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Casimir-like forces at the percolation transition
Nicoletta Gnan1,2, Emanuela Zaccarelli1,2 & Francesco Sciortino2

Percolation and critical phenomena show common features such as scaling and universality.

Colloidal particles, immersed in a solvent close to criticality, experience long-range effective

forces named critical Casimir forces. Building on the analogy between critical phenomena and

percolation, here we explore the possibility of observing long-range forces near a percolation

threshold. To this aim, we numerically evaluate the effective potential between two colloidal

particles dispersed in a chemical sol, and we show that it becomes attractive and long-ranged

on approaching the sol percolation transition. We develop a theoretical description based on a

polydisperse Asakura–Oosawa model that captures the divergence of the interaction range,

allowing us to interpret such effect in terms of depletion interactions in a structured solvent.

Our results provide the geometric analogue of the critical Casimir force, suggesting a novel

way for tuning colloidal interactions by controlling the clustering properties of the solvent.
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E
ffective interactions have an important role in the physics
of colloidal dispersions1. A notable example is provided by
depletion interactions, that is, interactions arising from the

presence of a cosolute (for example, polymers and surfactants) in
the suspension. The pioneering works by Asakura–Oosawa (AO)
and Vrij2,3 have shown that, when two hard-sphere (HS) colloids
are immersed in a solution in the presence of small cosolute
particles, the latter are excluded from the available volume
between colloids when the two are closer than the cosolute typical
size. As a result, a net entropy-driven depletion attraction arises.
In general, the strength and the range of the depletion attraction
can be tuned by modifying the cosolute concentration and size.

Depletion interactions have thus far mostly been exploited for
monodisperse cosolutes, such as non-adsorbing polymers or HSs,
generating short-range effective forces. A solvent composed by
cosolutes of different size could introduce a structure in the
effective potential controlled by the different cosolute length
scales4. Interestingly, if the cosolutes are constituted by a
chemical sol (that is, a sol composed by particles linked into
clusters through irreversible bonds) close to its percolation locus,
all length scales will enter in Veff, but in a scale-free mode. Indeed,
when the percolation threshold is approached from the sol phase,
the cluster size distribution follows a universal power-law
dependence and clusters of all sizes are present (up to a cutoff
that is function of the distance from percolation). Thus, it is
legitimate to ask whether two colloids, immersed in a sol of
clusters close to percolation, experience a long-ranged effective
force, whose characteristic length scale diverges at percolation.
This question becomes even more interesting if we consider the
analogy between percolation and thermal critical phenomena.
Percolation theory describes the growth of clusters in a system on
approaching the percolation threshold, the point at which an
infinite spanning cluster appears5. Similarly, the theory of critical
phenomena describes the growth of correlated regions on
approaching a second-order critical point, where the size of
the correlated regions diverges6. Clusters of different sizes in
percolation have the same role as the thermal critical fluctuations
close to the second-order critical point7, both being described by
scale-free distributions, whose first moment shows a power-law
behaviour approaching the transition. Both the connectivity
length in percolation and the correlation length in critical
phenomena diverge at the transition.

It is well known that colloidal particles immersed in a solvent
that is close to a second-order critical point experience long-range
effective forces. These forces originate from the confinement of
the solvent critical fluctuations between the surfaces of distinct
colloids8. The (universal) resulting effective potential decays with
an exponential law controlled by the thermal correlation length of
the solvent, diverging at the critical point8,9. These forces, named
as critical Casimir forces for their analogy with the Casimir effect
occurring when the electromagnetic field is confined between two
metal surfaces, have been measured in recent experiments10.
Owing to their universal nature, critical Casimir interactions do
not depend on the specific properties of the solvent but only on
the geometry of the confining surfaces and on their ability to
absorb the solvent (boundary conditions), giving rise to both
attractive or repulsive interactions11,12, which have been exploited
to induce colloidal aggregation13–20. It has also been conjectured
that proteins in membranes of living cells experience weak long-
range critical Casimir forces21.

As percolation shares scaling and universality with critical
phenomena, we may expect a mechanism analogous to the critical
Casimir effect to take place when colloidal particles are immersed
in a sol close to its percolation threshold. Here we show that
indeed a long-range force, created by confining the fluctuations
of the cluster sizes, develops between colloids, and that its

interaction range is controlled by the sol connectivity length x.
The resulting effective potentials are compatible with the
picture of depletion induced by a polydisperse system. To this
aim, we perform simulations of two colloidal particles immersed
in a chemical sol close to its percolation point. Fixing the total
packing fraction occupied by the clusters, we explore different
distances from percolation, that is, cluster size distributions
with different cutoff. Our results provide evidence that the
analogy between percolation and critical phenomena can be
exploited to induce novel kind of effective forces between
colloidal particles, which are controlled by the clustering proper-
ties of the solvent.

Results
Effective potentials in a sol close to percolation. We perform
Monte Carlo (MC) simulations to evaluate the effective potential
Veff between two HS colloids of diameter sc immersed in a fluid
composed of clusters. Clusters are made by N¼ 10,836 HS
monomers of size sm¼ 0.1sc, randomly connected with a max-
imum functionality of three (as described in the Methods section)
and are treated as rigid objects, which are allowed to translate and
rotate, interacting between themselves and with the two colloids
via excluded volume repulsion only. Consistent with the
hypothesis of a chemical sol (irreversible bonds), clusters do not
break nor coalesce. The total cluster packing fraction is fixed to
f¼ 0.052, whereas the distance to the percolation transition (and
the associated cluster distributions) changes. In simulations, the
distance from the transition is controlled by measuring the
fraction p of formed bonds5. p is the analogous of the temperature
in critical phenomena and its critical values at the percolation
threshold is indicated with pc. Snapshots of the system at different
p are shown in Fig. 1.

We have generated, as described in the Methods section,
cluster distributions for different values of p for p-pc. For each
selected p, we also evaluate the connectivity length x defined as5,
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where n(s) is the number of clusters of size s (with the
constraint

P
s snðsÞ¼N), and Rs is the radius of gyration

of a cluster composed of s monomers with positions ~ri:
Rs¼ [(1/2s2)

P
ij j ~ri �~rj j 2]1/2.

In the course of the MC simulation, the volume around the two
HS colloids is explored by clusters of different size. Hence, the
two colloids experience around them the presence of different
clusters that fluctuate in size. Such fluctuations are analogous to
the critical density fluctuations in the critical Casimir effect, and
are responsible of the emergence of a long-range force when
confined between the surfaces of the two colloids.

Figure 2 shows the evolution of the effective potential for
different p, exploring the range from p/pcE0.1 to p/pcE0.93. For
p/pc40.8, the system is sufficiently close to percolation to sample
the universal features of n(s) (as explained in the Methods
section). To probe values of p/pc40.93 would require prohibi-
tively larger simulation boxes. Far from percolation, when the sol
is mainly composed of monomers, we recover the depletion
potential between two colloids immersed in a HS fluid22,23 and
Veff shows a typical oscillatory behaviour, whose characteristic
length scale is controlled by the monomer size. On increasing p,
Veff turns completely attractive and the interaction range becomes
longer and longer. The long-distance behaviour is well described
by an exponential decay exp(� r/xeff), the same functional form
that applies to the critical Casimir potential. To show that the
interaction range is controlled by the connectivity length of
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the sol, we compare the correlation length xeff, extracted from the
exponential fit modelling the decay of Veff, with the connectivity
length x of the sol (Equation (1)) in the inset of Fig. 2. For all
investigated P values, we find a linear relation between x and xeff,
reinforcing the hypothesis that, close to percolation, the range of
Veff is indeed related to the typical size of the clusters composing
the sol.

To provide evidence that the long-range phenomenon
originates from the connectivity properties of the sol, we
calculate—for p/pcE0.93—the effective potential for a system
with the same cluster size distribution, but in which bonds are
reversible and clusters break and reform in time. This
corresponds to select an energy scale for the bond interaction
and a temperature for which in equilibrium, the same fraction
of bonds among cosolute monomers is present (see Methods).
A comparison between Veff(r) calculated for reversible and
irreversible bonds is shown in Fig. 3a. We notice the dramatic
effect of the finite bond lifetime on the range of the effective
potential: when clusters are reversible, the potential is attractive
only up to a few monomer sizes. In order to provide further
evidence that the connectivity length controls Veff at large
distances, we show in Fig. 3b the comparison between Veff for
p/pc¼ 0.93 calculated, respectively, at f¼ 0.052 (as in Fig. 2) and
at f¼ 0.105. As p/pc is the same in the two cases, the sol is
characterized by the same cluster distribution (see Methods), and
hence by the same x. We find that the long-distance part of the
potential is well described by an exponential function having the
same decay length for both values of the sol packing fraction,
supporting the possibility of an universal behaviour at large distances.

Generalized AO model for a polydisperse depletant. To gain a
deeper insight in the mechanism that controls the range of Veff

close to percolation in a chemical sol, we now develop a theo-
retical framework based on the analogy with depletion inter-
actions. When small depletant particles are added to a colloidal
suspension, an attractive entropic force between colloids builds
up, because of the exclusion of the depletant from the region
between particles when their relative distance is comparable or
smaller than the depletant diameter1. In the venerable AO–Vrij
model2,3, introduced to describe the effective interactions
between colloids in a solution of non-interacting polymers,
depletants are modelled as an ideal gas that interacts via hard-
core repulsion with the HS colloids only. In the case of
monodisperse depletant particles of radius R, the AO effective
potential between two HS colloids at a surface-to-surface distance
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Figure 2 | Effective potentials between two colloids in a sol of clusters.

Evolution of the effective potential Veff on approaching the percolation

threshold at fixed sol packing fraction f¼0.052. r is the surface-to-surface

distance between the two colloids. The thick line shows a typical

exponential fit to the data in the interval r/sm43, which is used to estimate

the correlation length xeff. Inset: correlation length xeff extracted from Veff
(squares) against the connectivity length defined in Equation (1), both in

units of sm. Errors on the x- and y axis are, respectively, the standard error

in evaluating the connectivity length over several configurations, and the

standard error in performing the exponential fit for extracting the

correlation length. The latter is of the order of 1%. The solid line is

calculated using the theoretical modelling proposed in Equation (6). The

linear relation suggests that Veff diverges with the same power-law of x at

the percolation transition.
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Figure 1 | Clustering of the sol close to percolation. Snapshots of the system for different p, with p-pc. Each snapshot shows the two colloids

immersed in the sol of clusters on approaching the percolation treshold. Clusters of different sizes are represented in a different colour (see legend).
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r and depletant number density r is

bVAOðr;R; rÞ ¼� pr 2R� rð Þ Rsc
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where the Y function indicates that the potential vanishes for
distance longer than 2R. We propose to model the sol close to
percolation as a polydisperse HS system distributed according to
the cluster size distribution n(s). Each cluster is represented as a
sphere of radius Rs, the cluster gyration radius, reducing the
problem to that of two colloids immersed in a sea of ideal
depletant particles of different size. Following AO, clusters
interact only with the colloids via a hard-core repulsion. As sm
is significantly smaller than sc only very close to percolation the
largest cluster size becomes comparable to the colloid size. Apart
from this small region, the depletion hypothesis is valid24.

Close to percolation, the cluster size distribution ns assumes the
universal form5,25

nðsÞ ¼ Ns� te�
s
sc

s2� t
c Gð2� t; s� 1

c Þ ; ð3Þ

where t¼ 2.18 is a critical exponent (in the random-percolation
universality class) and sc controls the exponential cutoff of the
power-law distribution, approaching infinity at percolation.
Moreover, G(x,y) is the incomplete G function entering via the
normalization condition

R1
1 sn(s)ds¼N. Summing overall clusters,

the resulting potential is bVeff
AOðrÞ ¼

R1
1 bVAO(r, Rs, n(s)/V)/dsV,

where V is the volume.
Building on the universal properties of the clusters shape close

to percolation5, it is possible to relate the number of monomers s
in the cluster to Rs via the fractal exponent D, whose universal
value (in random percolation theory) is D¼ 2.53,

Rs ¼ R1s
1=D: ð4Þ

Hence, the total potential becomes,
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where r1 is the monomer number density and the lower

integration limit r
2R1

� 	D
in Equation (5) accounts for the Y

function in each AO contribution. This indicates that only
clusters with diameter larger than r participate in building
bVAO

eff (r). Finally, integrating over the cluster size we obtain,
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This functional form depends on the percolation exponents and,
for large r, its asymptotic behaviour is

bVeff
AOðr � R1Þ � � ðr=2R1Þð3� tD�DÞe�ðr=2R1ÞD=sc �: ð7Þ

To compare the theoretical predictions based on the AO
approach with the effective potential previously calculated, we
first verify that the clusters size distribution and the cluster
gyration radius used in the MC simulations are consistent with
the scaling laws predicted by percolation theory and extract the
corresponding sc value. Figure 4 shows n(s) and Rs with respect to
the theoretical predictions of Equation (3) and Equation (4). For
clusters larger than 50 monomers, the model-independent scaling
laws properly describe the data, suggesting that for r42Rs¼ 50,
theoretical predictions can be meaningfully compared with the
effective potentials calculated from MC simulations.

The resulting Veff
AO potentials for different p are reported in

Fig. 5. A surprisingly good agreement between MC results and the
theoretical model is found for r42Rs¼ 50B7.8sm, confirming
that the effect of the sol can be modelled as a depletion
interaction acting on all length scales associated with the clusters.
We also extract a characteristic decay length of VAO

eff (r), using an
exponential fit similarly to what done for the numerical MC data.
This can be used to build a relation with x, yielding the curve
reported in the inset of Fig. 2, which closely follows the MC
simulation results. The self-similar nature of the cluster size
distribution and its widening on approaching percolation do
control the interaction range.
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Figure 3 | Role of the lifetime of sol clusters and of sol packing fraction. (a) Effective potential between two HS colloids in a solution of particles that

forms reversible (diamonds) and irreversible bonds (triangles), with the same cluster size distribution at p/pc¼0.93 and f¼0.052. The irreversible

potential is averaged over two different realizations of the cluster fluid. Error bars for this potential are calculated from the difference of the two realizations,

finding that for r/smo15 the error does not exceed 5% of the estimated value. (b) Comparison of the investigated effective potentials generated by

irreversible clusters at two different packing fractions along an iso-p line (see Methods). Full lines are exponential fits of the long-range tail of Veff. The best

fit decay length is E5sm for f¼0.052 and E5.3sm for f¼0.105. The inset shows that the long-distance parts of the potentials superimpose within

numerical error when the two potentials are scaled by the packing fraction.
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To strengthen even more the comparison with Veff
AO, we have

repeated the evaluation of the effective potential Veff
AO in

Equation (5), by numerically summing over the very same cluster
configurations used in simulations, associating each cluster with
its own gyration radius, without resorting to the scaling laws.
The resulting curves are shown in the inset of Fig. 5. Including
the exact cluster size distribution and the exact behaviour of the
gyration radius makes it possible to properly capture even the
region ro2Rs¼ 50 with the simple superposition of the AO
contributions. Hence, we conclude that the failure of the model
for ro2Rs¼ 50 is not related to the AO approximation, but to
the non-asymptotic (model-dependent) behaviour, which is
clearly visible in the size dependence of Rg for small clusters
in Fig. 4.

Discussion
We have demonstrated that two colloids in a gel-forming solution
experience an attractive effective potential, which becomes
increasingly long-ranged on approaching the percolation transi-
tion. The range of the effective interaction is controlled by the
connectivity length of the sol and diverges at the percolation
transition. Such effective interaction originates from the confine-
ment of the cluster-size fluctuations between the colloids surface,
thus providing a new Casimir-like effect driven by the clustering
properties of the sol. These results extend the analogy between the
percolation transition and a second-order critical point7 to the
context of effective interactions. In the case of critical Casimir
forces, the long-range attraction arises from the confinement of
the order parameter fluctuations in between the colloids. When
the latter are located at distances smaller than the correlation
length, large-scale fluctuations are not allowed to occur between
the colloids along the r-direction, giving rise to a non-zero net
force. Approaching percolation, it is the cluster size distribution
that becomes wider and larger and larger clusters appear.
Similarly to critical fluctuations, clusters whose diameter is
larger than the colloids surface-to-surface distance are excluded.

The use of a simple theoretical description in which clusters are
treated as non-interacting spheres has shown that the mechanism
controlling the effective interactions can be assimilated to a
depletion effect. We expect that the residual interaction among
monomers of different clusters (that are not included in our
simulations) would not affect significantly our results. In fact in
the solvent cluster phase, most of the particle–particle interaction
is already accounted in the formation of clusters and the only
remaining relevant cluster–cluster contribution is related to
exclude volume interactions. The fractal nature of the percolation
clusters, which favours their interpenetration, and the small
overall packing fraction of the sol help in modelling the resulting
depletion potential with a theory that neglects cluster–cluster
interactions (in analogy with the standard polymer depletants
for which the AO model was conceived). It is interesting to
note that the depletion mechanism has been also invoked as a
guiding analogy for interpreting critical Casimir forces16,26,
where the increase of the correlation length of the critical
domains has been regarded as an increase of the size of the
depleting objects. We remark that the developed AO approach is
limited to the case in which the size of the largest cluster does not
significantly exceed the colloidal size. Further we finally stress
that the current analysis is based on a two-body description of the
effective potential. In analogy with critical Casimir forces27, we
expect that many-body effects will become relevant close to
percolation when the interaction range becomes comparable to
the colloid size.

Exploiting the percolation transition for generating long-range
effective forces opens up a new way to use self-assembly
properties of the solvent (or cosolutes) for controlling interactions
between colloidal particles. Differently to the case of critical
Casimir forces that require tuning of the solvent properties close
to one specific point (the critical point), percolation can be
achieved for a variety of sol-densities.

Finally, we have shown that the effective potential is long
ranged only in the case of chemical sols, when bonds between
monomers have an infinite lifetime. Experimental investigation of
such phenomenon requires thus a chemical sol close to gelation.
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However, we speculate that the same results hold also in the case
of reversible bonds but only in the limit in which bond lifetimes
are significantly longer than the experimental time scales (that is,
experiments that probe only a single sol microstate). In this
perspective, with the increasing availability of self-assembling
particles with specific design of interactions28,29 such as gel-
forming DNA tetramers30, we expect that the realization of these
long-range effective forces could be implemented, paving the
way for further manipulation of colloidal phase behaviour and
dynamical arrest.

Methods
Model. To generate the sol of clusters, we study a model of particles interacting via
the pairwise anisotropic Kern–Frenkel three-patches (3P) potential31. Particles are
thus represented by HSs of diameter sm with three attractive sites, located on the
equator. The interaction potential between these sites is

Vij;ab ¼ VSW
ab ð j~rij j ÞGðr̂ij; r̂ia; r̂jbÞ; ð8Þ

where~rij is the vector between the centres of particles i and j, and r̂ia is the unit
vector from the centre of particle i to the centre of the a-patch on the surface. VSW

ab

is a square well potential of width d¼ 0.119 and depth e¼ 1

VSW
ab ð~rij



 

Þ ¼ 1 if ~rij


 

osm;

� e ifsm � ~rij


 

 � sm þ dsm;

0 otherwise:

8<
: ð9Þ

The function G modulates the potential and depends on the reciprocal
orientation of two particles:

Gðr̂ij; r̂ia; r̂jbÞ ¼
1 if

0

r̂ij � r̂ia4 cosðymaxÞ;
� r̂ij � r̂jb4 cosðymaxÞ;

�
otherwise:

8<
: ð10Þ

The angular width that controls the volume available for bonding is set to
cos(ymax)¼ 0.894717. A sketch of the 3P model is reported in Fig. 6a. The 3P
system is a model for a physical gel, that is, it forms reversible clusters and its
connectivity properties depend on the temperature T and the packing fraction f.
Hence, in principle, it is possible to tune T and f in order to find state points with
the desired number of inter-monomer bonds. The phase diagram of the model in
the T-f plane, characterized by the limited-valence gas–liquid phase separation32,
is shown in Fig. 6b. Lines of constant number of bonds—that is, lines of equal bond
probability (iso-p lines)—identify loci of similar sol structure. One of these lines is
also shown in Fig. 6b. Along this line, the cluster size distribution is found to be the
same within numerical resolution (Fig. 6c), confirming that the monomers are
aggregated in clusters of similar polydispersity.

In most of the work, we fix the packing fraction of the particles to f¼ 0.052,
and equilibrate the system at several temperatures to probe states with different
fraction of bonds p and hence different cluster size distribution. On cooling indeed
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the system forms larger and larger clusters, till a percolation point is reached where
a spanning cluster appears.

Note that 3P particles form transient clusters because of the reversibility of the
bonds. To generate a model for chemical gel, after equilibration has been reached,
we freeze all the bonds formed in an arbitrary configuration of the system, thereby
making the clusters lifetime infinite. Once all bonds are frozen, particles belonging
to different clusters cannot form new bonds and clusters behave as translating
and rotating rigid objects interacting only via excluded volume among them and
with the two HS colloids. This polydisperse set of clusters is then used as a chemical
sol model in the numerical study of the effective potential between two colloids.

Identification of the percolation threshold. For the system under study (with
f¼ 3 bonding sites for each of the N particles) the fraction of bonds can be cal-
culated from the relation p¼ � 2/US/Nf, where /US is the average potential
energy and the factor two accounts for all the bonded sites of the system. At the
percolation point (T*,r*), p reaches its critical value pc. To roughly identify the
percolation threshold for the 3P system at the packing fraction f¼ 0.052, we have
performed MC simulations of the 3P fluid in the canonical ensemble for different
temperatures T (that is, for different p) in the absence of the two large HS colloids.
The percolation point can be identified by studying the evolution of the cluster size
distribution n(s) for different state points, which has the form of a power-law at
p¼ pc, that is, n(s)Bs� t (with t¼ 2.18), while as p-pc n(s) is controlled by a
scaling function, typically assumed to be exponential, that modulates the power-
law (Equation (3)). The result is shown in Fig. 6d. Although at high temperatures
(far from percolation), the function n(s) follows the mean-field Flory–Stockmayer
theory33,34, at kT/e¼ 0.128 it is described by a power-law behaviour with the
random-percolation universality class exponent5. Hence, for a system of
N¼ 10,836 3P particles at packing fraction f¼ 0.052, we locate to a good
approximation the percolation point at kT/e¼ 0.128 corresponding to pc¼ 0.618.

Once pc is identified, we can study the behaviour of the connectivity length
x defined in Equation (1), on approaching the percolation point. Close enough to
the transition, random percolation theory predicts5 that x follows a power-law
behaviour with exponent v¼ 0.88. Data for x(p) are shown in Fig. 6e. The power-
law scaling is observed only for p/pc40.8. For this reason, we have carried our
investigation close enough (p/pc40.8) to the transition to observe a genuine effect
associated to the incipient percolating behaviour.

Numerical evaluation of the effective potential. To evaluate the effective
potential it is necessary to calculate P(r), that is, the probability that the two
colloids are found at distance r. Hence, we implement an Umbrella Sampling
scheme12,35 that allows for a convenient parallelization of the code and to optimize
the computational time by ‘flattening’ the energy barrier that can be created by the
presence of large clusters and that can prevent the colloids to sample uniformly all
the distances. To probe the whole distance range, we perform 40 parallel runs in
which the two colloids explore 40 different windows. Hence, in the Umbrella
Sampling scheme used, for each simulation the two colloids sample only a small
window of distances Di. Each run is a standard MC simulation in the canonical
ensemble, where both colloids and clusters are allowed to move with a size-
dependent MC step allowing for a 30% acceptance. Veff is evaluated by constraining
the two colloids to move in a window Di along the x axis (identifying the
r-direction) of a parallelepipedal box where the length of the x-edge Lx¼ 7.6sc is
twice the length of Ly and Lz. This guarantees that, for all the simulated state points,
the surface-to-surface distance between colloids (and their periodic images) in all
directions is always larger than the distance at which Veff goes to zero. The cluster size
distribution is identical in all the 40 runs. During the single run, we evaluate the
probability P(r,Di) of finding the two colloids at a given distance r within the window Di.

Then, the total probability P(r) is obtained by merging together the P(r,Di)
resulting from all the parallel runs by means of a least-squares-based algorithm.
The effective potential is calculated from the relation bVeff(r)¼ � In(P(r))þC,
where C is a constant chosen imposing Veff(N)¼ 0.

Each potential should be averaged over several different realizations of the
cluster fluid. Owing to the long computational time requested for evaluating Veff

(roughly 1 month on 40 cores), our averaging is limited to two different realizations
of the cluster size for each distance from the percolation threshold.

References
1. Likos, C. N. Effective interactions in soft condensed matter physics. Phys. Rep.

348, 267–439 (2001).
2. Asakura, S. & Oosawa, F. Interaction between particles suspended in solutions

of macromolecules. J. Polym. Sci. 33, 183–192 (1958).
3. Vrij, A. Polymers at interfaces and the interactions in colloidal dispersions.

Pure Appl. Chem. 48, 471–483 (1976).
4. Knoben, W., Besseling, N. A. M. & Cohen Stuart, M. A. Long-range depletion

forces induced by associating small molecules. Phys. Rev. Lett. 97, 068301 (2006).
5. Stauffer, D. & Aharony, A. Introduction to Percolation Theory Revised 2nd edn

(Taylor and Francis, London, UK, 1994).
6. Domb, C. & Lebowitz, J. L. Phase Transitions and Critical Phenomena Vol. 10

(Academic Press, London, UK, 1986).
7. Daoud, M. & Coniglio, A. Singular behaviour of the free energy in the sol-gel

transition. J. Phys. A 14, L301–L306 (1981).

8. Fisher, M. E. & de Gennes, P. G. Wall phenomena in a critical binary mixture.
C. R. Acad. Sci. Paris B 287, 207–209 (1978).

9. Gambassi, A. et al. Critical Casimir effect in classical binary liquid mixtures.
Phys. Rev. E 80, 061143 (2009).

10. Hertlein, C., Helden, L., Gambassi, A., Dietrich, S. & Bechinger, C. Direct
measurement of critical Casimir forces. Nature 451, 172–175 (2008).

11. Nellen, U., Helden, L. & Bechinger, C. Tunability of critical Casimir
interactions by boundary conditions. Europhys. Lett. 88, 26001 (2009).

12. Gnan, N., Zaccarelli, E. & Sciortino, F. Tuning effective interactions close to the
critical point in colloidal suspensions. J. Chem. Phys. 137, 084903 (2012).

13. Bonn, D. et al. Direct observation of colloidal aggregation by critical Casimir
forces. Phys. Rev. Lett. 103, 156101 (2009).

14. Gambassi, A. & Dietrich, S. Colloidal aggregation and critical Casimir forces.
Phys. Rev. Lett. 105, 059601 (2010).

15. Bonn, D., Wegdam, G. H. & Schall, P. Reply to: colloidal aggregation and
critical Casimir forces. Phys. Rev. Lett. 105, 059602 (2010).

16. Buzzaccaro, S., Colombo, J., Parola, A. & Piazza, R. Critical depletion.
Phys. Rev. Lett. 105, 198301 (2010).

17. Zvyagolskaya, O., Archer, A. & Bechinger, C. Criticality and phase separation in
a two-dimensional binary colloidal fluid induced by the solvent critical
behavior. Europhys. Lett. 96, 28005 (2011).

18. Veen, S. J. et al. Colloidal aggregation in microgravity by critical Casimir forces.
Phys. Rev. Lett. 109, 248302 (2012).

19. Gnan, N., Zaccarelli, E., Tartaglia, P. & Sciortino, F. How properties of
interacting depletant particles control aggregation of hard-sphere colloids.
Soft Matter 8, 1991–1996 (2012).

20. Nguyen, V. D., Faber, S., Hu, Z., Wegdam, G. H. & Schall, P. Controlling
colloidal phase transitions with critical Casimir forces. Nat. Commun. 4, 1584
(2013).

21. Machta, B. B., Veatch, S. L. & Sethna, J. P. Critical Casimir forces in cellular
membranes. Phys. Rev. Lett. 109, 138101 (2012).

22. Gotzelmann, B., Roth, R., Dietrich, S., Dijkstra, M. & Evans, R. Depletion
potential in hard-sphere fluids. Europhys. Lett. 47, 398–404 (1999).
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