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Direct synthesis of single-walled
aminoaluminosilicate nanotubes with
enhanced molecular adsorption selectivity
Dun-Yen Kang1,2, Nicholas A. Brunelli1,3, G. Ipek Yucelen4, Anandram Venkatasubramanian5, Ji Zang1,

Johannes Leisen6, Peter J. Hesketh5, Christopher W. Jones1,6 & Sankar Nair1

Internal functionalization of single-walled nanotubes is an attractive, yet difficult challenge in

nanotube materials chemistry. Here we report single-walled metal oxide nanotubes with

covalently bonded primary amine moieties on their inner wall, synthesized through a one-step

approach. Conclusive molecular-level structural information on the amine-functionalized

nanotubes is obtained through multiple solid-state techniques. The amine-functionalized

nanotubes maintain a high carbon dioxide adsorption capacity while significantly suppressing

the adsorption of methane and nitrogen, thereby leading to a large enhancement in

adsorption selectivity over unfunctionalized nanotubes (up to four-fold for carbon dioxide/

methane and ten-fold for carbon dioxide/nitrogen). The successful synthesis of single-walled

nanotubes with functional, covalently-bound organic moieties may open up possibilities for

new nanotube-based applications that are currently inaccessible to carbon nanotubes and

other related materials.
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S
ingle-walled nanotubes (‘SWNTs’) are important ‘building
block’ materials for nanoscale science and technology,
and have created great interest over the last two decades.

Their one-dimensional geometry confers the potential for
unique properties relevant to many applications1–8. Synthetic
single-walled carbon nanotubes (CNTs), first prepared in 1991,
are the most well-known SWNTs1. One of the main unsolved
problems in CNT science is the covalent immobilization of
functional moieties on their inner surfaces, which would allow a
number of new ways to control the CNT properties and enable
their use in ‘molecular recognition’ applications that exploit their
1-dimensional porosity (for example, catalysis, adsorption,
membranes, sensors). The formation of covalent bonds at the
CNT surface requires a transformation of carbon hybridization
from sp2 to sp3. This can be accomplished on the outer surface by
several methods, albeit with rather harsh reaction conditions2–4.
However, the concave interior surface of CNTs leads to an
extremely high thermodynamic barrier for this transformation,
due to which the interior surfaces of CNTs have been considered
to be essentially unreactive2,5,6. Although several examples of
infiltration of the CNT channel with various types of atomic,
molecular or nanoparticle species have been reported6–8, as well
as the modification of CNT tips with organic functional groups2,9,
to date there is no demonstration of the interior functionalization
of CNTs via the formation of covalent bonds. Recent work has
indicated that the interior surface of CNTs may become reactive
under certain extreme conditions, further corroborating the
practically unreactive nature of CNT inner walls10,11.

Synthetic metal oxide nanotubes could potentially overcome
the above limitation of CNTs. More specifically, synthetic
aluminosilicate and aluminogermanate SWNTs12–16 have
attracted substantial interest in recent years. This type of
nanotube consists of an octahedral aluminium(III) hydroxide
outer wall and a tetrahedral silanol inner wall, with doubly-
coordinated hydroxyl groups on the outer wall and pendant
hydroxyls on the inner wall (Fig. 1a). The chemistry of such
nanotube materials, which is based upon aqueous-phase synthesis
under mild (o100 �C) conditions, has advanced considerably
over the last decade. Single-walled and double-walled
aluminogermanate analogues of the aluminosilicate SWNTs
have been synthesized17–19. Detailed molecular-level insights on
the mechanism of formation of these nanoscopic objects have
been obtained18,20, as well as the capability to engineer their
shape and size with Ångstrom-level precision21. The first
applications of these materials, for example, in the formation of
high-quality polymer/nanotube membranes22 and natural gas
storage materials23 have emerged recently.

The outer surfaces of the aluminosilicate SWNTs have been
modified to a low degree via post-synthesis grafting with
organosilane coupling agents24. However, this is a multi-step
technique, which requires conversion of the aqueous SWNT gel
into an anhydrous powder, and does not allow uniform
distribution of the functionalizing agent along the length of
the nanotube due to diffusion limitations induced by initial
functionalization at the nanotube ends. These issues motivate the
pursuit of a direct synthesis route for aluminosilicate SWNTs
with organic functional groups immobilized at their interior
surface. The key idea, as illustrated in Fig. 1b, is to (partially or
completely) replace the siloxane reagent (Si-[O-R]4, usually
tetraethyl orthosilicate (TEOS)) in the bare aluminosilicate
SWNTs with an organosiloxane reagent (R’-Si-[O-R]3). This
‘co-condensation’ approach has been successful in the
preparation of organic-functionalized microporous24–27 and
mesoporous28,29 silicate materials. However, its application to
nanotubes has been much more difficult, likely owing to the
unique mechanisms operating in the synthesis of these

materials20,21. The first successful example of direct synthesis
of organic-substituted aluminosilicate SWNTs involved the use
of methyltriethoxysilane for producing methyl-functionalized
aluminosilicate nanotubes23. However, the methyl group
confers no additional functionality beyond increased
hydrophobicity. Similar efforts using commercially available
organosiloxane precursors with other functional groups (for
example, aminopropyltriethoxysilane) have been unsuccessful.

Here we describe a direct, template-free, synthesis route for
preparing functional single-walled amine-functionalized alumi-
nosilicate nanotubes (‘ANTs’) with up to 15% of the interior
�Si-OH groups substituted by �Si-CH2NH2 groups, via the use
of a specifically synthesized precursor, aminomethyltriethoxy-
silane (AMTES). We hypothesize that the selection of the
appropriate functional organosiloxane precursor is critical for
the success of such an approach. Due to the small range of
obtainable pore sizes (0.8–1 nm) of the SWNT and the
confinement of the silanol groups in an ordered hydrogen-
bonded network lining the pore21, we hypothesize that avoiding
steric effects is important. For example, the smallest commercially
available aminosiloxane precursor, aminopropyltriethoxysilane,
is too bulky and hydrophobic, and therefore is found to not
incorporate successfully into the nanotube structure. We design
and synthesize a novel functional precursor (AMTES) which
satisfies the required criteria and leads to successful incorporation
into the nanotube wall to yield the ANT material. The structure,
morphology and surface chemistry of ANTs are investigated by a
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Figure 1 | Synthesis of aluminosilicate nanotubes. (a) Synthesizing bare

aluminosilicate nanotubes using TEOS as the silicon source. (b) Forming

nanotubes with organic moieties incorporated in their inner surfaces using a

mixture of TEOS and a designed organosilane.
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range of solid-state characterization techniques, including
conventional and cryogenic transmission electron microscopy
(TEM/cryo-TEM), X-ray diffraction (XRD), nitrogen physi-
sorption, elemental analysis, vibrational spectroscopy and solid-
state NMR. The functionality of the primary amine groups in
the interior of the SWNTs is assessed by CO2, CH4 and N2

adsorption. The amine-functionalized nanotubes show a dramatic
improvement in CO2/CH4 and CO2/N2 adsorptive selectivity
over the bare nanotubes (‘NTs’). The synthesis of amine-
functionalized metal oxide SWNTs may facilitate a new class of
functional SWNT materials obtainable by further chemical
modifications of the amine groups.

Results
Morphology of amine-functionalized NTs. The morphology of
the ANTs is evaluated by conventional and cryogenic TEM
(Fig. 2). Low-resolution TEM images of both NTs and ANTs are
shown in Fig. 2a. The ANTs show a smaller average length than
the NTs (the average length of NT is 160 nm and of ANT 50 nm).
The higher-resolution cryo-TEM images of NTs and ANTs

(Fig. 2b) confirm the nanotubular structure of both materials.
Electron diffraction (ED) was employed to investigate the crys-
tallinity along the axis of NTs and ANTs (Fig. 2c). The ED pat-
terns from both ANT and NT samples show an ordered nanotube
wall structure. However, the NT reflections (006), (071) and (002)
become less sharp, and reflections (004) and (063) are very weak
or absent in the ED pattern of ANTs. The ED pattern from the
post-synthesis functionalized nanotubes (Supplementary
Fig. 1)30, in which the organic moieties are likely immobilized
at the pore mouth, is nearly identical to the pattern from the bare
NT. These observations indicate successful random substitution
of AMTES in the nanotube inner wall.

Interior surface properties. The interior surface properties of the
ANTs are comprehensively evaluated by a combination of N2

physisorption, 13C solid-state NMR, Fourier transform (FT)-
Raman spectroscopy and elemental analysis. N2 physisorption is
an excellent tool to estimate the expected pore volume reduction
due to the AMTES substitution for the ANT synthesis. The raw
physisorption isotherms and the deduced pore size distributions
and micropore surface areas are presented in Fig. 3. The lower
pore volume of ANTs and the occurrence of the maximum in the
pore size distribution at a smaller pore size (8.7 Å for ANTs
versus 9.5 Å for NTs), are both due to the larger size of the
immobilized �Si-CH2NH2 group in comparison with the
�Si-OH group in the NTs. Given the volumes of the hydroxyl
and the aminomethyl groups (16.9 and 38.1 Å3, as estimated from
the atomic van der Waals radii), the fractional organic substitu-
tion ratio in the ANTs can be calculated by comparing the
micropore volumes of the NTs and ANTs. The derived fractional
organic substitution is 0.16, which is close to the AMTES:TEOS
ratio (0.2) used in the ANT synthesis. The atomic composi-
tions derived from elemental analysis are summarized in
Supplementary Table 1, and the raw elemental analysis data are
presented in Supplementary Table 2. First, the identical Si:Al ratio
(0.5) in both the ANTs and NTs rules out the presence of
impurities caused by possible self-polymerization of AMTES and
TEOS during the synthesis. Second, the nitrogen and carbon
signals are only observed in ANTs, thereby showing the presence
of the organic moieties in the sample. The fractional organic
substitution estimated from the carbon signal is 0.16, and from
the nitrogen signal is 0.11, broadly consistent with the quantifi-
cation from N2 physisorption (0.16).

Although N2 physisorption and elemental analysis suggest the
presence of immobilized organic moieties in the ANT, 13C solid-
state NMR and FT-Raman spectroscopy identify the organic
species. The single peak at 27 p.p.m. in the 13C NMR spectrum
(Fig. 4a) of the ANT is assigned to the aminomethyl group. The
absence of peaks from the ethoxy groups (57 p.p.m. for -OCH2-
and 17 p.p.m. for -CH3)31 of the reagent AMTES provides
clear support for the success of the ANT synthesis.
When using TEOS for NT synthesis, the ethoxy groups are
hydrolysed and a Q3(6Al) �Si-OH coordination environment is
formed15,20,30. This coordination is exclusively found in the
aluminosilicate NT material. An identical hydrolysis of ethoxy
groups and formation of an equivalent T3(6Al) �Si-CH2NH2

environment15,30 is clear evidence of the formation of the
aminomethylsilane-substituted single-walled aluminosilicate NTs
(ANTs). The FT-Raman spectra for both NTs and ANTs are
shown in Fig. 4b. The additional peaks (1,298, 1,450, 1,506 and
2,950 cm� 1) seen in the ANT material, in comparison with the
NT material, are assigned to C-N stretching, C-H deformation,
C-N deformation and C-H stretching vibrations, respectively32.
These vibrational modes further confirm the presence of the
aminomethyl groups in the ANT material.

NT ANT

NT ANT

NT ANT

5 54 3 32 1 1

Figure 2 | Characterization of NTs and ANTs by TEM and ED.

(a) Conventional and (b) cryo-TEM images. (c) ED patterns of NTs and

ANTs. The scale bar for the conventional TEM images represents 20 nm,

and for cryo-TEM images 10 nm. The reflections numbered 1–5 in the ED

patterns are assigned to (006), (004), (063), (071) and (002).14

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4342 ARTICLE

NATURE COMMUNICATIONS | 5:3342 | DOI: 10.1038/ncomms4342 | www.nature.com/naturecommunications 3

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Silicon coordination. The Si coordination in the ANTs is rig-
orously assessed by 29Si and 27Al NMR. 29Si direct polarization
NMR spectra are shown in Fig. 5a. For both NTs and ANTs, the
peak at � 79 p.p.m. is known as the Q3(6Al) �Si-OH finger-
print15,20,30 and originates from the use of TEOS as a Si source in
both cases. The peak at � 57 p.p.m., observed only in ANTs but
not in NTs, occurs from the additional Si source (AMTES) used
in ANT synthesis. According to the aforementioned discussion
regarding the absence of the ethoxy groups, the peak at
� 57 p.p.m. could be assigned to either T3(3Si) or T3(6Al) Si,

wherein T3(3Si) would be due to self-polymerization of
AMTES and T3(6Al) would be the fingerprint of isolated
aminomethlysilane groups in the ANTs. To differentiate
between these two possibilities, a control experiment was
performed by immobilization of AMTES on a mesoporous
silica support (SBA-15), resulting in a combination of T1(1Si),
T2(2Si), and T3(3Si) coordination (the raw 29Si NMR spectrum is
shown in Supplementary Fig. 2). The 29Si chemical shift of the
T3(3Si) silicon was found at � 72 p.p.m., which is quite different
from the � 57 p.p.m. chemical shift seen in the ANTs. Hence, the
peak at � 57 p.p.m. is very likely due to the isolated �Si-CH2NH2

aminomethylsilane groups in the ANTs. Another supporting
evidence for the peak assignment is that when using
methytriethoxysilane (MTES) as the reagent, there is only a
2 p.p.m. difference between the T0 (neat reagent in solution state,
� 41 p.p.m.) and T3(6Al) �Si-CH3 peak (isolated methylsilane
groups in the NT, � 43 p.p.m.)23. In our AMTES system
(Supplementary Table 3), a similar 2 p.p.m. difference is also
observed for T0 (� 55 p.p.m., Supplementary Fig. 3) and T3(6Al)
(� 57 p.p.m.). Provided that the repetition delay is chosen to be
long enough, the integrated areas under the � 57 p.p.m. and
� 79 p.p.m. Si peaks in the direct polarization NMR spectrum
can be used for quantifying the fractional substitution of
�Si-CH2NH2 for �Si-OH groups. For the ANT sample, this
quantity is determined to be 0.18. The 27Al spectra of NTs and
ANTs are nearly identical (Fig. 5b). The peak at � 4 p.p.m. is
due to the octahedral Al coordination in both nanotubes.
The quantification of the fractional substitution of T3(6Al)
for Q3(6Al) by various techniques is shown in this work
(Supplementary Table 4). The average fractional substitution
from all the analytical techniques is 0.15. The fractional
substitution derived from the elemental analysis represents the
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organic moiety immobilized on both interior and external surface
of ANTs whereas the values deduced from the 29Si solid-state
NMR and N2 physisorption represent the amine moiety grafted
only on the interior surface of ANTs.

To gain more insight into the connectivity between Si (from
both TEOS and AMTES as Si sources) and Al atoms in the ANT
wall, 29Si/27Al transfer of populations in double resonance
(TRAPDOR) experiments were employed33. The TRAPDOR
technique directly probes the dipolar coupling between a
spin¼ 1/2 nucleus (29Si) and a spin41/2 nucleus (27Al), and
thereby characterizes the proximity of these two nuclei33,34.
Practically speaking, in the presence of a dephasing pulse from
the 27Al channel, the 29Si peak intensity will be reduced if the Si
atoms are within a few Angstroms of the Al atoms33,34. The
TRAPDOR spectra for the ANT are shown in Fig. 6. A clear
intensity reduction is observed for both Q3(6Al) and T3(6Al)
peaks in the presence of the 27Al dephasing pulse, confirming the
close proximity between Al and Si atoms and therefore our peak
assignment. On the other hand, a control sample composed of a
physical mixture of mesoporous silica (SBA-15) and a-alumina is
also measured (Supplementary Fig. 4). No intensity reduction of
the Si signal is observed due to a lack of silicon-aluminium
connectivity.
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Structural modelling. On the basis of the interior surface
chemistry and framework characterizations, a structural model of
the ANT was constructed (Fig. 7a). Using the structural models of
the NT and ANT materials, XRD simulations were then per-
formed. The comparison of the simulated and experimental XRD
patterns for NTs and ANTs is summarized in Fig. 7b. As dis-
cussed in our previous works15,22, the XRD patterns for NTs are
not dominated by Bragg diffraction but by scattering from small
bundles of NTs. In particular, both computational and
experimental evidence shows that the NTs form small bundles
of three or four individual nanotubes. The XRD pattern is fully
explained by the scattering form factor of a bundle composed of
three or four tubular objects35. The immobilization of the
aminomethyl groups at the inner surface of the nanotubes causes
a deviation in the form factor from the plain NTs, which
describes an ideal core-shell cylindrical object with uniform
scattering length density. This subtle difference between NTs and
ANTs is successfully captured in both experimental and
simulated XRD patterns, wherein the ANT shows less
prominent features in the regions of 5–6�, 8–10� and 12–14�
2y. The excellent agreement between experimental and
computational XRD patterns for ANT further demonstrates the
successful synthesis of ANTs. Although nanotube synthesis with

20% AMTES substitution for TEOS successfully yielded ANTs
with 15% T3(6Al) substitution for Q3(6Al) in the nanotube wall,
we are so far unable to synthesize ANTs with 50 and 100%
AMTES substitution (Supplementary Figs 5–7). To further
advance the synthesis of organic-functionalized single-walled
metal oxide NTs, a better understanding of the molecular-level
events occurring during the synthesis is necessary20,21.

Gas adsorption. Single-component gas adsorption measurements
via quartz crystal microbalance-based techniques36 were performed
to evaluate the functionality of the ANT material. The CO2/N2 and
CO2/CH4 molecular pairs were chosen to assess the effect of the
aminomethyl groups on adsorptive selectivity for CO2, which is
relevant to carbon capture from flue gas and natural gas
purification37,38. The full adsorption isotherms are shown in
Fig. 8, and the ideal adsorption selectivity of NTs and ANTs is
summarized in Fig. 9. In this work, the ideal adsorption selectivity is
defined in the standard manner, as the ratio of the single-
component adsorption uptakes of two different adsorbate molecules
at the same partial pressure. As shown in Fig. 9, ANTs with a 15%
aminomethyl group substitution for hydroxyls exhibit a dramatic
improvement in selectivity over the bare NTs for both CO2/CH4

(up to four-fold increase) and CO2/N2 (up to ten-fold increase).
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Discussion
To gain more insight into the observed selectivity enhancements
and evaluate the affinity of the ANT and NT walls for the
adsorbate molecules, the Henry’s constants for adsorption in each
nanotube material were obtained from fits of the full isotherms to
the Langmuir model (Supplementary Note 1). The Henry’s
constant ratios between ANTs and NTs (KANT/KNT) are
summarized in Supplementary Table 5. The detailed Langmuir
fitting parameters are presented in Supplementary Table 6. In
general, the Henry’s constants decrease for all the adsorbates
when partially replacing surface hydroxyl groups with amino-
methyl groups. As expected, the isolated aminomethyl
(�Si-CH2NH2) groups in the ANTs possess overall weaker
affinities for the adsorbates in comparison with the hydroxyl
(�Si-OH) groups. However, the aminomethyl groups greatly
suppress the adsorption of CH4 and N2 in relation to
CO2, thereby leading to a large enhancement in CO2/CH4 and
CO2/N2 adsorption selectivity. Furthermore, the relative suppres-
sion in CH4 and N2 adsorption becomes more efficient when the
temperature is increased from 25 �C to 67 �C, as well as by
increasing the pressure, thereby leading to increased adsorption
selectivity with both temperature and pressure. Previous
computational and experimental works suggest that single-walled
carbon nanotubes of comparable diameter (B1 nm) have a

maximum CO2/CH4 and CO2/N2 adsorption selectivity of
about 7 at 25 �C and a low pressure of 1 atm, with the
selectivity declining as pressure increases, for example, to about
5.5 at 8 bar (B120 psi)39,40. More importantly, in the case
of carbon nanotubes there is no available route for controlling
these properties by functionalizing or modifying their interior
surfaces.

The smaller reduction of Henry’s constant for CO2 is due to
the mechanism of amine group binding to CO2 molecules. It is
well known that one equivalent of a free base moiety—typically
water—is needed for a primary amine to adsorb one equivalent of
CO2

41,42. However, under anhydrous conditions such as in the
present adsorption measurements, two adjacent primary amines
are required to adsorb one equivalent of CO2. The primary amine
groups are expected to be distributed in a random manner at the
inner surface of the ANTs, and there is no evidence available for
preferred clustering (or non-clustering) of the aminomethylsilane
functional sites. At a 15% substitution of silanol groups by
aminomethyl groups in the confined space of the inner nanotube
wall, we expect the presence of isolated amine sites as well as
amine groups in close proximity to each other. Given the
adsorption mechanisms discussed above, amine groups in close
proximity will provide a positive contribution to CO2 adsorption,
whereas an isolated amine would likely show lower CO2 affinity
than the surface hydroxyls. These two competing effects, present
only for CO2 adsorption but not for CH4 and N2, are likely to be
the key factor leading to a relatively small reduction of Henry’s
constant for CO2 and the high CO2/CH4 and CO2/N2 selectivity
in ANTs.

In conclusion, through a single-step approach, we have
successfully synthesized single-walled aminoaluminosilicate
nanotubes (ANTs) with a 15% aminomethyl group substitution
for the hydroxyl groups on the interior nanotube wall. A
combination of characterization techniques including TEM,
cryo-TEM, 13C, 29Si and 27Al solid-state NMR, FT-Raman
spectroscopy, elemental analysis, nitrogen physisorption and
XRD measurements and simulations, have yielded conclusive
structural information on the ANTs at the molecular level. CO2,
CH4 and N2 adsorption measurements on the bare NTs and
amine-functionalized ANTs have demonstrated that the interior
surface properties can be significantly tailored by the incorpora-
tion of the primary amines. The modified interior surface results
in dramatically enhanced CO2/CH4 and CO2/N2 ideal adsorption
selectivity. This work elucidates the fabrication of functionalized
single-walled metal-oxide nanotube materials with altered
interior surface properties. Such an approach to synthesize
functional nanotube materials can enable a wider range of
applications for nanotubes, which have so far been inaccessible to
other nanotube systems such as carbon nanotubes.

Methods
Synthesis of aminomethyltriethoxysilane. AMTES was synthesized by treating
the commercially available chloromethyltriethoxysilane with gaseous ammonia
using a Parr reactor. The reaction was performed anhydrously at 900–1,000 psi and
100 �C for 5 h. The synthesis details were identical to that described in our pre-
vious work.43

Nanotube synthesis. TEOS and AMTES were mixed with aluminium-tri-sec-
butoxide in a glove box filled with nitrogen. The mixture, with a TEOS:AMTE-
S:Al:HClO4 molar ratio of (1� x):x:2:1, was added into a Teflon jar (1,000ml
capacity) containing 500ml of 38mM perchloric acid. Bare aluminosilicate
nanotubes (‘NTs’) were obtained when x¼ 0; whereas ANTs were synthesized
when x¼ 0.2. Synthesis products with x¼ 0.5 and 1 are discussed in the
Supplementary Figs 5–7. The aqueous mixture was vigorously stirred at room
temperature in ambient conditions for 24 h. The solution was then diluted with
deionized water water by a factor of 3.8 with respect to volume, and then stirred at
95 �C for 96 h. Once the temperature was brought to 95 �C, the solution turned
from cloudy to clear in about 1 h. After the solution was cooled to room
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temperature, a 30wt% ammonia solution was added dropwise until gelation of the
suspended nanotubes occurred. The gel was isolated by centrifugation at
7,000 r.p.m. for 10min. The supernatant was discarded and a few drops of
10N hydrochloric acid were added to the gel, thereby re-dispersing the nanotubes.
The gel was dialyzed against 10wt% ammonium hydroxide solution for 24 h
and then against deionized water water for 3 days, using a dialysis membrane
with a 15 kDa molecular weight cutoff. To obtain powder samples, the purified
gel was dried at 60 �C and then ground lightly to disperse the agglomerated
nanotubes. Approximately 1 g of powder sample is obtained from a 1 l synthesis
batch volume.

Transmission electron microscopy. TEM images were collected using a JEOL
JEM-2200FS 200 kV field emission transmission electron microscope with an
in-column Omega energy filter (operated at 200 kV). Detailed sample preparation
procedures are described in our previous work21. Cryo-TEM images were recorded
at the Apkarian Integrated Electron Microscopy Core (Emory University) using a
JEOL JEM-1210 microscope operated at 100 kV15.

X-ray diffraction measurements and simulations. XRD measurements in
Bragg–Brentano geometry were performed on a PAnalytical X’pert Pro MPD
diffractometer operating with a Cu Ka source. Diffraction data were collected with
a collimator and proportional (Miniprop) He-filled detector, in the range of 3–30�
2y and a step size of 0.05� 2y. The Reflex module of the Materials Studio 3.2
package (Accelrys) was used for XRD pattern simulations, and the methodological
details have been reported in our previous work15.

Nitrogen physisorption. Nitrogen physisorption measurements were carried out
on a Micromeritics Tristar II at 77 K. The sample was placed in an analysis tube
and degassed under 15mTorr at 200 �C for 12 h before physisorption
measurements.

Solid-state NMR. The 13C, 27Al and 29Si MAS NMR measurements were carried
out on a Bruker DSX 300 using a 7mm rotor. For 13C cross-polarization MAS
NMR, the sample was spun at 5 kHz, and a single p/2 pulse with a duration of 5 ms
and a repetition time of 4 s was used. The sample was spun at 5–6 kHz for 27Al
MAS NMR, for which a single pulse of p/6 (duration 0.6 ms) and a repetition time
of 0.1 s was used. For 29Si MAS NMR, direct polarization scans were performed
with repetition times of 10 s at p/2 single pulse (duration 5 ms) and 5 kHz spinning
rate. The chemical shifts of 13C, 27Al and 29Si were referenced to adamantane
(13C chemical shift at 38.45 p.p.m.), an aqueous solution of aluminium trichloride
(27Al chemical shift at 0 p.p.m.), and solid 3-(trimethylsilyl)-1-propanesulphonic
acid sodium salt (29Si chemical shift at 0 p.p.m.), respectively. The 29Si/27Al
Transfer of Populations in Double Resonance (TRAPDOR) NMR experiments
were carried out on a Bruker Avance III 400 using a triple resonance probe
equipped for 3.2mm MAS rotors. The pulse sequence followed the previous
literature using decoupling of the 27Al-nucleus during the evolution period33.
The MAS spinning speed was set to 5 kHz. A dephasing time of 2ms (10 rotor
periods) was applied for the 27Al decoupling with a frequency of B100 kHz.

Raman spectroscopy. FT-Raman spectra were obtained on a Bruker Vertex 80v
spectrometer with dual FTIR and FT-Raman benches and CaF2 beamsplitter.
Elemental analysis was performed by Columbia Analytical Services, Inc.

Gas adsorption measurements. Adsorption measurements were performed with
a quartz crystal microbalance-based measurement apparatus developed in-house36.
For the sample preparation, the as-synthesized NT or ANT gel was drop-coated by
depositing a few drops on the quartz crystal microbalance substrate. The substrates
were then pre-baked in an oven at 110 �C and atmospheric pressure for 30min.
The samples were then mounted in the measurement apparatus and degassed
in situ at 180 �C and 4mTorr for about 24 h before adsorption measurements.
Single-component adsorption isotherms of CO2, CH4 and N2 in the two types of
NTs were then collected at 25 �C and 67 �C and pressures ranging from 0.3–120 psi
(about 8 atm). Measurements were taken in pressure intervals of 2–3 psi (below
1 atm) and B40 psi (above 1 atm).
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