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Visualizing autophosphorylation in histidine kinases
Patricia Casino1,2, Laura Miguel-Romero1 & Alberto Marina1,3

Reversible protein phosphorylation is the most widespread regulatory mechanism in signal

transduction. Autophosphorylation in a dimeric sensor histidine kinase is the first step in

two-component signalling, the predominant signal-transduction device in bacteria. Despite

being the most abundant sensor kinases in nature, the molecular bases of the histidine kinase

autophosphorylation mechanism are still unknown. Furthermore, it has been demonstrated

that autophosphorylation can occur in two directions, cis (intrasubunit) or trans (intersubunit)

within the dimeric histidine kinase. Here, we present the crystal structure of the complete

catalytic machinery of a chimeric histidine kinase. The structure shows an asymmetric

histidine kinase dimer where one subunit is caught performing the autophosphorylation

reaction. A structure-guided functional analysis on HK853 and EnvZ, two prototypical cis- and

trans-phosphorylating histidine kinases, has allowed us to decipher the catalytic mechanism

of histidine kinase autophosphorylation, which seems to be common independently of

the reaction directionality.
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P
ost-transcriptional modification by phosphorylation is the
most widespread mechanism in signal transduction.
Transferring g-phosphate from ATP to specific residues is

the centrepiece in this process. In two-component systems, the
main signal-transduction mechanism in bacteria, the signalling
process starts by the autophosphorylation of a conserved histidine
in the sensor histidine kinase (HK). Transfer of the phosphoryl
group from the HK histidine to a conserved acid aspartic of its
partner’s response regulator (RR) propagates the signal and
triggers the cellular response1,2. Prototypical HKs are membrane-
bound homodimers, which require two structurally conserved
cytoplasmic catalytic domains to achieve autophosphorylation.
One catalytic domain, named DHp (dimerization histidine
phosphotransfer domain), is formed by two long helices (a1
and a2), where a1 contains a phosphorylatable conserved His
residue. The second catalytic domain, named CA (catalytic ATP-
binding domain), binds ATP in a pocket covered by a flexible and
variable loop named ATP lid3,4. This domain displays an a/b
sandwich fold similar to the ATPase domains of the GHKL
(gyrase, Hsp90, histidine kinase, MutL) ATPase superfamily5. In
orthodox HKs, DHp and CA are connected by a flexible and short
(5–10 residues) loop. HKs function like dimers and dimerization
takes place by the interaction of DHp helices to form a four-helix
bundle. Autophosphorylation occurs when the ATP bound in CA
phosphorylates the His in DHp. Yet, despite the different
approaches used, a full structural characterization of the
autophosphorylation reaction in HK remains elusive. This may
be due to the highly dynamic nature of CAs, as demonstrated in
DesK, HK853, VicK and YF1 HK structures, which can adopt
different rearrangements6–11, and might also be due to the
asymmetry in the autophosphorylation reaction, as proven for
NRII12. The recent structures of VicK9 and YF1 (ref. 8) HKs are
consistent with the notion of asymmetry in the auto-
phosphorylation reaction since these structures showed that one
of the CA domain approaches to the phosphoacceptor His while
the second CA domain is far away from the second His.
Unfortunately, the absence of a nucleotide triphosphate in the
catalytic centre of these structures has prevented the visualization
of the autophosphorylation reaction. Flexibility and asymmetry,
along with the transient nature of the intermediate state [ADP–
P–His] in HKs13, have hampered the crystallization of a HK in
the midst of the autophosphorylation reaction. Furthermore,
HK dimerization implies that the directionality of the auto-
phosphorylation reaction can either proceed in a cis- or trans-
manner7,14,15. A cis-autophosphorylation reaction occurs by an
intrasubunit manner; that is, the ATP bound in the CA domain of
one subunit would phosphorylate the His in the DHp of the same
subunit. In contrast, a trans reaction implies an intersubunit
autophosphorylation. Biochemical data have confirmed the
existence of both cis- and trans-mechanisms in different
HKs7,15,16. Structural comparison of the DHp domains in HKs
autophosphorylating in cis and in trans (data available from EnvZ
and HK853 (refs 6,17)) has provided some clues about the
differences in the directionality of the autophosphorylation. The
superposition shows that the loop connecting helices a1 and a2 in
the DHp domain (DHp connector) has different handedness and
length. We previously proposed that these differences can explain
why a trans-mechanism in EnvZ corresponds to a cis-mechanism
in HK853 (refs 7,18). Although structural confirmation of this
hypothesis is still not available, recent biochemical results support
this proposition. In that work, EnvZ was converted from a trans-
to a cis-autophosphorylating enzyme by interchanging the a1–a2
DHp connector with the corresponding region of PhoR,
a cis-autophosphorylating HK19.

Here we provide a detailed analysis of the basis that lies behind
the autophosphorylation mechanism in HKs by determining the

structure of a chimeric EnvZ that incorporates the DHp
connector of HK853. The structure shows a dimeric HK adopting
an asymmetric conformation where one of the subunits is
autophosphorylating. To decipher the HK autophosphorylation
reaction, we perform a structure-guided functional analysis on
residues in the active centre for HK853 and EnvZ, the models for
cis- and trans-autophosphorylation. Thus, we evidence a reaction
mechanism with a dissociative character where the nucleophility
of the attacking His is activated by an acidic residue next to the
phosphorylatable His, which acts as a general base and is assisted
by a conserved polar residue in the CA domain. Meanwhile, the
transferred phosphoryl group is stabilized by the main chain of a
flexible conserved Gly-rich loop. This mechanism in HKs seems
to be universal since it is conserved in both cis- and trans-
autophosphorylating enzymes.

Results
Design and activity of HK853 and EnvZ chimeras. The struc-
tural comparison of the EnvZ and HK853 DHp domains revealed
two main differences; first, the handedness of the DHp connector
between helices a1 and a2; second, the length of the DHp apex
(eight residues shorter in EnvZ) (Fig. 1a,b). To get insights into
the structural basis of an autophosphorylation reaction and to
evaluate the contribution of the DHp connector in this reaction,
we interchanged this region on the DHp apex between EnvZ and
HK853 (Fig. 1b), which are two prototypical HKs with the trans-
and cis-kinase mechanisms7,16. In EnvZ, residues from Leu254 to
Tyr265 (LATEMMSEQDGY) were interchanged by HK853
residues from Ala271 to Glu290 (AYAETIYNSLGELDLSTLKE)
to generate EnvZchim (Fig. 1b). In the same way, HK853 residues
from Ala271 to Glu290 were interchanged by EnvZ residues from
Leu254 to Tyr265 to generate HK853chim (Fig. 1b). To confirm
the functionality of these chimeras, we examined their autophos-
phorylation capacities (Fig. 1c). EnvZchim and HK853chim showed
similar phosphorylation rates as the corresponding wild-type
EnvZ and HK853, thus confirming that swapping the DHp
connector does not significantly affect the autophosphorylation
reaction.

Structure of EnvZchim. To gain insight into HK autopho-
sphorylation, we solved the crystal structure of EnvZchim in the
presence of the non-hydrolysable ATP analogue AMPPNP. The
EnvZchim structure was determined by single isomorphous
replacement combined with anomalous scattering (SIRAS) using
the diffraction data from a native crystal (3.0 Å) and a seleno-
methionine-substituted derivative (3.8 Å) crystal (Table 1). The
asymmetric unit of the crystal contained two EnvZchim subunits
forming the prototypical HK dimer by the interaction of the DHp
domains (Fig. 2a) with all residues well defined in the electron
density (Supplementary Fig. 1), except for the first 7 (224–230)
and the last 10 (441–450) residues. Comparison of the DHp four-
helix bundle of the EnvZchim dimer with the corresponding
regions of EnvZ and HK853 revealed that the a1–a2 connection
matches that observed in HK853 (Fig. 2b). Indeed, the EnvZchim

four-helix bundle superimposed better with HK853 than with
EnvZ (r.m.s.d. 1.6 versus 3.0 Å), although only 19 out of 73
residues of DHp domain belonged to HK853. This observation
structurally supports that DHp connector sequence (amino-acid
composition and length) guides the handedness of the four-helix
bundle7,18,19. The CA domains (residues 297–451) presented the
characteristic a/b sandwich fold of the GHKL superfamily
(Fig. 2a) as previously showed by NMR structure of EnvZ20.
The DHp and CA domains were connected by a short,
unstructured linker with seven residues (residues 291–296).
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The dimer is asymmetric, as the relative DHp-CA disposition
in each subunit (named A and B) differs (Fig. 2a,c); however, the
overall structure of the individual DHp and CA domains between
A and B subunits was virtually identical except for local
differences. The DHp domains in subunit A and B superimposed
with an r.m.s.d. as low as 1Å (residues 226–290), with differences
localized in the N-terminal part of the a1 helix, which minimized
at the level of the conserved a1 proline (Pro248). The CA
domains in subunit A and B were almost indistinguishable
(r.m.s.d. of 0.73Å for the superimposition of residues 291–386
and 405–440), except for quite a different conformation of ATP
lid (residues 387–404), which was probably due to a different
occupancy of the ATP-binding sites. The active site of subunit A
was occupied by an AMPPNP molecule (Fig. 3a), while subunit B
contained only a sulphate ion (Fig. 3b), thus confirming the
nucleotide conformational dependence of this region. Indeed, it is
unusual to observe ATP lid in the absence of ligands, but the
presence of a sulphate ion seemed to stabilize this element by
interacting with the Gly401 and Thr402 ATP lid residues
(Fig. 3b). Despite the similarity of the individual domains in
both subunits, the relative disposition of their domains, and their
interdomain interactions, differed considerably as a result of the
CA domains’ rearrangements (Fig. 2a,c; Supplementary Table 1).
In subunit B, the CA domain came close to DHp a2 helix with an
orientation relative to the DHp domain more similar to that
observed in other structures of HKs (HK853, PDB:3DGE; DesK,
PDB:3GIE; KinB, PDB:3D36) (Supplementary Fig. 2a). Unlike
subunit B, the CA domain from subunit A approached the a1
helix of the same subunit with an orientation that was consistent
with the transfer of ATP g-phosphate to phosphoacceptor His243
(Figs 2a,c and 3a), a similar disposition has been observed in the
VicK subunit A (PDB:4I5S) (Supplementary Fig. 2b). In this

conformation, the ATP molecule and the phosphorylatable His
belonged to the same subunit, which structurally advanced
a cis-autophosphorylation for EnvZchim despite the trans
directionality observed for EnvZ14,16.

Catalytic centre for autophosphorylation. The CA-DHp relative
disposition in the subunit A showed that the AMPPNP
g-phosphate-leaving group and the His243 eN-accepting atom
were at the correct distance (gP–eN 3.6 Å) and were well aligned
(NAMPPNP–P–NHis angle of 165�) for the catalytic reaction
(Fig. 3a,c). Both domains contributed to form the autopho-
sphorylation active site, but the participation of the CA domain
was predominant, as it provided all the nucleotide-interacting
residues, except for phosphoacceptor His243 (Fig. 3c). However,
the DHp domain seems to play a key role since it provided
Asp244, whose carboxylic side chain is bound to the dN of His243
(Fig. 3a,c). This interaction allowed us to postulate that Asp244 is
a general base in the reaction, as it might abstract a proton from
histidine to induce its appropriate tautomeric form for the
nucleophilic attack of eN to ATP g-phosphate. This key role was
supported by the conservation of an acidic amino acid at this
position in the HKs (Supplementary Fig. 3) and by the impaired
kinase activity of the mutants at this position for several
HKs21–23. At the same time, the Asp244 side chain was hydrogen
bound to Asn343 and formed a salt bridge with Arg339. Triad
Asn343–Asp244–Arg339 could help to achieve the correct
disposition and polarization of Asp244 to act as a general base.
In addition, the partially conserved Asn343 was also hydrogen
bound to phosphoacceptor His (Fig. 3a,c and Supplementary
Fig. 3). The g-phosphate of ATP was stabilized in the binding
pocket at the correct position for the His243 nucleophilic attack,
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Figure 1 | Design and activity of HK853 and EnvZ chimeras. (a) Observation of the differential DHp connector handedness between EnvZ and

HK853. Cartoon representation in cylindrical helices for the DHp superimposition of homodimeric HK853 (2C2A; one subunit in pink and the other (*) in

purple) and EnvZ (3ZRW; one subunit in yellow and the other (*) in orange). A view of the independently superimposed structures rotated 90� is in the

right side. In this view, the CA domain has been drawn connected to the a2 helices. The helices in the homodimers are labelled and phosphorylatable His

is shown as sticks. (b) The DHp sequence from EnvZ, HK853 and the generated chimeras, EnvZchim and HK853chim are aligned and the DHp region

interchanged to form chimeras is highlighted in grey. The phosphorylatable His is highlighted in blue and the acidic residue after the His is highlighted

in red. Residues involved in RR recognition and binding in the HK853–RR468 complex are highlighted7 in magenta and residues involved in rewiring

phosphotransfer for EnvZ27 are highlighted in yellow. (c) Autophosphorylation assays of HK853, HK853chim, EnvZ and EnvZchim. The HKs were incubated

with [g32]ATP for 1, 2.5, 5, 7.5, 10, 15 and 30min at 37 �C. The phosphorylated proteins were visualized by autoradiography.
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thanks to the contacts made among its three oxygens with
residues from the CA domain. These contacts are with the
Thr402 side chain and the backbone amide nitrogen atoms of
Thr402, Gly403, Leu404 and Gly405, a helix turn that covered
g-phosphate and corresponded to the conserved HK G2 box at
the beginning of helix a5 (Fig. 3a,c and Supplementary Fig. 3). In
subunit B, the sulphate ion, a molecule that has been reported to
occupy the position of the transferred phosphoryl groups7,24, also
interacted with the main chain of the first turn of helix a5
(Fig. 3b), thus supporting the relevance of the a5 helix dipole in
g-phosphate coordination. In addition, Arg350, placed at the end
of the a4 helix, was salt bridged with g- and b-phosphates, while
Arg392 from ATP lid was salt bridged with b-phosphate
(Fig. 3a,c). Arg350 is also hydrogen bound with Asn347 side
chain, a strictly conserved asparagine in the CA domain from
which the N box was named (Fig. 3a,c and Supplementary Fig. 3).
This Asn chelates the Mg ion required for shielding the negative
charges of ATP, and it is essential for autophosphorylation4,7,25.
Nucleotide b-phosphate also interacted with the Tyr335 side
chain and the G403 main chain. Finally, a-phosphate was
coordinated by the a5 helix dipole by its interaction with the
backbone amide nitrogens of Leu404, Gly405 and Leu406
(Fig. 3a).

Mutational analysis of potential catalytic residues. To corro-
borate the autophosphorylation conformation observed in the
EnvZchim structure and to evaluate the particular contribution of
each residue in the reaction, the residues involved in the inter-
actions with phosphorylatable His and ATP g-phosphate were
individually mutated to alanine, and their catalytic activity was
analysed. Furthermore, to test whether the autophosphorylation
reaction was dependent of trans- or cis-directionality, we carried
out this site-directed mutagenesis analysis in EnvZ and HK853.
On the basis of the EnvZchim structure, EnvZ residues Asp244,
Asn343, Asn347, Arg350 and Arg392 were selected and mutated
to alanine. Similarly, the structural equivalent residues in HK853,
Glu261, Asn376, Asn380, Lys383 and Arg430 were mutated to
alanine (Supplementary Fig. 4). The autophosphorylation activity
of these mutants was measured and compared with the respective
wild-type forms. As an internal catalytic inactive control, the
alanine mutants in the phosphoacceptor histidines of EnvZ and
HK853 (His243 and His260, respectively) were evaluated. As
expected, the EnvZ and HK853 His mutants showed no mea-
surable activity, similarly to the mutants in Mg-chelating Asn
(N347A in EnvZ and N380A in HK853) (Fig. 4a). A third
mutation corresponding to the conserved acidic residue following
phosphoacceptor His (Asp244 or Glu261 in EnvZ or HK853) also
abolished the autophosphorylation activity in both HKs (Fig. 4a),
which is consistent with the proposed role of the general base for
this residue3,13. The mutation of the corresponding acidic residue
in other HKs has a similar deleterious effect in the kinase
reaction21,23. The mutation of the second residue that interacted
with phosphorytable His Asn343 or Asn376 in EnvZ and HK853,
respectively, also had a strong impact on both enzymes, showing
residual kinase activity (Fig. 4a). Substituting the conserved basic
residue on ATP lid (Arg392 and Arg430 for Envz and HK853)
produced proteins with affected kinase activity, particularly in the
case of HK853 (Fig. 4a). In contrast, the change in the conserved
positively charged residue in the N box (Arg350 and Lys383 for
EnvZ and HK853) had a modest effect, since HK853 mutant
showed low kinase activity while EnvZ maintained full activity
(Fig. 4a).

With a quantitative binding assay (ITC), we tested in HK853
whether the effect produced by the mutations in the kinase
reaction was purely catalytic or if it was due to a defect in the
substrate binding. By using non-hydrolysable ATP analogue
AMPPNP, we found that the affinity for the nucleotide (Kd¼ 6.8
mM for the wild-type protein) was not affected by the mutations
in either phosphoacceptor His (Kd¼ 6.9 mM for the H260A
mutant) or its interacting Asn376 (Kd¼ 3.6 mM) (Fig. 4b). We
also found that the mutation in acid residue Glu261, proposed as
a general base, had a minor effect on affinity (Kd¼ 13.7 mM)
(Fig. 4b), which supports that both Glu261 and Asn376 residues
are truly catalytic. Similarly, the mutation in ATP-lid Arg430 had
only a slight effect on affinity (Kd¼ 28.3mM) (Fig. 4b). Conversely,
the mutation in the conserved Asn380, which chelated Mg,
abrogated the nucleotide binding entirely (Fig. 4b), which
explained the null activity of this mutation. Substitution of
Lys383 had a strong effect on nucleotide binding, which increased
Kd by about 40-fold (221mM) (Fig. 4b). These results support an
ATP-affinity role for Asn380 and Lys383, as it was previously
proposed for equivalent positions in the HK PhoQ3.

Our structural and functional results sustain a catalytic
mechanism where the conserved acidic residue after phosphor-
ylatable His acts as a general base assisted by a conserved polar
residue placed in the CA domain a4 helix. Given the lower
catalytic contribution observed for the positive-charged residues
interacting with the nucleotide, it seems that these residues have a
role in neutralizing the developed negative charge of the ADP
product.

Table 1 | Diffraction data and refinement statistics for
EnvZchim.

Native
EnvZchim

SeMet
EnvZchim

Data collection
Space group P6522 P6522

Cell dimensions
a, b, c (Å) 163.7, 163.7, 130.1 164.2, 164.2, 130.8
a, b, g (�) 90, 90, 120 90, 90, 120

Peak
Wavelength (Å) 0.98 0.98
Resolution (Å) 29.6–3.0 (3.2–3.0) 49.7–3.8 (4.0–3.8)
Rmerge (%) 7.4 (93.9) 19.3 (113.5)
Mean I/d(I) 21.3 (2.3) 20.4 (5.9)
Completeness (%) 97.8 (98.5) 99.9 (100.0)
Redundancy 10.6 (10.7) 38.7 (41.0)

Refinement
Resolution (Å) 29.6� 3.0

(3.2� 3.0)
49.7� 3.8
(4.0� 3.8)

No. of reflections
(observed/unique)

217,865/20,516
(31,768/2,971)

415,154/10,733
(62,599/1,526)

Rwork/Rfree (%) 19.4/23.4

No. of atoms
Protein 3366
Ligand/ion 5
Water 18

B-factors (Å2)
Protein 91.9
Ligand/ion 77.1/136.3
Water 91.5

r.m.s. deviations
Bond lengths (Å) 0.008
Bond angles (�) 1.3
PDB code 4KP4

PDB, protein data bank.
Highest-resolution shell is shown in parentheses. The structure was solved by SAD, combining
data from one native and one SeMet derivative crystal.
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Asymmetry in the autophosphorylation reaction of HK. The
EnvZchim structure showed that the relative orientation of the CA
domain in the ligand-bound subunit A and in the ligand-free
subunit B, as compared with DHp, completely differed in each
subunit, thus providing structural evidence for asymmetry in the
autophosphorylation reaction (Fig. 2a,c). According to the Dyn-
dom program26, the ligand-bound CA domain rotated 56.6� in
relation to the ligand-free CA domain, inducing a closure motion
of 42%, which brought the nucleotide closer to phosphoacceptor
His (Fig. 2c). Asymmetry in the phosphorylation reaction has
been biochemically demonstrated for NRII12 and structurally
predicted for DesK and VicK9,11. As we have demonstrated that
EnvZ and HK853 present a similar autophosphorylation
mechanism, we analysed the asymmetry of this reaction in
HK853 by native electrophoresis. When HK853 was subjected to
autophosphorylation in an excess of ATP (5mM), three different
species, corresponding to the un-, hemi- and bi-phosphorylated
forms, were observable in native gels (Supplementary Fig. 5). The
time course of the reaction at 70 �C (Thermotoga maritima
optimal growing temperature) showed a fast accumulation of the
hemi-phosphorylated form, which was in equilibrium with the bi-
phosphorylated state when the incubation time prolonged
(15–30min). A complete HK853 bi-phosphorylation was not
achieved during the time course of the reaction (90min), but the
unphosphorylated form accumulated after longer incubation
times (Supplementary Fig. 5). This is in close agreement with the
NRII results, which showed autophosphorylation inhibition by
ADP12. However, when ADP was removed from the media by a

coupled assay with phosphoenolpyruvate and pyruvate kinase,
the autophosphorylation in both subunits was complete
(Supplementary Fig. 5), as had been shown previously for
NRII12. In the cell, the ATP/ADP ratio remains constant,
suggesting that it is feasible that HKs always show asymmetric
autophosphorylation. Therefore, the HK conformation observed
in the crystal seems to represent a genuine model for
autophosphorylation reaction. In addition, these results show
that the asymmetry in the autophosphorylation reaction is
independent of the directionality since HK853 autophos-
phorylates in cis7 and NRII in trans15.

Autophosphorylation directionality. The EnvZchim structure
shows a conformation that agrees with a cis-autophosphorylation
reaction, which contrasts with the trans-autophosphorylation
directionality for EnvZ. To confirm that EnvZchim cis-autopho-
sphorylates, we analysed in vitro the reaction directionality for
this chimera, as well as, the reaction directionality for HK853chim,
which was predicted to trans-autophosphorylate. HK853 and
EnvZ were tested as controls. We followed the classic approach
generating heterodimers formed by a short (S; cytoplasmic
portion) and a long (L; cytoplasmic portion plus N-terminal tag)
subunit to distinguish which subunit within the heterodimer was
phosphorylated7,15. Wild type and mutants of these heterodimers
were generated. The mutations impaired capacity to
phosphorylate by affecting ATP binding in the long subunit
(Lø) or to be phosphorylated by eliminating phosphoacceptor His
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Figure 2 | EnvZchim structure. (a) Overall structure of EnvZchim. Cartoon representation of the homodimeric EnvZchim structure (subunit A in cyan

and subunit B in green) in two orthogonal views. The DHp region interchanged is highlighted in blue for subunit A and in orange for subunit B. ATP lid is

coloured in magenta and the AMPPNP, sulphate (SO4) and the phosphorylatable H243 are drawn as sticks. (b) Comparison of EnvZchim DHp with

EnvZ and HK853. A cartoon representation, in cylindrical helices, for the DHp superimposition of homodimeric EnvZchim (one subunit in cyan and the other

in blue) with EnvZ (3ZRW; one subunit in yellow and the other in orange) and HK853 (2C2A; one subunit in pink and the other in purple). In the

homodimers, a-helices are labelled and phosphorylatable His are shown as sticks. Two orthogonal views, lateral and from the apex, are displayed.

(c) EnvZchim structure shows asymmetry. Superposition of DHp from subunit A (cyan) and B (green) illustrates the asymmetry due to a rotational

movement of CA in relation to DHp (55.6� calculated by Dyndom).
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in the short subunit (Sø) (Fig. 5a). The autophosphorylation of
wild-type heterodimers (L/S) showed that long and short subunits
were equally phosphorylated (Fig. 5a and Supplementary Fig. 6);
however, mutant heterodimers (Lø/S and Lø/Sø) were differently
phosphorylated in accordance with the cis or trans directionality.
The mutant heterodimers of HK853 and EnvZchim showed the
same phosphorylation pattern, while HK853chim exhibited an
identical pattern to EnvZ (Fig. 5a and Supplementary Fig. 6). The
heterodimers HK853 and EnvZchim carrying the mutation in the
CA domain of the long subunit (Lø/S) displayed phosphorylation
in the short subunit, consistently with the phosphorylation in cis,
as previously demonstrated for HK853 (ref. 7). A double-mutant
heterodimer for the CA and DHp domains in the long and short
subunits (Lø/Sø), respectively, presented no phosphorylat-
ion whatsoever, thus confirming the cis-autophosphorylation.
The analogous EnvZ and HK853chim double-mutant
heterodimers (Lø/Sø) showed phosphorylation in only the long
subunit (Fig. 5a and Supplementary Fig. 6), which confirmed a
trans-autophosphorylation mechanism since the ATP bound in
the short subunit phosphorylated the His present in the long
subunit. When heterodimers EnvZ and HK853chim presented
mutations in a single subunit (Lø/S), both the long and short
subunits were phosphorylated. This is explained by the
spontaneous subunit exchange phenomenon that has been

reported for EnvZ, which also exhibits HK853chim16. As the
long subunit, which was impaired to catalyse the reaction, could
be phosphorylated only by the short subunit, this result also
supports the trans-autophosphorylation for EnvZ and
HK853chim. Collectively, these results confirm that the
EnvZchim structure described here shows the physiological
conformation of cis-autophosphorylation and that changing the
connection between helices a1 and a2 in DHp is sufficient to
switch the autophosphorylation directionality.

Phosphotransfer specificity for chimeras. The structure of the
HK853–RR468 complex (PDB 3DGE) and rewiring phospho-
transfer specificity experiments have shown that the DHp con-
nector is involved in HK–RR recognition and binding
(Fig. 1b)7,27. To assess if EnvZchim and HK853chim showed an
altered recognition for their cognate RR (OmpR for EnvZ and
RR468 for HK853) as a result of DHp connector interchange,
phosphotransfer experiments were carried out (Fig. 5b). The
results revealed that EnvZchim lost phosphotransfer capacity to its
cognate partner OmpR, but was not fully compensated by a gain
of phosphotransfer to RR468. In fact, EnvZ showed a nonspecific
phosphotransfer to RR468 that is dramatically reduced in
EnvZchim (Fig. 5b). Interestingly, HK853chim, but not HK853,
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displayed a phosphotransfer to OmpR, despite long incubation
times with the kinase (15 and 30min). In parallel, HK853chim

retained the capacity to phosphotransfer to its cognate partner
RR468 in a lesser extent than HK853, but it lost phosphatase
activity to RR468, as observed by the accumulation of
phosphorylated RR468 (Fig. 5b). These results confirm that the
DHp area interchanged in the HKs partially overlaps with the
DHp area involved in RR recognition.

Discussion
His/Asp phosphorylation dominates prokaryotic signalling and
regulation. Stimulus sensing is initiated by autophosphorylation
of HK, however, the molecular basis of this reaction is still poorly
understood. Recently, the structure of VicK has shown a
conformation where the CA domain approaches to the
phosphoacceptor His to adopt a conformation compatible with
an autophosphorylation-competent state9. This structure also
agrees with a previous computationally derived model proposed
for the autophosphorylation reaction13. This information has
gained insights into the autophosphorylation reaction, but the
absence of the nucleotide in the VicK structure has prevented a
detailed analysis of the molecular basis of this reaction. The
crystal structure of EnvZchim represents the first view of the
autophosphorylation reaction of a HK and has allowed us to
decipher this reaction. Our structural and biochemical results
have guided us to propose an autophosphorylation mechanism
that is depicted in Fig. 6. The architecture of the active centre, the
geometry between the leaving and acceptor (5.3 Å and 165� from
His eN to ADP O3b-phosphate) and the low positive charge
stabilizing the g-phosphate are consistent with a dissociative
character for the autophosphorylation reaction28. In the reaction,
the nucleophilic character of the phosphoacceptor His increases
by the interaction with a neighboured conserved acidic residue,

which is proposed to function as a base acceptor to attract the His
dN proton. The general base is assisted by a conserved polar
residue placed in the CA domain a4 helix. The activated His is
then polarized for in-line attack of g-phosphate of ATP. The
transfer of the phosphoryl group is facilitated and stabilized by
the interaction with the Gly-rich main-chain amides of the
bendable G2 box. Indeed, the introduction of rigidity into this
region by mutations in the conserved Gly403 and Gly405 in EnvZ
abolished kinase activity29. The essential Mg cation30 plays a key
role in the stabilization of the transition state, as mutations of the
Mg-chelating Asn (Asn347 in EnvZ and Asn380 in HK853)
entirely abolished kinase activity. Finally, the developed negative
charge in the b-phosphate of the ADP product is neutralized by a
conserved positive-charged residue in the ATP lid (Arg392 in
EnvZ and Arg430 in HK853), as it was previously suggested for
PhoQ3.

This mechanism seems to be general for HKs, as the general
base is highly conserved in HK subfamilies, HisKA (Pfam00512,
78% abundance) and HisKA_3 (Pfam07730; 12%). Indeed, the
mutation of this amino acid abolishes kinase activity not only in
the HKs tested herein, EnvZ and HK853, but also in several other
HKs, such as CrdS, HK4262, HK1190 and NRII21,23. However, a
small subset of HK subfamilies, His_kinase (Pfam06580; 7%),
HisKA_2 (Pfam07568; 2%) and HWE_HK (Pfam07536; 1%),
shows an invariant aromatic (His_kinase) or Arg (HisKA_2 and
HWE_HK) residue at this position. Thus, an acidic residue from
an alternative position should play the role of a general base in
these HK subtypes. Since a polar residue in a4 interacts with the
His, this position is a strong candidate to hold the alternative
acidic residue. This notion is supported by the presence of an
invariant Glu at this position in the HWE_HK subfamily31.
Furthermore, members of the GHL ATPase family that share a
common ATP-binding domain with HKs5 present a conserved
Glu residue at this position, which acts as a general base in the
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catalytic reaction32. The HKs’ mechanistic similarities with GHL
ATPase extend to the presence of the flexible and conserved
G-rich loop that stabilizes the transition state by the interaction
with the main-chain amide atoms32,33. Mutations in this loop
severely compromise the HK or GHL ATPase activities29,34,
which supports a similar catalytic mechanism in the GHKL
superfamily.

The mechanism of autophosphorylation is independent of the
cis- or trans-directionality since the catalytic centre in HK853 (cis-
HK) and EnvZ (trans-HK) seems identical in accordance with our
functional and structural data; thus, cis- and trans-directionality
depend on the connection handedness between the DHp a1 and a2
helices. Recent in vitro observations with EnvZ and PhoR HKs also
support this conclusion19. This connection is highly variable in
sequence (both amino-acid composition and length) among HKs,
therefore, the differences in the DHp connector can dictate the
arrangement between the helices. The EnvZchim structure confirms
this notion since the substitution of the connector sequence of EnvZ
for the corresponding portion of HK853 induces the same DHp
connector handedness as HK853. But why do HKs show different
connection handedness? The fact that the region interchanged in
this work is involved in RR recognition, as structural (HK853–
RR468 complex)4 and functional (EnvZ rewiring)21 data support,
implies that it might be related with partner recognition specificity.
Our phosphotransfer analysis of the EnvZchim and HK853chim

showed completely altered partner selectivity, which confirms the
implication of this region in RR specificity. Recent studies have
demonstrated that after gene duplication the accumulation of
mutations in specificity-determining residues, which encompass the
DHp connector, is the major selective force in the evolution of two-
component signalling pathways35. Therefore, it is tempting to
speculate that the adaptive mutations in the sequence of this area,
forced by the prevention of crosstalk between pathways after
gene duplication, generate sequence combinations whose
physicochemical features favour the different connection
handedness to establish cis- or trans-directionality. In this way, a
unique autophosphorylation mechanism imposed by a highly
conserved machinery, the ATP-binding domain and
phosphoacceptor His, is coupled to a variable DHp connector,
which allows the flexibility required by the presence of tens to
hundreds of different two-component systems in a single organism.

EnvZchim structure shows that autophosphorylation is carried
out in an asymmetric way where one of the subunits is
phosphorylated, while the second one is in a kinase-unproductive
conformation. This asymmetry for the catalytic machinery of the
HKs has been structurally confirmed by other HK structures such
as DesK, VicK and YF1 (refs 8,9,11), where the relative
disposition of DHp and CA domains is different in each
subunit (Supplementary Fig. 7). However, a symmetric disposi-
tion for this catalytic portion has been observed in other HKs
such as HK853, ThkA, KinB or DesK6–8,10,11,36 (Supplementary
Fig. 7), supporting the proposed structural plasticity of the HK
catalytic machinery11. As in the present case, structural
asymmetry in HKs has been associated with the
autophosphorylation reaction9,11, whereas in all structures of
HK–RR complexes the HK component is symmetric, and
therefore, symmetric conformations of HKs maybe related with
either phosphotransfer or phosphatase reaction7,8,10. In this way,
the current structural knowledge is compatible with a mechanism
in which the catalytic machinery of HK switches in a
signal-dependent manner between an asymmetric kinase
and a symmetric phosphotransfer/phosphatase-competent
conformation11. Interestingly, the structural analysis of the
sensor domains of different HKs suggests that the extracellular
domains are asymmetric in the phosphatase-competent state of
the HK and symmetric in the kinase-competent state37,38.

Perhaps, symmetric extracellular arrangement triggers an
asymmetric cytoplasmic disposition and the asymmetric
extracellular arrangement triggers the symmetric intracellular
disposition. Transmembrane helices or the HAMP or PAS
domains that connect the extracellular sensor and intracellular
catalytic modules could act as conformational switches. This
notion is supported by the recently reported VicK and YF1
structures that show a dimeric HK with a symmetric arrangement
of the HAMP- and PAS-regulatory domains, whereas the DHp
and, specially, the CA catalytic domains are asymmetrically
positioned8,9. However, it has been proposed that the specific
mechanism of activation of the phosphatase reaction may differ
from protein to protein, as suggested by enzymological studies
with NRII, which would support that the phosphatase activity of
this protein would proceed in an asymmetric conformation39.

Methods
Cloning and mutagenesis. HK853 (residues 232–489) was cloned into pET24b, as
described before6, and into pLIC-SGC1 using ligase-independent cloning (LIC)40

to obtain His-tag HK853. EnvZ (residues 224–450) was cloned into pET21d by the
In-Fusion HD cloning technology (Clontech) and into pNIC28-Bsa4 by LIC to
obtain His-tag EnvZ. EnvZchim and HK853chim were produced from the parental
EnvZ and HK853 vectors by the In-Fusion HD cloning technology (Clontech).
Site-directed mutagenesis in HK853, EnvZ, EnvZchim and HK853chim was
performed by the Quickchange method (Stratagene). RR468 and OmpR-REC
(receiver domain of OmpR; residues 1–122) containing the His tag were cloned
into pNIC28-Bsa4 and pLIC_SGC1 (ref. 40), respectively, by LIC. The primers used
for cloning and mutagenesis are presented in Supplementary Table 2.

Protein expression and purification. Proteins were expressed in the BL21-
codonplus(DE3)-RIL strain using 1mM isopropylthiogalactoside at 37 �C for 3 h.
EnvZ and HK853 wild type, mutants and chimeras were purified in batch by
affinity chromatography using Ni2þ magnetic beads (Sigma) following the indi-
cations of the supplier. The heterodimers were obtained by the coexpression of a
protein with and without His tag and purified by affinity chromatography in a 5-ml
HisTrap FF column (GE Healthcare) equilibrated with buffer A (50mM Tris, pH
8.0 and 500mM NaCl, pH 8.0) and eluted in a 20-column volume gradient from 0
to 30% of buffer B (buffer A plus 500mM imidazole). The RRs OmpR-REC and
RR468, containing His tag, were purified by affinity chromatography using 1-ml
Histrap columns and a subsequent gel filtration in a Superdex 75 16/60 column
(GE Healthcare).

EnvZchim-SeMet was obtained by in vivo labelling41. EnvZchim was purified by
affinity chromatography in a 5-ml HisTrap FF column equilibrated with buffer A,
washed with 7.5% of buffer B and eluted with 40% of buffer B. The His tag was
removed by tobacco etch virus protease digestion and the cleaved protein was
purified by affinity chromatography in a HisTrap column followed by gel filtration
chromatography in a Superdex 200 16/60 column.

Crystallization, data collection and model building. Crystals of EnvZchim were
obtained by vapour diffusion mixing 0.8 ml of protein mixture (10mgml� 1

EnvZchim, 4mM AMPPNP and 4mM MgCl2) and 0.8 ml of reservoir solution
(2% PEG1000, 2–6% PEG4000, 1–1.7M (NH4)2SO4, 0.1M Hepes pH 7, 5 and
20–40mM sodium acetate). Crystals were cryoprotected in mother liquor with
increased concentrations of polyethylene glycols (PEGs) (4%, PEG1000 and 12%,
PEG4000), 22% sucrose and decreased (NH4)2SO4 (0.85M) concentration.
Diffraction data were collected for the native crystals at Diamond Light Source I24
(Oxfordshire, UK) at 3.0 Å and for the derivative crystal containing SeMet at
European Synchrotron Facility ID29 (Grenoble, France) at 3.8 Å. Data reduction of
the diffraction data was performed using XDS42, Pointless and Scala. Phases were
obtained by SIRAS using Autosol (Phenix) with the native and the SeMet-
derivative data, and subsequent model building was performed with Bucanneer and
Autobuild (Phenix)43. The final model was obtained by combining cycles of tracing
(COOT)44 and refinement (Refmac5). See Table 1 for the diffraction data statistics
and the model building parameters. Pointless, Scala, Bucanneer and Refmac5
belong to CCP4 suite45. After refinement, the analysis of the Ramachandran plot
for the EnvZchim structure indicated that 96.8% of the residues were in favoured
region, 3.24% in allowed region and 0% in disallowed region. The figures were
produced using PyMOL (http://www.pymol.org). The movement analysis was
performed with the Dyndom program26.

Autophosphorylation assays. The autophosphorylation assays were performed as
previously described46 for the indicated incubation times with minimal changes.
Briefly, in general activity assays, the concentration of ATP–[g32]ATP (3000
Cimmol� 1 Perkin Elmer) was 0.1mM–0.1 mCi ml� 1. In those assays where the
catalytic mechanism was analysed (see the section ‘Mutational analysis of potential
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catalytic residues’), the concentration of ATP–[g32]ATP was 0.3mM–0.1 mCi ml� 1.
After reaction, samples were subjected to SDS–PAGE on 15% gel and
phosphorylated proteins were visualized by phosphor imaging using a Fluoro
Image Analyzer FLA-5000 (Fuji) and evaluated with the MultiGauge software
(Fuji). Full gels are presented in Supplementary Fig. 8.

Phosphotransfer assays. HKs were autophosphorylated with [g32]ATP at 37 �C
for 10min and phospho-HKs were loaded in a column with 0.9ml of Sephadex
G-25 fine (GE Healthcare) to remove the free ATP from the samples. Subsequently,
phospho-HKs were incubated at room temperature with RR468 or OmpR-REC in
equimolecular amounts for 0.5, 1, 2.5, 10 and 30min. Phosphorylated proteins
were separated, visualized and evaluated as in the previous section.

Isothermal titration calorimetry. The binding affinity measurements for
AMPPNP and the indicated protein were taken with a Nano-ITC (TA Instru-
ments). Experiments were carried out at 25 �C with 0.03mM of protein in the cell
and mixed with 0.7mM nucleotide in the syringe by 30 injections of 1.5 ml each at
intervals of 180 s under continuous stirring. Data integration, correction and
analysis were carried out using NanoAnalyze program (TA Instruments) with a
single-site binding model.
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Corrigendum: Visualizing autophosphorylation
in histidine kinases
Patricia Casino, Laura Miguel-Romero & Alberto Marina

Nature Communications 5:3258 doi: 10.1038/ncomms4258 (2014); Published 6 Feb 2014; Updated 14 Apr 2014

Previous work by Diensthuber et al. describing the structure of the YF1 histidine kinase was inadvertently omitted from the reference
list of this Article and should have been cited in place of reference 8 at instances where YF1 is referred to. For example, in the
Introduction, Diensthuber et al. should have been cited as follows ‘The recent structures of VicK9 and YF1 (Diensthuber et al.) HKs are
consistent with the notion of asymmetry in the autophosphorylation reaction since these structures showed that one of the CA domain
approaches to the phosphoacceptor His while the second CA domain is far away from the second His.’.

Diensthuber, R. P., Bommer, M., Gleichmann, T. & Möglich, A. Full-length structure of a sensor histidine kinase pinpoints coaxial coiled coils as signal transducers
and modulators. Structure 21, 1127–1136 (2013).
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