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Self-healing of quantum entanglement
after an obstruction
Melanie McLaren1,2, Thandeka Mhlanga1,3, Miles J. Padgett4, Filippus S. Roux1 & Andrew Forbes1,2

Quantum entanglement between photon pairs is fragile and can easily be masked by losses

in transmission path and noise in the detection system. When observing the quantum

entanglement between the spatial states of photon pairs produced by parametric down-

conversion, the presence of an obstruction introduces losses that can mask the correlations

associated with the entanglement. Here we show that we can overcome these losses by

measuring in the Bessel basis, thus once again revealing the entanglement after propagation

beyond the obstruction. We confirm that, for the entanglement of orbital angular momentum,

measurement in the Bessel basis is more robust to these losses than measuring in the usually

employed Laguerre–Gaussian basis. Our results show that appropriate choice of measure-

ment basis can overcome some limitations of the transmission path, perhaps offering

advantages in free-space quantum communication or quantum processing systems.
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Q
uantum entanglement in the orbital angular momentum
(OAM) modes of photons has been topical of
late, promising to offer access to high-dimensional

Hilbert spaces1. It was shown that beams with an azimuthal
phase dependence exp(icf) carry an OAM of c�h per photon,
where the azimuthal index c can assume any integer value2.
Laguerre–Gaussian (LG) modes are examples of such beams and
are commonly used to exploit the OAM property of light3,4. As
such, the LG modes were first used to demonstrate OAM
entanglement5. However, a variety of bases may also be used to
demonstrate OAM entanglement, including Ince–Gaussian6,
Bessel–Gaussian (BG)7,8 as well as mutually unbiased bases
derived from these sets9,10. The OAM modal basis defines an
infinite-dimensional Hilbert space, allowing access to high-
dimensional entanglement11. An increase in dimension leads to
improved security in quantum key distribution as well as
increased information capacity in quantum communication
protocols12,13.

Unfortunately, while photons are weakly interacting, their
entanglement is nevertheless fragile to the environment14. There
have been a number of efforts in mitigating the decoherence in
quantum computers and information processes based on ion
traps, nuclear magnetic resonance and hyper-entanglement15–17.
There have also been theoretical suggestions to recover lost
entanglement18; however, it is yet to be demonstrated
experimentally. In the context of OAM modes, the decay of
entanglement has been both predicted19 and measured20 for
atmospheric turbulence as an environment, with some success in
diminishing these effects21–23.

Here we investigate the ability of OAM modes to recover the
measured degree of entanglement of the quantum state after
encountering an obstruction. It is well known that BG beams
have the ability to self-heal after encountering an obstruction24,25.
An obstruction placed in the path of one of the down-converted
photons introduces an optical loss such that the OAM
entanglement, as witnessed by the Clauser Horne Shimony Holt
(CHSH) inequality, is obscured. We then show that by measuring
in the BG basis the classical self-healing of the Bessel profile gives
a higher signal and the OAM entanglement is once again
revealed. We demonstrate a dependence of the calculated
concurrence of the quantum state on the location of the
obstruction within the propagation path, and find that this is in

agreement with the classical self-healing distance of BG beams.
We thus find that even when applied to single photons this self-
healing property of the Bessel beam allows us to overcome the
losses associated with the obstruction such that the spatial
correlations can be measured with sufficient fidelity to reveal the
quantum entanglement of the photon pairs.

Results
Bessel beams. Bessel beams represent a class of nominally pro-
pagation-invariant solutions to the Helmholtz equation26 and
have been extensively investigated to date27. A laboratory
approximation to these fields, BG beams, has similar properties
over finite distances28, including their ability to reconstruct both
in amplitude and phase after encountering an obstruction24,25.
Although this property has been studied using classical light and
single photons29, it may also be applicable in quantum processes.

Higher-order Bessel and BG beams have helical wavefronts and
carry OAM30. Entanglement of the OAM modes in the BG basis
has been shown to offer a wider spiral spectrum as compared with
the LG basis7.

A BG beam is a superposition of plane waves with wave vectors
that lie on a cone28. The electric field of a scalar BG mode of
order c is given by
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where c is the azimuthal (mode) index (a signed integer); Jc( � ) is
the Bessel function of the first kind; kr and kz are the radial and
longitudinal wave vectors, respectively. The initial radius of the
Gaussian profile is w0 and the Rayleigh range is zR¼pw2

0/l,
where l is the wavelength of the BG mode. A BG beam has a
finite propagation distance, zmax, over which it is said to be
nominally non-diffracting27, shown as the shaded diamond-like
region in Fig. 1. In this region the incoming plane waves are
refracted through an axicon (conical lens) and interfere to form
the BG beam. The resulting wave vectors lie on a cone of angle
y¼ arcsin(kr/k). Using simple geometric arguments, the
maximum propagation distance is defined as zmax¼ 2pw0/lkr,
where sin(y)Ey for small y. If an obstruction of radius R is
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Figure 1 | Self-healing property of BG beams. The BG beam is generated using a computer-generated hologram of an axicon (yellow triangle) and

exists in a finite region, zmax (pink diamond). An obstacle placed in the centre of the BG region (black rectangle) obstructs the beam for a minimum

distance, zmin (grey triangle), after which the BG field reforms. The insets display the expected image of the beam at four different planes.
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placed in the BG field, a shadow region is formed (see Fig. 1).
However, those plane waves that bypass the obstruction will again
interfere to form a BG beam24,25. The distance after which the
field will recover is given by

zmin � R
y
� 2pR

krl
; ð2Þ

and is determined from purely geometric arguments31. The insets
in Fig. 1 show the effect of an obstruction on the expected BG
field at different planes.

We generate BG modes by encoding a phase-only hologram
onto a spatial light modulator (SLM)32,33. The transmission
function of this hologram is written as

Tðr;fÞ ¼ sign J‘ðkrrÞf gexpði‘fÞ; ð3Þ

where sign{ � } denotes the sign function. In the following
experimental results, we generated a BG mode with
kr¼ 30 radmm� 1.

Our experimental setup, shown in Fig. 2, consisted of a type-I
crystal used to produce collinear, degenerate entangled pairs of
photons via spontaneous parametric down-conversion (SPDC).
A glass plate with a circular obstruction with a 200-mm radius was
placed after the crystal in the path of the down-converted light
and mounted on a z-axis translation stage. The plane of the
crystal was imaged with a � 2 magnification onto two separate
SLMs, where the state into which the photon was projected is
defined. Each SLM plane was then imaged with a � 250
demagnification to the input of a single-mode fibre (SMF), which
only allows the propagation of the fundamental mode. The SMFs
were attached to avalanche photodiodes (APDs), which were in
turn connected to a coincidence counter.

Setup. The experimental setup in Fig. 2 was first aligned in back-
projection mode, where a classical laser source was connected to
one of the SMFs to allow light to propagate through the system in
reverse. Klyshko’s advanced-wave representation considered the
field detected in arm A as propagating in reverse back to the
crystal plane, where it reflects off the crystal to propagate forward
through the system to detector B34. This method has been shown
to be useful in examining the conditional probability distribution
of the coincidence count rate8. We implemented this concept
experimentally by disconnecting fibre A from one of the APDs
and reconnecting it to a continuous light source at l¼ 710nm.
The classical light was directed onto SLM A and imaged to the
crystal plane via lenses L1 and L2. Images of the obstruction were
recorded by placing a mirror between the crystal and obstruction
and a CCD camera at the plane of the crystal. Classical images of
the self-healing property are shown in Fig. 3 for both the BG
(Fig. 3a–d) and LG (Fig. 3e–h) modes, where the unobstructed BG
and LG modes are shown in (a) and (e), respectively. We
calculated the maximum propagation distance of the BG field as
zmax¼ 169.6mm. The obstruction was first placed at the plane of
the crystal, which is clearly shown in both (b) and (f). It was then
moved 20mm away from the crystal plane, shown in (c) and (g).
The final images, (d) and (h), were taken 50mm away from the
crystal. It is clear that the BG mode has reformed at 50mm, while
the LG mode has not resumed its original structure. In a typical
self-healing experiment25, the obstruction is placed at a fixed
position in the path of the beam and the CCD camera is moved
such that the subsequent planes behind the obstruction can be
imaged. However, an identical effect is seen if the CCD camera
remains fixed, imaging one particular plane, and the obstruction is
moved away from that plane. This is illustrated in Fig. 4, where we
consider back-projected light directed from the SLM to the crystal.
The obstruction is moved away from the crystal towards lens L1.
As the obstruction moves, the shadow region falling on the crystal
becomes less significant until finally it no longer falls on the crystal
and the recovered mode is observed as shown in Fig. 3d.

From equation (2), we calculated a minimum self-healing
distance of B29mm for R¼ 200mm and kr¼ 30 radmm� 1.
After a distance, the obstructed BG mode demonstrated a
restored structure, while the LG mode showed no self-healing.
The BG field reconstructed after zmin as expected.

The setup was then returned to the down-conversion mode
(both SMFs were connected to their respective detectors) to
investigate the effects of the obstruction on two-photon quantum
correlations. As OAM is conserved in SPDC5, we chose to first
project the signal and idler photons into the |c¼±2S basis
elements, respectively. The coincidence count rate of this BG
state, unobstructed, was measured to be B140 s� 1. The
obstruction was initially inserted 5mm after the b-barium
borate (BBO) crystal, the closest it could be placed owing to the
size of the crystal housing, and moved in subsequent intervals of
5mm away from the crystal. Slight adjustments were made to the
position of the obstruction until a minimum count rate was
measured, causing the coincidence levels to be reduced to
background levels. At each position coincidences were recorded;
a comparison of the coincidence count rates for the BG and LG
modes is shown in Fig. 5. The count rate for the BG mode
increased significantly after a distance of 25mm, which is
consistent with our calculation of zmin¼ 29mm. Conversely, the
count rates for the LG mode showed no measurable change with
distance, illustrating the unique self-healing property of BG
modes. The coincidence count rate of the BG mode was not
restored to the original, unobstructed rate, as there is a loss due to
the obstacle. This is also consistent with the classical scenario
where the self-healed BG beam has proportionally less energy
after the obstacle than before.
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Figure 2 | Experimental setup. The setup shown was used to measure the

effect of an obstruction in the path of the down-converted light. (a) An

ultraviolet laser source pumped a type-I BBO crystal to produce pairs of

entangled photons via SPDC. The crystal plane was imaged onto two

separate SLMs using lenses L1 (f1¼ 200mm) and L2 (f2¼400mm). Each

SLM plane was again imaged to the input of an SMF using lenses L3
(f3¼ 500mm) and L4 (f4¼ 2mm). (b) The down-converted beam at the

plane of the crystal. (c) A circular obstruction (radius¼ 200mm) was

placed between the crystal and lens L1, in the path of the down-converted

light.
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Measuring the degree of entanglement. The recovery of the BG
coincidence count rate does not in itself give an indication of the
effects the obstruction has on the degree of entanglement of the
state. To investigate the measured degree of entanglement, we
first performed a Bell-type inequality experiment on the reformed
state with the obstruction located 45mm from the crystal to test
for quantum correlations. The superposition of OAM states, also
known as sector states, for |c¼±2S subspace were rotated on
each SLM35 and the corresponding coincidence count rates were
recorded, shown in Fig. 6a.

From the count rates we calculated the CHSH-Bell parameter
to be S¼ 2.78±0.04, which is a clear violation of the CHSH-Bell
inequality36. This value of S can be compared with the
unobstructed value of S¼ 2.79±0.03. The low coincidence
count rate recorded when the obstruction was 5mm from the
crystal resulted in a low-contrast Bell curve, from which the S
parameter could not be calculated. This prompted us to perform a
full-state tomography experiment37 to determine the degree of
entanglement of the state. Figure 7 shows the real and imaginary
parts of the reconstructed density matrices for dimensions d¼ 2
for |c¼±2S and d¼ 4 for |c¼ {� 2, � 1, 1, 2}S. The
unobstructed density matrices for d¼ 2 and d¼ 4 are shown in
Fig. 7a,d, respectively. When the obstruction is placed near the

crystal, the density matrices in both cases change significantly
such that the inner dominant probabilities are reduced and the
outer terms become non-zero, Fig. 7b,e. However, once the
obstruction is moved beyond the zmin distance, both density
matrices return to their original form (Fig. 7c,f).

From the density matrices, the concurrence of the state was
calculated. Concurrence is a measure of entanglement, with a
range from 0 (no entanglement) to 1 (maximally entangled)38.
The concurrence can only be calculated for two-dimensional
subspaces, so we considered two different OAM subspaces,
|c¼±2S and |c¼±4S, to demonstrate that the self-healing
property holds for higher OAM modes. The unobstructed
BG mode for subspace |c¼±2S (|c¼±4S) generated an
average quantum contrast (see Methods) of QC¼ 43.2±2.0
(QC¼ 41.7±2.0) and a concurrence of C¼ 0.95±0.02
(C¼ 0.94±0.02). When the obstruction was placed 5mm from
the crystal, the concurrence dropped to C¼ 0.40±0.02
(C¼ 0.43±0.02), but recovered to a value of C¼ 0.94±0.02
(C¼ 0.91±0.02) at 50mm from the crystal. The results for the
coincidences, quantum contrast and concurrence of the
|c¼±2S-entangled photons are shown in Fig. 8a–c,
respectively. All three graphs display similar trends, where the
values increase after a minimum distance represented by the

1
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Figure 3 | CCD images of the crystal plane for different on-axis obstruction positions. Images for a BG mode (a–d) and an LG mode (e–h) with

the azimuthal index c¼ 2. The unobstructed modes are shown in (a) and (e). The obstruction was first placed at the plane of the crystal, which is

clearly shown in both (b) and (f). It was then moved 20mm away from the crystal plane, shown in (c) and (g). The final images, (d) and (h), were taken

50mm away from the crystal. It is clear the BG mode has reformed at 50mm, while the LG mode has not resumed its original structure.

BBO BBO BBO

Figure 4 | Movement of the obstruction within the Bessel region. Consider the back-projected beam reflecting off the SLM onto the BBO crystal.

The Bessel hologram on the SLM creates a beam with a particular cone angle. (a) The obstruction is at the closest position to the crystal, resulting in

a clear shadow region falling on the crystal. (b) The obstruction is moved away from the crystal, reducing the shadow region. (c) The obstruction is moved

further away such that the shadow region no longer falls on the crystal and a recovered BG image is seen (Fig. 3d).
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yellow dashed line. As in the classical case, where energy is lost in
the recovered field, the coincidence counts also do not fully
recover to the original unobstructed rate. Consequently, the
recovered quantum contrast does not return to the unobstructed
value, as the accidental count rate remains fairly constant with the
insertion of the obstruction.

From the high-dimensional density matrices in Fig. 7, we
calculated the fidelity of the states. Fidelity is a measure of how

close the measured state is to a maximally entangled state, where
a perfectly entangled state will have a fidelity of unity with the
maximally entangled state. We have extended this demonstration
to higher dimensions by reconstructing the density matrices for
dimension d¼ 4, where |c¼ {� 2, � 1, 1, 2}S. The reconstruc-
tion process via full-state tomography is time consuming and
thus only one high-dimensional state was chosen. The density
matrices for different placements of the obstruction are shown in
Fig. 7d–f. Table 1 shows the fidelity measurements recorded at
different positions of the obstruction from the crystal.

The measured fidelities for both dimensions recover to their
relative unobstructed values. Fidelity decreases as the state
dimension increases, however, the recovered fidelity for d¼ 4
lies above the threshold states, which are defined by the minimum
probability for which a high-dimensional Bell inequality is
violated39.

We have therefore demonstrated that the self-healing property
of Bessel beams, even when applied to single photons, can
overcome the losses associated with an obstruction, allowing
sufficient measurement of the spatial correlations to reveal the
quantum entanglement of the photon pairs.

Discussion
Our results show that by making projective measurements in the
BG basis, we were able to recover the reduction in the measured
degree of entanglement resulting from the losses introduced by the
obstruction. By comparison, when the LG measurement basis is
chosen, the entanglement is not recovered. From the density
matrices, we see that while the obstruction perturbs the system,
when measured beyond the minimum self-healing distance, the
density matrix reverts to the original unobstructed form. Compar-
ing the graphs of the coincidence count rates and concurrence in
both experiments, we observe a similar trend: the degree of
entanglement is low for low coincidence count rates and then
increases with the count rate. It appears that the off-axis
obstruction does not destroy the entanglement by scattering a
particular OAM state into many OAM states, as observed in
turbulence-related experiments20, but rather decreases the
measured degree of entanglement by reducing the two-photon
count rates to background levels. For completeness, we also
measured the response of an unobstructed BG mode in the
presence of attenuation. By rotating a polarizer in the path of the
down-converted light the transmission of the photons could be
varied from background levels (E0 transmission) to normal
conditions (transmission of 1). The coincidence count rate,
quantum contrast and concurrence for various transmission
values are shown in Fig. 8d–f, respectively. The quantum contrast
(Fig. 8b) suggests that the obstacle blocks one of the entangled
photons, thus diminishing the coincidence rate but maintaining a
high single-photon count rate. However, the attenuated quantum
contrast remains fairly constant unlike that of the obstructed beam.
The attenuation reduced the count rates for both the single and
coincidence counts proportionally, thereby maintaining a constant
quantum-contrast ratio. The obstruction on the other hand
reduced only the coincidence count rate and in turn the
quantum contrast. The entanglement is therefore obscured by the
noise. The correlations are recovered beyond the minimum
distance after the obstacle because the mode itself recovers, thus
increasing the signal at the detector because of an improved overlap
between the hologram and the projected mode. Interestingly, the
measurement choice is made after the photons have encountered
the obstacle. By contrast, in a classical experiment, the mode is
chosen or generated before interacting with the obstacle.

In conclusion, we have exploited the self-healing property of
BG modes in a quantum entanglement experiment to recover the
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reduction in the measured degree of entanglement. We showed
that the coincidence count rate is reduced in the presence of an
obstacle, but that the count rate recovers after a particular

distance owing to the self-healing feature of BG modes. This
trend was similarly reported for the degree of entanglement of the
quantum state, where the concurrence of the obstructed mode
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returned to its original, unobstructed value. These results may be
useful for quantum key distribution and quantum communica-
tion systems, where preservation of entanglement over long
distances and in the presence of an obstruction is crucial.

Methods
Experimental details. The laser source was a mode-locked ultraviolet laser
(Vanguard 355–2500) with a modal diameter of 1mm, producing pulses of B10ps
at a repetition rate of 80MHz. The BBO crystal was cut at 33� to produce collinear,
frequency-degenerate down-converted photon pairs at 710 nm. The crystal was tilted
to produce near-collinear down-conversion. An interference filter or bandpass filter
centred at 710 nm was used to reflect the pump light and transmit the down-
converted photon pairs. The variable aperture acted as a spatial filter of the higher-
order diffraction modes. The projective measurements were performed by the
HoloEye Pluto SLMs (1,080� 1,920 pixels), which have a resolution of 8mm per pixel
and were calibrated for near-infrared wavelengths. Additional interference filters were
placed before the SMFs to select only the photons at 710nm. Each SMF has a modal
radius of 2.3mm. The Perkin Elmer APDs have a dark count of 200 s� 1, which were
connected to a coincidence counter with a gating time of 12.5ns. The back-projection
experiment made use of a 705-nm diode (Laser 2000), temperature tuned to 710nm.
The images of the obstructed beams were captured on a CCD camera.

CHSH S parameter. The CHSH-Bell parameter, as defined in Leach et al.35, is
given by

S ¼ EðyA; yBÞ� EðyA; y0BÞþ Eðy0A; yBÞ�Eðy0A; y0BÞ; ð4Þ

where

EðyA; yBÞ ¼
CðyA; yBÞþCðyA þ p

2‘ ; yB þ p
2‘Þ�CðyA þ p

2‘ ; yBÞ�CðyA; yB þ p
2‘Þ

CðyA; yBÞþCðyA þ p
2‘ ; yB þ p

2‘ÞþCðyA þ p
2‘ ; yBÞþCðyA; yB þ p

2‘Þ
; ð5Þ

with C(yA,yB) being the coincidence count rate for the particular orientation of
each hologram. By calculating the propagation of uncertainty, we were able to
compute a s.d. for the S parameters.

Calculating quantum contrast. Quantum contrast is a ratio of the coincidence
count rate with the accidental count rate. The accidental count rate is defined as
SASBDt, where SA,B is the single-count rate in arm A(B) and Dt is the gating time of
the coincidence counter. Thus we can write the quantum contrast as QC¼C/
SASBDt, where C is the coincidence count rate.

Calculating concurrence. The concurrence is given by C(r)¼max{0, l1� l2�
l3� l4}, where li are the eigenvalues, in decreasing order, of the Hermitian matrixffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
p

~r
ffiffiffi
r

pp
, where ~r is the spin-flipped state of the density matrix r. The qubit

OAM density matrices consist of 16 elements, which were calculated by performing
a full-state tomography, consisting of 36 projective measurements. That is, the
probability of simultaneously finding each of the photons (in the entangled pair) in
one of six non-orthogonal states was measured. Although only 16 measurements
are required to reconstruct the two-dimensional density matrix, the over-complete
36 measurements allow a least-squares fit to be performed.

Calculating fidelity. The fidelity is defined as

F ¼ Tr ð ffiffiffiffiffiffi
rT

p
rd

ffiffiffiffiffiffi
rT

p Þ1=2
n oh i2

; ð6Þ

which is a measure of how close our d-dimensional reconstructed state, rd, is to the
target state rT¼ |cTS/cT|. In our case the target state is the (pure) maximally
entangled state, |cTS¼

P
‘ c‘|cSs|� cSi, where c ranges over d different values

and cc¼ 1/
ffiffiffi
d

p
represents the expansion coefficients.
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