding pocket in c-Abl
(a tyrosine kinase with similar fold as c-src)29. Drugs targeting the
myristol-binding pocket have been shown to allosterically
modulate the conformation of A-loop and ATP-binding pocket
in c-Abl kinase3. Our results indicate that drugs targeting the
myristate-binding pocket in c-src could also serve as allosteric
modulators of c-src kinase activity.

Discussion
In this study, we have used a combination of pathway generation
technique (string method in collective variables45,46) and massive
distributed computing coupled with MSMs for studying long
timescale phenomena47. We showed that this method can
efficiently capture kinetics with short independent trajectories
several orders of magnitude shorter than the timescale of the
process under investigation. This method also represents a much
more efficient use of simulation time than simply running a long
brute force simulation of the same length. For example, to observe
10 activation events of c-src kinase in a single trajectory, a total
simulation time of B1,100 ms would be required. Here we
obtained converged timescales and conformational landscapes in
B100 ms starting from a conformational transition pathway
determined via the string method.
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Figure 5 | Mutual information between residues in c-src kinase. Hierarchical clustering of significant mutual information values identifies four regions

(shown as squares) within the catalytic domain, which have significant dynamical correlation between them. The most strongly coupled cluster

involves the residues in the A-loop region that cooperatively unfold during the activation process. Colours indicate the log of the mutual information value.
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Our results also show that network models of conformational
change present a more natural framework for describing enzyme
dynamics on a complex conformational landscape as compared
with a linear reaction coordinate analysis or few state models.
MSMs are well developed for studying global conformational
rearrangements such as protein folding35, but these models have
not been used extensively for studying conformational changes in
enzymes. This study represents one of the fist application of novel
MSM approaches for studying complex conformational changes
in enzymes and provides pointers for further methodological
advances in this direction.

Long timescale simulation of c-src kinase reported in this study
has provided novel insights into the mechanism of kinase
activation. However, there are several caveats worth noting. First,
we have not performed the simulations of the catalytic domain
along with its two regulatory domains, which must presumably
influence the kinetics of activation. Second, it is likely that the
activation mechanism is also dependent on the phosphorylation
state of Tyr416. This study provides an extensive database of
possible conformations of the catalytic domain, which can be
used as a set of templates for obtaining starting configurations for
simulations of catalytic domain with phosphorylated Tyr416 and
catalytic domain with bound regulatory domains. Owing to these
extensive set of distinct starting configurations, their conforma-
tional landscapes could be quickly sampled in parallel.

Simple model of kinase autophosphorylation predicts the
presence of induction time in the time evolution of active kinase
population. According to the activation timescales reported in
this study, the rate of autophosphorylation is the limiting step in
the kinase phosphorylation process. However, the time evolution
of active kinase population was found to be sensitive to the
equilibrium constant (Keq) relating inactive to active (unpho-
sphorylated) state equilibrium populations. For Src family kinases
in the downregulated state (both regulatory domains bound to
the catalytic domain and C-terminal Tyr527 phosphorylated), it
has been observed that induction time increases significantly as
compared with the kinase with unphosphorylated Tyr527
(Moarefi et al.38). Our results suggest that shift in the
equilibrium population of active (unphosphorylated) kinases
from 10� 3 to 10� 4 would change the induction time from
several minutes to hours. These results support the view that fast
kinase conformational fluctuations at the 10–100-ms timescale
control the observed macro timescale behaviour.

We also predict the existence of binding pocket for novel
allosteric inhibitors, the ANS-binding pocket adjacent to C-helix
in c-src. On the basis of the binding interactions of ANS with
c-src, novel allosteric inhibitors that span the ATP-binding
pocket and the ANS-binding site or inhibitors that span both the
ANS sites could be designed41. This fragment-based inhibitor
design approach has been used to design CDK2 inhibitor
AT7519, which consists of two covalently linked fragments that
bind to different regions of the targeted kinase48–50. Allosteric
inhibitors targeting this site would not only help in selective
inhibition of kinases but would also be useful for understanding
the function of a single kinase in a complex cellular signalling
milieu51.

The present results provide a description of the thermody-
namic and kinetic factors underlying the activation of c-src kinase
with unprecedented atomistic detail. Src-family kinases share a
conserved protein fold and are highly homologous in sequence.
This raises a host of fascinating questions about the similarities of
their activation mechanisms. If there are subtle differences in
their activation mechanisms (which could be studied using the
methodologies used in this study), then these differences could be
harnessed for future design of selective inhibitors for individual
members of Src family.

Methods
Generation of initial pathway using string method. The inactive (PDB ID:
2SRC)30 and active (PDB ID: 1Y57)29 X-ray structures of human c-src kinase were
used as the two end point conformations for the generation of the MFEP. Only the
catalytic domain residues (W260–T521) are included in the simulation set-up. The
initial pathway used in adaptive sampling simulation described below was
generated by a two-steps procedure to filter out the noise in pathways computed
using the string method in high-dimensional spaces in the space of collective
variables45,46. The methodology combines principal component analysis to identify
a number of relevant modes that can effectively describe the transition with a
smoothing procedure of a representative path from the ensemble of projected ones.
Principal component analysis was performed on an ensemble of 30 paths that
corresponded to iteration 71–100 of the inactive-to-active human c-src tyrosine
kinase conformational transition that was obtained in Gan et al.24 Fifteen principal
components were identified such that the difference with the original ones is less
than the difference between the projected pairs of paths. The average of the 30
projected paths was taken and a smoothing algorithm was applied. The strategy we
employ to smoothen a string defined in a high-dimensional space is to minimize
the following objective function:

E¼ 1
2
ka

XM� 1

i¼1

ðti � tiþ 1Þ2 þ kd
XM
i¼1

1
ðRi þ dÞ ð2Þ

where ti is the unit tangent vector between a pair of images along the string and Ri
is the distance of image i from all the replicas of the same image in the ensemble of
paths. ka and kd are scalar parameters to be chosen by the user that describe the
weight of different terms and are equal to 1.0 and 0.03, respectively, while d is a
threshold value. One thousand steps of steepest decent minimization were
performed. The final path was then transformed back to original Cartesian
coordinate system and was used to initiate the adaptive sampling process52 on
Folding@home. Starting conformations for the simulations were taken from the 51
snapshots along the smoothed MFEP.

Simulation details. Distributed MD simulations were performed using GRO-
MACS53 on the Folding@home28 computing platform. The CHARMM22 (Brooks
et al.54) force field was used for protein and ligands along with TIP3P55 water
model. The all-atom structures were then solvated in a truncated octahedral solvent
box constructed from a 80� 80� 80Å3 cube with TIP3P water molecules such that
water extended at least 10 Å away from the surface of the protein; 22 Naþ ions and
19 Cl� ions were added to the system to neutralize the charge, corresponding to a
salt concentration of B150mM. Covalent bonds involving hydrogen atoms were
constrained with LINCS56 and particle mesh Ewald57 was used to treat long-range
electrostatic interactions. The structures obtained after an initial equilibration for
1 ns at constant temperature and pressure and with constraints on the heavy atom
positions were used as the starting conformation for the distributed MD
simulations. Production MD simulations were carried out at constant temperature
and pressure of 300 K and 1 atm, respectively, with a time step of 2 fs. Two sets of
simulations were started using the initial structures generated using the protocol
described above. The first set of B12,000 simulations were started from the 51
snapshots along the string method pathway for an aggregate simulation time of
150 ms on the Folding@home platform. To ensure that the simulations started from
the string method do not give a biased conformational landscape, another set of
12,000 simulations were performed starting from only the active and inactive states
of c-src kinase. The aggregate simulation time of 350ms was obtained for this set
using the Folding@home platform. The conformational landscapes obtained using
the second data set do not reveal new regions of landscape as compared with the
conformational landscape obtained using the 150-ms simulations performed using
the snapshots from the string method pathway. Simulations of c-src kinase catalytic
domain were also performed in the AMBER99sb-ildn force field ( total duration
B50 ms) to test the dependence of the simulation results on the choice of force
field. These simulations were started from the MSM states obtained from the
simulations of kinase catalytic domain in CHARMM22 force field. The simulations
were found to be independent of the choice of force field.

Adaptive sampling algorithms based on MSMs52,58 were used to efficiently
sample the conformational landscape of c-src tyrosine kinase. The initial structures
for adaptive sampling rounds were chosen from the MSM states with the minimum
population. In all, we performed two rounds of adaptive sampling and a total of
24,000 simulations with a total duration of 500ms. Trajectory snapshots were
recorded every 100 ps. The distribution of total number of simulations versus the
simulation length is shown in Supplementary Fig. 23.

Simulations of c-src intermediate with ANS molecules bound to the allosteric
site adjacent to the C-helix were performed to assess the ability of ANS to block
activation of c-src tyrosine kinase. Two sets of simulations were performed: first,
with one molecules of ANS bound to the protein and, the second, with two
molecules of ANS bound to the protein. The crystal structure of CDK2 in complex
with two molecules of ANS (PDB ID: 3PXF)40 was used as a template to align the
residues of the c-src intermediate within 5.0 Å of the ANS-binding pocket. The
force filed parameters for ANS were obtained using GAFF59. The aligned kinase
structure along with the ANS molecules was then solvated in a truncated
octahedral solvent box with TIP3P water molecules and ions added to neutralize
the charge, corresponding to a salt concentration of B150mM. The corresponding
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systems were minimized using GROMACS for 100,000 steps and then equilibriated
for 2 ns at constant temperature and pressure of 300K and 1 atm, respectively.
A total of 2000 distributed MD simulations were started from the two structures for
an aggregate simulation time of 50 microseconds using the simulation protocols
outlined above.

Markov state models. Our methods draw on kinetic network models called
Markov state models (MSMs) that are built from extensive molecular dynamics
simulations using Folding@home28 distributed computing architecture to describe
a protein-intrinsic dynamics. Similar to a map of a molecule’s free energy
landscape, an MSM provides a reduced view of the ensemble of spontaneous
fluctuations the molecule undergoes at equilibrium. These models provide the
population and transition rates between key conformational states of
protein31,32,36. The MSMBuilder60 software was used to build MSMs of the
conformational landscape of c-src tyrosine kinase. Conformations were clustered
using a subset of heavy atoms identified using the root mean square fluctuations of
atoms after subtracting the inactive-state root mean square fluctuation values. The
subset of atoms include all heavy atoms from the N-terminal lobe residues
270–340, and A-loop residues 404–424 were used for the clustering and
construction of the MSM (Supplementary Fig. 24).

MSMs describe the conformational dynamics of proteins in terms of jumps
between the microstates obtained from the clustering of the simulation data set into
discrete states. The transition probability matrix T(t) includes the probability of
transitions from state i to state j in a certain time interval t and are estimated by
counting the number of transitions nij observed between time t and tþ t, and
normalizing nij with the sum of all transitions from state i. To enforce detailed
balance(which ensures that population of states is conserved), a maximum
likelihood estimate of the transition probability matrix that follows the detailed
balance is obtained. The transition probability matrix can be used to obtain the
population of the system at any time using the following relationship:

pðtþ tÞ¼pðtÞTðtÞ ð3Þ

where p(t) is the vector of state population at time t. The eigenvalue/eigenvectors
spectrum of the transition matrix gives information about the aggregate transitions
between subsets of states in the model and what timescales these transitions occur
on61. The equilibrium population of the individual states are estimated from the
first eigenvector of the transition probability matrix. The timescales of the
dynamical processes occurring on the conformational landscape of c-src can be
obtained by estimating the eigenvalues of this matrix. The eigenvalues m of the
transition probability matrix are related to the implied timescales 1/k of transitions
via the following expression:

k ¼ � t
lnðmÞ : ð4Þ

The 2000-state model decomposition yielded a good balance between state
connectivity and adequate transition sampling. The model also provided converged
implied timescales as a function of lag time, which is used as a measure of the
Markov nature of the model (Supplementary Fig. 1). A lag time of t¼ 5 ns was
determined to be suitable by building a series of MSMs at different lag times to find
a region where the spectrum of implied timescales are relatively insensitive to lag
time. Transition Path theory was used to analyse the distribution of activation
pathway fluxes from inactive to active states. Committor values and MFPTs were
computed for each state using methods described in the literature62–64.

Similar simulation and analysis protocol has been successfully used earlier for
the study of Hck kinase18, where initial structures of the catalytic domain were
taken from the pathway generated using targeted MD simulations. Short
simulations (total simulation time of 1 ms) from these initial structures were
performed and subsequently analysed using kinetic network models for studying
the conformational transition between active and inactive state.

Mutual information. The excess mutual information was computed for all protein
torsion angles (backbone dihedrals f, c and side chain w angles (only the first w
angle for proline)) throughout the simulations to capture nonlinear correlated
motions of residues in an unbiased, statistically robust manner. The following for-
mula was used for the calculation of mutual information between residue pairs43:

Ii 6¼ j
i;j ¼

X
yi

X
yj

Z 2p

0

Z 2p

0
pðyi; yjÞln

pðyi; yjÞ
pðyiÞpðyjÞ

dyidyj ð5Þ

The average of the mutual information computed from 10 iterations of
scrambled data was subtracted from the mutual information values computed from
the simulation data to filter out correlations that are not statistically significant.

Model for transautophosphorylation of kinases. Residue Tyr416 in c-src kinase
is phosphorylated to lock the kinase in the active conformation, thereby enhancing
its ability to catalyse the phosphate transfer from ATP to the substrate. The
thermodynamic and kinetic data reported in this study are used to build a kinetic
model of kinase autophosphorylation following the reaction scheme included

below.

I,
kIA

kAI
A )

ktrans� p

A� ð6Þ

where I is the inactivated state, A is the unphosphorylated active state, A* is
phosphorylated (locked) active state, kIA is the activation rate and kAI is the
deactivation rate. The rate ktrans� p is the rate of kinase phosphorylation, which
requires intermolecular encounter with another active kinase. The time evolution
of different state of kinase in the solution can be described using the following
ordinary differential equations.

d
dt
½CI�¼� ½CI�kIA þ ½CA�kAI ð7Þ

d
dt
½CA�¼½CI�kIA � ½CA�kAI � ktrans� p½CA�ð½CA� � þ ½CA�Þ ð8Þ

d
dt
½CA� �¼ktrans� p½CA�ð½CA� � þ ½CA�Þ ð9Þ

The rate of phosphorylation is much slower than the activation/deactivation
rates because it involved a diffusion-limited bimolecular encounter between two
active kinases. The kinase activation timescales measured in this study are of the
order of 100ms. The set of equations (7)–(9) could be simplified by assuming a
pseudo equilibrium between inactive and unphosphorylated active state.

d
dt
½CI�¼0¼� ½CI�kIA þ ½CA�kAI ð10Þ

½CI�
½CA�

¼ kAI
kIA

¼ PI
PA

¼Keq ð11Þ

The inactive (PI) and unphosphorylated active state (PA) equilibrium
populations obtained from the MSMs results reported in this study are used for
estimating Keq. The pseudo equilibrium assumption is valid under the following
condition:

ktrans� pð½CA� � þ ½CA�ÞookIA ð12Þ

ktrans� pð½Ctot� � ½CI�ÞookIA ð13Þ

r¼ ktrans� p½Ctot�
kIA

oo1 ð14Þ

The total concentration of protein [CI]þ [CA]þ [CA*]¼ [Ctot] is fixed, which
provides the following relationship between [CA] and [CA*].

½CA�¼
½Ctot� � ½CA� �

1þKeq
ð15Þ

The equation (9) is simplified to the following ordinary differential equation by
substituting [CA] expression from the equation (15).

d
dt
½CA� �¼ktrans� p

½Ctot� � ½CA� �
1þKeq

½Ctot� � ½CA� �
1þKeq

þ ½CA� �
� �

ð16Þ

d
dt

½CA� �
½Ctot�

� �
¼ ktrans� p½Ctot�

1þKeq
1� ½CA� �

½Ctot�

� �
1þKeq½CA� �=½Ctot�

1þKeq

� �
ð17Þ

dPA�

dt
¼ ktrans� p½Ctot�

1þKeq
ð1�PA� Þ 1þKeqPA�

1þKeq

� �
ð18Þ

This initial value problem can be solved numerically or analytically using
PA*t¼ 0¼ 0 and [Ctot]¼ 1 mM as the initial conditions. The analytical solution of the
above initial value problem has the following form:

� ln
ð1�PA� Þ

ð1þKeqPA� Þ ¼
ktrans� p½Ctot�

1þKeq
t ð19Þ

Substituting the values t¼ t1/2, PA*¼ 0.5 in the above equation provides the
expression for the time required for half the kinases to be phosphorylated.

t1=2¼
lnð2þKeqÞð1þKeqÞ

ktrans� p½Ctot�
ð20Þ

This expression is used to obtain limits on the value of Keq by comparing the
experimental t1/2 values with the model predictions for different values of Keq. For
ktrans� p¼ 10mM� 1 s� 1, [Ctot]¼ 1 mM and 1min ot1/2o10min, the Keq values
lie in the range (130,880). The value of Keq calculated from the MSM equilibrium
populations is 740. Similarly, for the predicted value of Keq, the limits on
ktrans� p[Ctot] were found to be (8,80) s� 1.

ADP release has been identified as the slowest step in the kinase catalytic cycle
for a variety of kinases65. In the model above, the effect of slow ADP release process
could be captured by decreasing the autocatalytic effect of the active
phosphorylated kinase population. The ADP-bound active state cannot
phosphorylate other active kinases and has to release ADP and bind to ATP to
catalyse the next phosphate transfer reaction. This effect can be captured by
lowering the value of the rate of autophoshorylation ktrans� p. The value of ktrans� p

was chosen to be 10mM� 1 s� 1 owing to the rate-limiting effect of ADP release.
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The value of ktrans� p¼ 10mM� 1 s� 1 at the total kinase concentration of 1 mM
translates to an effective phosphorylation rate of 10 s� 1. The experimental ADP
release rate lies in the range (1,100) s� 1 (Adams et al.65). Therefore, the results
from the simplified model proposed above are not expected to change significantly
because of incorporation of the ADP release in the model. However, we have also
included details of the kinetic model with ADP release in the Supplementary
Methods to substantiate this claim.

Procedure for generating MSM trajectories. Several simulation studies have
reported methodologies for obtaining kinetics from network model66–68. The time
course of observables were obtained by using a kinetic Monte Carlo scheme on the
transition probability matrix T, where Tij represent the probability of transition
from state i to j. For a MSM trajectory in state i at time t, the next state visited at
time tþ t is estimated using the following scheme:

1. Generate a random number lying between [0,1].
2. Calculate the probability Rik for all states given by Ri,k¼Sj¼ 1

k Tij.
3. If the generated random number lies between Ri,k and Ri,kþ 1, then the state k is

chosen for transition.
4. Select a random snapshot from the conformations assigned to state k. All

conformations assigned to a particular microstate are structurally similar
(because of the small size of the microstate) and they interconvert at a timescale
smaller than the lag time. Therefore, the representative conformation for state k
is chosen randomly (uniformly) from all the conformations assigned to this
state.

5. Calculate the observables from the selected conformation.

Procedure for calculating MFPTs between states from MSMs. Singhal
et al.69,70 have reported a detailed procedure for the calculation of MFPT from
MSMs. In brief, MFPTs are calculated from a set of linear equations that are based
on the MSM transition probability matrix. MFPT is defined as the average time
taken to get from a particular state i to a any state j in the final (in this case all
active or inactive states) set of states. The MFPT can be defined conditionally based
on the following expression:

MFPTðiÞ¼
X

transitionði;kÞ
Tik�MFPTði j transitionði; kÞÞ ð21Þ

where the sum is over all transitions from i to j. The MFPT(i) is the sum of the time
it takes to transition from state k to i and MFPT(k), which gives

MFPTðiÞ¼
X

edgeði;kÞ
Tik�ðtþMFPTðkÞÞ ð22Þ

where sum is over all the edges leading from state i. Similar equations can be
written for MFPT from all states to state j to generate a system of linear equations,
which can be solved for MFPT(i).
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