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Wavefront sensing reveals optical coherence
B. Stoklasa1, L. Motka1, J. Rehacek1, Z. Hradil1 & L.L. Sánchez-Soto2

Wavefront sensing is a set of techniques providing efficient means to ascertain the shape of

an optical wavefront or its deviation from an ideal reference. Owing to its wide dynamical

range and high optical efficiency, the Shack–Hartmann wavefront sensor is nowadays the

most widely used of these sensors. Here we show that it actually performs a simultaneous

measurement of position and angular spectrum of the incident radiation and, therefore, when

combined with tomographic techniques previously developed for quantum information

processing, the Shack–Hartmann wavefront sensor can be instrumental in reconstructing

the complete coherence properties of the signal. We confirm these predictions with an

experimental characterization of partially coherent vortex beams, a case that cannot be

treated with the standard tools. This seems to indicate that classical methods employed

hitherto do not fully exploit the potential of the registered data.
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L
ight is a major carrier of information about the universe
around us, from the smallest to the largest scale. Three-
dimensional objects emit radiation that can be viewed as

complex wavefronts shaped by diverse features, such as refractive
index, density or temperature of the emitter. These wavefronts are
specified by both their amplitude and phase; yet, as conventional
optical detectors measure only (time-averaged) intensity, infor-
mation on the phase is discarded. This information turns out to
be valuable for a variety of applications, such as optical testing1,
image recovery2, displacement and position sensing3, beam
control and shaping4–6, as well as active and adaptive control
of optical systems7, to mention but a few.

Actually, there exists a diversity of methods for wavefront
reconstruction, each one with its own pros and cons8. Such
methods can be roughly classified into three categories: (a)
interferometric methods based on the superposition of two beams
with a well-defined relative phase; (b) methods based on the
measurement of the wavefront slope or wavefront curvature
and (c) methods based on the acquisition of images followed
by the application of an iterative phase-retrieval algorithm9.
Notwithstanding the enormous progress that has already been
made, practical and robust wavefront sensing still stands as an
unresolved and demanding problem10.

The time-honoured example of the Shack–Hartmann (S–H)
wavefront sensor surely deserves a special mention11: its wide
dynamical range, high optical efficiency, white light capability and
ability to use continuous or pulsed sources make of this setup an
excellent solution in numerous applications.

The operation of the S–H sensor appeals to the intuition,
giving the overall impression that the underlying theory is
obvious12. Indeed, it is often understood in an oversimplified
geometrical-optics framework, which is much the same as
assuming full coherence of the detected signal. By any
means, this is not a complete picture: even in the simplest
instance of beam propagation, the coherence features turn out
to be indispensable13.

It has been recently suggested14 that S–H sensing can be
reformulated in a concise quantum notation. This is more than an
academic curiosity, because it immediately calls for the
application of the methods of quantum state reconstruction15.
Accordingly, one can verify right away that wavefront sensors
may open the door to an assessment of the mutual coherence
function, which conveys full information on the signal.

In this paper, we report the first experimental measurement of
the coherence properties of an optical beam with a S–H sensor.
To that end, we have prepared several coherent and incoherent
superpositions of vortex beams. Our strategy can efficiently
disclose that information, whereas the common S–H operation
fails in the task.

Results
S–H wavefront sensing. The working principle of the S–H
wavefront sensor can be elaborated with reference to Fig. 1.
An incoming light field is divided into a number of sub-apertures
by a microlens array that creates focal spots, registered in a
camera, typically a charge-coupled device (CCD). The deviation
of the spot pattern from a reference measurement allows the local
direction angles to be derived, which in turn enables the recon-
struction of the wavefront. In addition, the intensity distribution
within the detector plane can be obtained by integration and
interpolation between the foci.

Unfortunately, this naive picture breaks down when the light is
partially coherent, because the very notion of a single wavefront
becomes somewhat ambiguous: the signal has to be conceived as a
statistical mixture of many wavefronts16. To circumvent this

difficulty, we observe that these sensors provide a simultaneous
detection of position and angular spectrum (that is, directions) of
the incident radiation. In other words, the S–H is a pertinent
example of a simultaneous unsharp position and momentum
measurement, a question of fundamental importance in quantum
theory and about which much has been discussed17–19.

Rephrasing the S–H operation in a quantum parlance will
prove pivotal for the remaining discussion. Let r be the coherence
matrix of the field to be analysed. Using an obvious Dirac
notation, we can write G(x0,x00)¼/x0|r|x00S¼Tr(r|x0S/x00|),
where |xS is a vector describing a point-like source located at x
and Tr is the matrix trace. Thereby, the mutual coherence
function G(x0,x00) appears as the position representation of the
coherence matrix. As a special case, the intensity distribution
across a transversal plane becomes I(x)¼Tr(r|xS/x|). More-
over, a coherent beam of complex amplitude U(x), can be
assigned to a ket |US, such that U(x)¼/x|US.

To simplify, we restrict the discussion to one dimension,
denoted by x. If the setup is illuminated with a coherent signal
U(x), and the ith microlens is Dxi apart from the S–H axis, this
microlens feels the field U(x�Dxi)¼/x|exp(� iDxiP)|US,
where P is the momentum operator. This field is truncated and
filtered by the aperture (or pupil) function A(x)¼/x|AS and
Fourier transformed by the microlens before being detected by
the CCD camera. All this can be accounted for in the form

U 0ðDpjÞ ¼ hA j exp ð� iDpjXÞexp ð� iDxiPÞ j Ui; ð1Þ
where X is the position operator and we have assumed that the jth
pixel is angularly displaced from the axis by Dpj. The intensity
measured at the jth pixel behind the ith lens is then governed by a
Born-like rule

I Dxi;Dpj
� �

¼ Tr r j pijihpij j
� �

; ð2Þ
with |pijS¼ exp(iDxiP)exp(iDpjX)|AS. As a result, each pixel
performs a projection on the position- and momentum-displaced
aperture state, as anticipated before.

Some special cases of those aperture states are particularly
appealing. For point-like microlenses, A(x)-d(x) and |pijS-
|x¼DxiS (that is, a position eigenstate): they produce broad
diffraction patterns and information about the transversal
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Figure 1 | The principle of the S–H wavefront sensor. A microlens array

(MA) subdivides the wavefront (W) into multiple beams that are

focused in a CCD camera. Local slope of the wavefront over each microlens

aperture determines the location of the spot on the CCD. Red arrows

represent normals to the wavefront.
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momentum is lost. Conversely, for very large microlenses,
A(x)-1 and |pijS-|p¼DpjS (that is, a momentum eigenstate):
they provide a sharp momentum measurement with the
corresponding loss of position sensitivity. A most interesting
situation is when one uses a Gaussian approximation14; now
A(x)¼ exp(� x2/2), which implies |pijS-|aijS, that is, a
coherent state of amplitude aij¼Dxiþ iDpj. This means that
the measurement in this case projects the signal on a set of
coherent states and hence yields a direct sampling of the Husimi
distribution20 Q(a)¼/a|r|aS.

This quantum analogy provides quite a convenient description
of the signal: different choices of CCD pixels and/or microlenses
can be interpreted as particular phase-space operations21.

S–H tomography. Unlike the Gaussian profiles discussed before,
in a realistic setup the microlens apertures do not overlap. If we
introduce the operators Pij¼ |pijS/pij|, the measurements
describing two pixels belonging to distinct apertures are compa-
tible whenever [Pij, Pi0j]¼ 0, iai0, which renders the scheme
informationally incomplete22. Signal components passing
through distinct apertures are never recombined and the
mutual coherence of those components cannot be determined.

Put differently, the method cannot discriminate signals
comprised of sharply localized non-overlapping components.
Nevertheless, these problematic modes do not set any practical
restriction. As a matter of fact, spatially bounded modes (that is,
with vanishing amplitude outside a finite area) have an
unbounded Fourier spectrum and so, an unlimited range of
transversal momenta. Such modes cannot thus be prepared with
finite resources and they must be excluded from our considera-
tions: for all practical purposes, the S–H performs an informa-
tionally complete measurement and any practically realizable
signal can be characterized with the present approach.

To proceed further in this matter, we expand the signal as a
finite superposition of a suitable spatially unbounded computa-
tional basis (depending on the actual experiment, one should use
plane waves, Laguerre–Gauss beams and so on). If that basis is
labelled by |kS (k¼ 1,y, d, with d being the dimension), the
complex amplitudes are /x|kS¼ck(x). Therefore, the coherence
matrix r and the measurement operators Pij are given by d� d
non-negative matrices. A convenient representation of Pij can be

obtained directly from equation (2), viz,

�ij
� �

mn¼ cn;i Dpj
� �

c�
m;i Dpj
� �

; ð3Þ

where cm,i(x) is the complex amplitude at the CCD plane of the
ith lens generated by the incident mth basis mode cm.

This idea can be illustrated with the simple yet relevant
example of square microlenses: A(x)¼ rect(x). We decompose the
signal in a discrete set of plane waves ck(x)¼ exp(� ipkx),
parameterized by the transverse momenta pk. This is just the
Fraunhofer diffraction on a slit, and the measurement matrix is

�ij
� �

mn¼ sinc ðDpj þ pmÞ sinc ðDpj þ pnÞeiðpm � pnÞDxi : ð4Þ

The smallest possible search space consists of two plane waves
(which is equivalent to a single-qubit tomography). By consider-
ing different pixels j belonging to the same aperture i, linear
combinations of only three out of the four Pauli matrices can be
generated from equation (4). For example, a lens placed on the
S–H axis (Dxi¼ 0) fails to generate sy and at least one more lens
with a different Dxi needs to be added to the setup to make the
tomography complete.

This argument can be easily extended: the larger the search
space, the more microlenses must be used. In this example, the
maximum number of independent measurements generated by
the S–H detection is (2Mþ 1)d� 3M, for M lenses. A
d-dimensional signal—a spatial qudit—can be characterized with
about MBd/2 microlenses. This should be compared with the d
quadratures required for the homodyne reconstruction of a
photonic qudit23,24.

Experiment. We have validated our method with vortex
beams25,26. Consider the one-parameter family of modes specified
by the orbital angular momentum c, Vc¼/r, j|VcSpeicj,
where (r, j) are cylindrical coordinates. In our experiment, the
partially coherent signal

rtrue ¼jV� 3 �
i
2
V� 6ihV� 3 �

i
2
V� 6 j þ

1
2
jV3ihV3 j ð5Þ

was created; that is, modes V� 3 and V� 6 are coherently
superposed, while V3 is incoherently mixed. Figure 2 sketches the
experimental layout used to generate equation (5). Imperfections
of the setup and sensor noise make the actual state to differ
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Figure 2 | Experimental layout for preparing and detecting partially coherent vortex beams. Two independent laser sources, He–Ne at 633 nm (He–Ne)

and a laser diode at 635 nm (LD), are coupled into single-mode fibres (SMF) by fibre couplers (FC). After collimation (CO), they are transformed

into vortex beams by two different techniques. The first beam, representing a coherent superposition of two vortex modes, is prepared by a digital

hologram imprinted in a spatial light modulator (SLM). Unwanted diffraction orders are filtered by an aperture stop (AS), placed in a 4f system. The second

beam is modulated by a vortex phase mask (PM) and represents a single vortex mode with an opposite phase orientation with respect to the first beam.

Both beams are incoherently mixed in a beam splitter (BS) and finally detected in a S–H sensor (S–H).
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from the true state. Calibration and signal intensity scans are
presented in Fig. 3.

The coherence matrix of the true state is expanded in the
seven-dimensional (7D) space spanned by the modes Vc, with
cA{� 9, � 6, � 3, 0, þ 3, þ 6, þ 9}. The resulting matrix
elements are plotted in Fig. 4.

To reconstruct the state we use a maximum likelihood
algorithm27,28, whose results are summarized in Fig. 4.
The main features of rtrue are nicely displayed, which is
also confirmed by the high fidelity of the reconstructed state
F(rtrue, r)¼Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

p
rtrue

ffiffiffi
r

pp� �
¼ 0.98. The off-diagonal elements

detect the coherence between modes, whereas the diagonal ones
give the amplitude ratios between them. The reconstruction
errors are mainly due to the difference between the true and the
actually generated state.

To our best knowledge, this is the first experimental measure-
ment of the coherence properties with a wavefront sensor. The
procedure outperforms the standard S–H operation, both in terms
of dynamical range and resolution, even for fully coherent beams.
For example, the high-order vortex beams with strongly helical
wavefronts are very difficult to analyse with the standard wavefront
sensors, while they pose no difficulty for our proposed approach.

The dynamical range and the resolution of the S–H tomography
are delimited by the choice of the search space {|kS} and can be
quantified by the singular spectrum29 of the measurement matrix
Pij. For the data in Fig. 4, the singular spectrum (which is the
analogue of the modulation transfer function in wave optics) is
shown in Fig. 5. Depending on the threshold, around 20 out of the
total of 49 modes spanning the space of 7� 7 coherence matrices
can be discriminated. The modes outside this field of view are
mainly those with significant intensity contributions out of the
rectangular regions of the CCD sensor. Further improvements can
be expected by exploiting the full CCD area and/or using a CCD
camera with more resolution, at the expense of more
computational resources for data post-processing.

3D imaging. Once the feasibility of the S–H tomography has
been proven, we illustrate its utility with an experimental
demonstration of 3D imaging (or digital propagation) of partially
coherent fields.

As it is well known16, the knowledge of the transverse intensity
distribution at an input plane is, in general, not sufficient for
calculating the transverse profile at other output planes.
Propagation requires the explicit form of the mutual coherence
function Gin at the input to determine Iout:

IoutðxÞ ¼
ZZ 1

�1
hðx; x0Þh�ðx; x00ÞGinðx0; x00Þdx0dx00: ð6Þ

Here x0 (x00) and x are the coordinates parameterizing the input
and output planes, respectively, and h(x, x0) the response function
accounting for propagation.

The dependence of the far-field intensity on the beam
coherence properties is evidenced in Fig. 6 for coherent, partially
coherent and incoherent superpositions of vortex beams.

Once the coherence matrix is reconstructed, the forward/
backward spatial propagation can be obtained using tools of
diffraction theory and, consequently, the full 3D spatial intensity
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Figure 3 | Experimental CCD signal. Rescaled 8-bit data corresponding to

seven microlenses placed in a hexagonal geometry, 81� 81-pixel region, is

displayed in both panels. (a) Data of the plane wave used for calibration;

(b) data of the partially coherent vortex beam in equation (5). Green

squares enclose the data used for the reconstruction. The intensity from the

central microlens vanishes owing to the presence of a phase singularity.
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Figure 4 | Vortex-beam coherence-matrix reconstruction. Real R and

imaginary J parts of the coherence matrix for the true state rtrue (upper
panel) and for the reconstructed r (lower panel). The reconstruction space

is spanned by vortex modes with cA{�9, �6, � 3, 0, þ 3, þ6, þ9}.

The nonzero values of Jr� 6,� 3 and Jr� 3,� 6 describe coherences

between the modes |V� 6S and |V� 3S and the phase shift p between

them. The very small values of r3,� 6, r3,� 3, r� 6,3 and r� 3,3 come from

the incoherent mixing of |V3S and |V� 3� i=2ð ÞV�6S. The fidelity of the

reconstructed coherence matrix is F¼0.98.
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Figure 5 | Dynamical range of the S–H reconstruction. The singular

spectrum {Skk} of the data in Fig. 4 (here, sorted and normalized to the

largest singular value) quantifies the sensitivity of the tomography setup to

the normal modes of the problem (see Methods). The relative strengths
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those modes. The dynamical range (or field of view) can be defined as the

set of normal modes with singular values exceeding a given threshold.
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distribution can be computed. In particular, the intensity profile
at the focal plane of an imaging system can be predicted from the
S–H measurements. This has been experimentally confirmed, as

sketched in Fig. 7. We prepared the partially coherent super-
position |V4þV� 4S/V4þV� 4|þ k|V0S/V0| and character-
ized it by the S–H tomography method. The reconstructed
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Figure 6 | Influence of the spatial coherence on the far-field intensity distribution. We have considered different mixtures of the modes |V4S, |V�4S
and |V0S and calculated the associated intensity distribution as a Fraunhofer diffraction pattern. (a) Fully coherent superposition |V4þV�4þ0.4V0S
/V4þV�4þ0.4V0|; (b) incoherent mixture |V4S/V4|þ |V�4S/V�4|þ0.4|V0S/V0|; and (c) partially coherent mixture |V4þV�4S/V4þV�4|þ
0.4|V0S/V0|.

0.5

0.0

–0.5
6 4 2 0 –2 –4 –6lj

li
–6

–4
–2

02
46

0.5

0.0

–0.5
6 4 2 0 –2 –4 –6lj

li
–6

–4
–2

02
46

� �

25

10

–2
0

2mm

m
m

I

–2

0

2

Intensity

0.1

0.0
–0.1

–2
0

2
mm

–2

0

2

m
m

Wavefront

�

Lens

CCD

–0.4 mm 0.4 mm

–0.4 mm 0.4 mm

–0.4 mm 0.4 mm

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

Figure 7 | Digital 3D imaging. The prediction of the far-field intensity distribution is compared with a direct intensity measurement. The partially coherent

vortex beam |V4þV�4S/V4þV�4|þ k|V0S/V0| was generated (with a beam diameter of 4.9mm) with a fixed parameter k (unknown before the

reconstruction). Upper, middle and lower pannels correspond to the S–H tomography, standard S–H measurement and direct intensity measurement,

respectively. Upper left: real and imaginary parts of the reconstructed r in the 7D space spanned by the vortices Vcwith cA{�6, �4, � 2, 0, 2, 4, 6}. Upper

right: calculated far-field intensity distribution Ir based on the reconstructed r propagated to the focal plane of the lens (f¼ 500mm). Middle left: intensity

distribution (in arbitrary units) and wavefront as measured by the standard S–H sensor. Middle right: calculated far-field intensity distribution Istd using

the standard S–H wavefront reconstruction and the transport of intensity equation included in the sensor (HASO). Bottom left: schematic picture of the direct

intensity measurement at the lens focal plane. Bottom right: the result of the direct intensity measurement ICCD at the focal plane with a CCD camera.
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coherence function (upper left) was digitally propagated to the
focal plane of a lens and the intensity distribution at this plane
was calculated (upper right) and compared with the actual CCD
scan in the same plane (lower right). Excellent agreement between
the predicted and measured distributions was found.

We emphasize that the standard S–H operation fails in this
kind of application30. Indeed, we measured the intensity and
wavefront of the target vortex superposition with a standard S–H
sensor (middle left) and propagated the measured intensity to the
focal plane using the transport of intensity equation31,32 (middle
right). To quantify the result, we compute the normalized

correlation coefficient [C(Ia, Ib)¼Si,j IaIb/
ffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;j I
2
a

q ffiffiffiffiffiffiffiffiffiffiffiffiffiP
i;j I

2
b

q
] of

the measured intensity with the prediction: the result,
C(Istd, ICCD)¼ 0.47, confirms the inability of the standard S–H
to cope with the coherence properties of the signal. This has to
be compared with the result for the S–H tomography:
C(Ir, ICCD)¼ 0.89, which supports its advantages.

Discussion
We have demonstrated a non-trivial coherence measurement
with a S–H sensor. This goes further than the standard analysis
and constitutes a substantial leap ahead that might trigger
potential applications in many areas. Such a breakthrough would
not have been possible without reinterpreting the S–H operation
as a simultaneous unsharp measurement of position and
momentum. This immediately allows one to set a fundamental
limit in the experimental accuracy33.

Moreover, although the S–H has been the thread for our
discussion, it is not difficult to extend the treatment to other
wavefront sensors. For example, let us consider the recent
results for temperature deviations of the cosmic microwave
background34. The anisotropy is mapped as spots on the sphere,
representing the distribution of directions of the incoming
radiation. To get access to the position distribution, the
detector has to be moved and, in principle, such a scanning
brings information about the position and direction
simultaneously: the position of the measured signal before
detection is delimited by the scanning aperture, whereas the
direction the signal comes from is revealed by the detector placed
at the focal plane. When the aperture moves, it scans the field
repeatedly at different positions. This could be an excellent
chance to investigate the coherence properties of the relict
radiation. To our best knowledge, this question has not been
posed yet. Quantum tomography is especially germane for this
task.

Finally, let us stress that the classical estimation theory has
been already applied to the raw S–H image data, offering an
improved accuracy, but at a greater computational cost35,36.
However, the protocol used here can be implemented in a very
easy, compact way, without any numerical burden.

Methods
Partially-coherent beam preparation. Two independent vortex beams were
created in the setup of Fig. 2 with two laser sources of nearly the same wavelength:
a He–Ne (633 nm) and a diode laser (635 nm). The output beams were spatialy
filtered by coupling them into single-mode fibres. The power ratio between the
modes was controlled by changing the coupling efficiency. The resulting modes
were transformed into vortex beams by different methods.

The state |V� 3� i=2ð ÞV� 6S was realized using a digital hologram prepared
with an amplitude spatial light modulator (OPTO SLM), with a resolution of
1,024� 768 pixels. The hologram was then illuminated by a reference plane wave
produced by placing the output of a single-mode fibre at the focal plane of a
collimating lens. The diffraction spectrum involves several orders, of which only
one contains useful information. To filter out the unwanted orders, a 4f-optical
processor, with a 0.3-mm circular aperture stop placed at the rear focal plane of the
second lens, was used. The resulting coherent vortex beam is then realized at the
focal plane of the third lens.

The second beam |V3S was obtained through a plane-wave phase profile
modulation by a special vortex phase mask (RPC Photonics). Finally, the field in
equation (5) was prepared by mixing the two vortex modes in a beam splitter.

During the state preparation, special care was taken to reduce any deviation
between the true and target states. This involved minimizing aberrations as well as
imperfections of the spatial light modulator, resulting in distortions of the
transmitted wavefront.

S–H detection. The S–H measurement involved a Flexible Optical array of 128
microlenses arranged in a hexagonal pattern. Each microlens has a focal length of
17.9mm and a hexagonal aperture of 0.3mm. The signal at the focal plane of the
array is detected by a uEye CCD camera with a resolution of 640� 480 pixels, each
pixel being 9.9 mm� 9.9 mm in size. Because of microlens array imperfections,
CCD–microlens misalignment and aberrations of the 4f processor (aberrations of
the collimating optics are negligible), calibration of the detector must be carried
out. The holographic part of the setup provided this calibration wave. S–H data
from the calibration wave and the partially coherent beam are shown in Fig. 3. The
beam axis position in the microlens array coordinates was adjusted with a Gaussian
mode. The detection noise is mainly due to the background light, which is filtered
out before reconstruction.

Reconstruction. The reconstruction was done in the 7D space spanned by the Vc

modes with cA{� 9, � 6, � 3, 0, þ 3, þ 6, þ 9}. All in all, 49 real parameters had
to be reconstructed. The data come from CCD areas belonging to seven micro-
lenses around the beam axis; each one of them comprise 11� 11 pixels, which
means 847 data samples altogether. An iterative maximum likelihood algo-
rithm27,28 was applied to estimate the true coherence matrix of the signal.

Dynamical range and resolution. The errors of the S–H tomography can be
quantified by evaluating the covariances of the parameters of the reconstructed
coherence matrix r. In the absence of systematic errors, the Cramér–Rao lower
bound37,38 can be employed to that end. In practice, a simpler approach based on
the singular spectrum analysis29 works pretty well.

Let us decompose the d� d coherence matrix r (d is just the dimension of the
search space) and the measurement operators Pij in an orthonormal matrix basis
Gk (k¼ 1, y, d2) [Tr(GkGl)¼ dkl], namely

r ¼
X

rkGk; �ij ¼
X
k

pijkGk; ð7Þ

so that the Born-like rule (2) can be recast as a system of linear equations

Iij ¼
X
k

pijk rk: ð8Þ

On using a single index a to label all possible microlens/CCD–pixel combinations
a�{i, j}, equation (8) can be concisely expressed in the matrix form

I ¼ Pr; ð9Þ
where I is the vector of measured data, r is the vector of coherence-matrix
parameters and Pak¼ pak is the tomography matrix.

Obviously, for ill-conditioned measurements, the reconstruction errors will be
larger and vice versa. By applying a singular-value decomposition to the
measurement matrix P¼USVw, equation (9) takes the diagonal form

I0 ¼ Sr0; ð10Þ
where r0 ¼Vwr and I0 ¼UwI are the normal modes of the problem and the
corresponding transformed data, respectively. The singular values Skk are the
eigenvalues associated with the normal modes, so the relative sensitivity of the
tomography to different normal modes is given by the relative sizes of the
corresponding singular values. With the help of equations (9) and (10), the errors
are readily propagated from the detection I to the reconstruction r.

Drawing an analogy between equation (10) and the filtering by a linear spatially
invariant system, the singular spectrum Skk and the sum of the singular values
SkSkk are the discrete analogues of the modulation transfer function and the
maximum of the point spread function, respectively. Hence we define the
dynamical range (or field of view) of the S–H tomography as the set of normal
modes with singular values exceeding a given threshold. The sum of the singular
values then describes the overall performance of the S–H tomography setup. When
some of the singular values are zero, the tomography is not informationally
complete and the search space must be readjusted.

Far-field intensity. In the experiment on 3D imaging, the partially coherent vortex
beam |V4þV� 4S/V4þV� 4|þ k|V0S/V0| was generated, where k was a para-
meter governing the degree of spatial coherence. To this end, a coherent mixture
|V4þV� 4S/V4þV� 4| was realized by the digital-holography part of the setup,
whereas the zero-order vortex beam |V0S was prepared by removing the spiral
phase mask. The output diameter of the beam was set to 4.9mm.

The measurement was done in three steps. First, the S–H sensor (see Fig. 2) was
replaced by a lens of 500mm focal length and the far-field intensity was detected at
its rear focal plane with a CCD camera (Olympus F-View II, 1376� 1032 pixels,
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6.45 mm� 6.45 mm each). Second, the same vortex superposition was subject to the
S–H tomography using the S–H sensor (Flexible Optical) and the reconstruction of
the coherence matrix in the 7D subspace spaned by the vortices Vc with cA{� 6,
� 4, � 2, 0, þ 2, þ 4, þ 6}. Once r is reconstructed, the far-field intensity was
computed using equation (6), where the focusing is described by the Fraunhofer
diffraction response function. The predicted intensity was found to be in an
excellent agreement with the direct sampling by the Olympus CCD camera. Finally,
the Flexible Optical S–H sensor was replaced by a HASO3 S–H detector. The
intensity and wavefront of the prepared vortex beam was measured and the far-
field intensity was computed by resorting to the transport of intensity performed by
the HASO software. Resampling was done to match the resolution of the HASO
output to the resolution of the Olympus CCD camera.
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