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Self-healing of quantum entanglement
after an obstruction

Melanie McLaren'2, Thandeka Mhlanga'3, Miles J. Padgett?, Filippus S. Roux! & Andrew Forbes'2

Quantum entanglement between photon pairs is fragile and can easily be masked by losses
in transmission path and noise in the detection system. When observing the quantum
entanglement between the spatial states of photon pairs produced by parametric down-
conversion, the presence of an obstruction introduces losses that can mask the correlations
associated with the entanglement. Here we show that we can overcome these losses by
measuring in the Bessel basis, thus once again revealing the entanglement after propagation
beyond the obstruction. We confirm that, for the entanglement of orbital angular momentum,
measurement in the Bessel basis is more robust to these losses than measuring in the usually
employed Laguerre-Gaussian basis. Our results show that appropriate choice of measure-
ment basis can overcome some limitations of the transmission path, perhaps offering
advantages in free-space quantum communication or quantum processing systems.

TCSIR National Laser Centre, P.O. Box 395, Pretoria 0001, South Africa. 2 Laser Research Institute, University of Stellenbosch, Stellenbosch 7602, South
Africa. 3 University of Kwa-Zulu Natal, Private Bag X54001, Durban 4000, South Africa. 4 Department of Physics and Astronomy, SUPA, University of
Glasgow, Glasgow G12 8QQ, UK. Correspondence and requests for materials should be addressed to A.F. (email: aforbesi@csir.co.za).

|5:3248| DOI: 10.1038/ncomms4248 | www.nature.com/naturecommunications

© 2014 Macmillan Publishers Limited. All rights reserved.


mailto:aforbes1@csir.co.za
http://www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4248

uantum entanglement in the orbital angular momentum

(OAM) modes of photons has been topical of

late, promising to offer access to high-dimensional
Hilbert spaces!. It was shown that beams with an azimuthal
phase dependence exp(i/¢) carry an OAM of /k per photon,
where the azimuthal index / can assume any integer value.
Laguerre-Gaussian (LG) modes are examples of such beams and
are commonly used to exploit the OAM property of light>*. As
such, the LG modes were first used to demonstrate OAM
entanglement®. However, a variety of bases may also be used to
demonstrate OAM entanglement, including Ince-Gaussian®,
Bessel-Gaussian (BG)”® as well as mutually unbiased bases
derived from these sets®!?. The OAM modal basis defines an
infinite-dimensional Hilbert space, allowing access to high-
dimensional entanglement!!. An increase in dimension leads to
improved security in quantum key distribution as well as
increased information capacity in quantum communication
protocols!>13,

Unfortunately, while photons are weakly interacting, their
entanglement is nevertheless fragile to the environment!'®. There
have been a number of efforts in mitigating the decoherence in
quantum computers and information processes based on ion
traps, nuclear magnetic resonance and hyper-entanglement!>7.
There have also been theoretical suggestions to recover lost
entanglement'®; however, it is yet to be demonstrated
experimentally. In the context of OAM modes, the decay of
entanglement has been both predicted!® and measured?® for
atmospheric turbulence as an environment, with some success in
diminishing these effects?!~2,

Here we investigate the ability of OAM modes to recover the
measured degree of entanglement of the quantum state after
encountering an obstruction. It is well known that BG beams
have the ability to self-heal after encountering an obstruction?42>.
An obstruction placed in the path of one of the down-converted
photons introduces an optical loss such that the OAM
entanglement, as witnessed by the Clauser Horne Shimony Holt
(CHSH) inequality, is obscured. We then show that by measuring
in the BG basis the classical self-healing of the Bessel profile gives
a higher signal and the OAM entanglement is once again
revealed. We demonstrate a dependence of the calculated
concurrence of the quantum state on the location of the
obstruction within the propagation path, and find that this is in
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agreement with the classical self-healing distance of BG beams.
We thus find that even when applied to single photons this self-
healing property of the Bessel beam allows us to overcome the
losses associated with the obstruction such that the spatial
correlations can be measured with sufficient fidelity to reveal the
quantum entanglement of the photon pairs.

Results
Bessel beams. Bessel beams represent a class of nominally pro-
pagation-invariant solutions to the Helmholtz equation’® and
have been extensively investigated to date?’. A laboratory
approximation to these fields, BG beams, has similar properties
over finite distances?3, including their ability to reconstruct both
in amplitude and phase after encountering an obstruction?42>,
Although this Eroperty has been studied using classical light and
single photons®’, it may also be applicable in quantum processes.

Higher-order Bessel and BG beams have helical wavefronts and
carry OAM?°. Entanglement of the OAM modes in the BG basis
has been shown to offer a wider spiral spectrum as compared with
the LG basis’.

A BG beam is a superposition of plane waves with wave vectors
that lie on a cone®8. The electric field of a scalar BG mode of
order / is given by
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where / is the azimuthal (mode) index (a signed integer); J,( - ) is
the Bessel function of the first kind; k, and k, are the radial and
longitudinal wave vectors, respectively. The initial radius of the
Gaussian profile is wy and the Rayleigh range is zr=nw3//,
where 4 is the wavelength of the BG mode. A BG beam has a
finite propagation distance, zn,,, over which it is said to be
nominally non-diffracting?’, shown as the shaded diamond-like
region in Fig. 1. In this region the incoming plane waves are
refracted through an axicon (conical lens) and interfere to form
the BG beam. The resulting wave vectors lie on a cone of angle
0 =arcsin(k,/k). Using simple geometric arguments, the
maximum propagation distance is defined as z,,x = 27w/ Ak,
where sin(0)~ 60 for small 0. If an obstruction of radius R is

ZRkﬂ’

(1)

Figure 1| Self-healing property of BG beams. The BG beam is generated using a computer-generated hologram of an axicon (yellow triangle) and
exists in a finite region, zmax (pink diamond). An obstacle placed in the centre of the BG region (black rectangle) obstructs the beam for a minimum
distance, z.i, (grey triangle), after which the BG field reforms. The insets display the expected image of the beam at four different planes.
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placed in the BG field, a shadow region is formed (see Fig. 1).
However, those plane waves that bypass the obstruction will again
interfere to form a BG beam?%?>. The distance after which the
field will recover is given by

2R
~ 2
o @

| =

)
Zmin ~

and is determined from purely geometric arguments>!. The insets
in Fig. 1 show the effect of an obstruction on the expected BG
field at different planes.

We generate BG modes by encoding a 3phase—only hologram
onto a spatial light modulator (SLM)3233, The transmission
function of this hologram is written as

T(r, ¢) = sign{Ji(k,r) yexp(ild), (3)

where sign{-} denotes the sign function. In the following
experimental results, we generated a BG mode with
k,=30radmm L.

Our experimental setup, shown in Fig. 2, consisted of a type-I
crystal used to produce collinear, degenerate entangled pairs of
photons via spontaneous parametric down-conversion (SPDC).
A glass plate with a circular obstruction with a 200-pum radius was
placed after the crystal in the path of the down-converted light
and mounted on a z-axis translation stage. The plane of the
crystal was imaged with a x 2 magnification onto two separate
SLMs, where the state into which the photon was projected is
defined. Each SLM plane was then imaged with a x 250
demagnification to the input of a single-mode fibre (SMF), which
only allows the propagation of the fundamental mode. The SMFs
were attached to avalanche photodiodes (APDs), which were in
turn connected to a coincidence counter.
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Figure 2 | Experimental setup. The setup shown was used to measure the
effect of an obstruction in the path of the down-converted light. (@) An
ultraviolet laser source pumped a type-l BBO crystal to produce pairs of
entangled photons via SPDC. The crystal plane was imaged onto two
separate SLMs using lenses L; (fj=200mm) and L, (f, =400 mm). Each
SLM plane was again imaged to the input of an SMF using lenses L
(f3=500mm) and L4 (f4=2mm). (b) The down-converted beam at the
plane of the crystal. (¢) A circular obstruction (radius =200 pm) was
placed between the crystal and lens L;, in the path of the down-converted
light.

C/

Setup. The experimental setup in Fig. 2 was first aligned in back-
projection mode, where a classical laser source was connected to
one of the SMFs to allow light to propagate through the system in
reverse. Klyshko’s advanced-wave representation considered the
field detected in arm A as propagating in reverse back to the
crystal plane, where it reflects off the crystal to propagate forward
through the system to detector B**. This method has been shown
to be useful in examining the conditional probability distribution
of the coincidence count rate®. We implemented this concept
experimentally by disconnecting fibre A from one of the APDs
and reconnecting it to a continuous light source at 4 =710nm.
The classical light was directed onto SLM A and imaged to the
crystal plane via lenses L; and L,. Images of the obstruction were
recorded by placing a mirror between the crystal and obstruction
and a CCD camera at the plane of the crystal. Classical images of
the self-healing property are shown in Fig. 3 for both the BG
(Fig. 3a-d) and LG (Fig. 3e-h) modes, where the unobstructed BG
and LG modes are shown in (a) and (e), respectively. We
calculated the maximum propagation distance of the BG field as
Zmax = 169.6 mm. The obstruction was first placed at the plane of
the crystal, which is clearly shown in both (b) and (f). It was then
moved 20 mm away from the crystal plane, shown in (c) and (g).
The final images, (d) and (h), were taken 50 mm away from the
crystal. It is clear that the BG mode has reformed at 50 mm, while
the LG mode has not resumed its original structure. In a typical
self-healing experiment®>, the obstruction is placed at a fixed
position in the path of the beam and the CCD camera is moved
such that the subsequent planes behind the obstruction can be
imaged. However, an identical effect is seen if the CCD camera
remains fixed, imaging one particular plane, and the obstruction is
moved away from that plane. This is illustrated in Fig. 4, where we
consider back-projected light directed from the SLM to the crystal.
The obstruction is moved away from the crystal towards lens L;.
As the obstruction moves, the shadow region falling on the crystal
becomes less significant until finally it no longer falls on the crystal
and the recovered mode is observed as shown in Fig. 3d.

From equation (2), we calculated a minimum self-healin:
distance of ~29mm for R=200um and k,=30radmm™".
After a distance, the obstructed BG mode demonstrated a
restored structure, while the LG mode showed no self-healing.
The BG field reconstructed after z.,;, as expected.

The setup was then returned to the down-conversion mode
(both SMFs were connected to their respective detectors) to
investigate the effects of the obstruction on two-photon quantum
correlations. As OAM is conserved in SPDC?, we chose to first
project the signal and idler photons into the |[/= £2) basis
elements, respectively. The coincidence count rate of this BG
state, unobstructed, was measured to be ~140s~!. The
obstruction was initially inserted 5mm after the p-barium
borate (BBO) crystal, the closest it could be placed owing to the
size of the crystal housing, and moved in subsequent intervals of
5mm away from the crystal. Slight adjustments were made to the
position of the obstruction until a minimum count rate was
measured, causing the coincidence levels to be reduced to
background levels. At each position coincidences were recorded;
a comparison of the coincidence count rates for the BG and LG
modes is shown in Fig. 5. The count rate for the BG mode
increased significantly after a distance of 25mm, which is
consistent with our calculation of z,,;, =29 mm. Conversely, the
count rates for the LG mode showed no measurable change with
distance, illustrating the unique self-healing property of BG
modes. The coincidence count rate of the BG mode was not
restored to the original, unobstructed rate, as there is a loss due to
the obstacle. This is also consistent with the classical scenario
where the self-healed BG beam has proportionally less energy
after the obstacle than before.
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Figure 3 | CCD images of the crystal plane for different on-axis obstruction positions. Images for a BG mode (a-d) and an LG mode (e-h) with

the azimuthal index / =2. The unobstructed modes are shown in (a) and (e). The obstruction was first placed at the plane of the crystal, which is
clearly shown in both (b) and (f). It was then moved 20 mm away from the crystal plane, shown in (¢) and (g). The final images, (d) and (h), were taken
50 mm away from the crystal. It is clear the BG mode has reformed at 50 mm, while the LG mode has not resumed its original structure.
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Figure 4 | Movement of the obstruction within the Bessel region. Consider the back-projected beam reflecting off the SLM onto the BBO crystal.
The Bessel hologram on the SLM creates a beam with a particular cone angle. (@) The obstruction is at the closest position to the crystal, resulting in
a clear shadow region falling on the crystal. (b) The obstruction is moved away from the crystal, reducing the shadow region. (¢) The obstruction is moved
further away such that the shadow region no longer falls on the crystal and a recovered BG image is seen (Fig. 3d).

Measuring the degree of entanglement. The recovery of the BG
coincidence count rate does not in itself give an indication of the
effects the obstruction has on the degree of entanglement of the
state. To investigate the measured degree of entanglement, we
first performed a Bell-type inequality experiment on the reformed
state with the obstruction located 45 mm from the crystal to test
for quantum correlations. The superposition of OAM states, also
known as sector states, for |/ = +2) subspace were rotated on
each SLM>® and the corresponding coincidence count rates were
recorded, shown in Fig. 6a.

From the count rates we calculated the CHSH-Bell parameter
to be §=12.78 £ 0.04, which is a clear violation of the CHSH-Bell
inequality®®. This value of S can be compared with the
unobstructed value of $§=2.7910.03. The low coincidence
count rate recorded when the obstruction was 5mm from the
crystal resulted in a low-contrast Bell curve, from which the S
parameter could not be calculated. This prompted us to perform a
full-state tomography experiment®’ to determine the degree of
entanglement of the state. Figure 7 shows the real and imaginary
parts of the reconstructed density matrices for dimensions d =2
for [/=4%2) and d=4 for [/={-2, —1, 1, 2}). The
unobstructed density matrices for d=2 and d=4 are shown in
Fig. 7a,d, respectively. When the obstruction is placed near the
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crystal, the density matrices in both cases change significantly
such that the inner dominant probabilities are reduced and the
outer terms become non-zero, Fig. 7b,e. However, once the
obstruction is moved beyond the z.;, distance, both density
matrices return to their original form (Fig. 7¢,f).

From the density matrices, the concurrence of the state was
calculated. Concurrence is a measure of entanglement, with a
range from 0 (no entanglement) to 1 (maximally entangled)3®.
The concurrence can only be calculated for two-dimensional
subspaces, so we considered two different OAM subspaces,
/=12) and |/= t4), to demonstrate that the self-healing
property holds for higher OAM modes. The unobstructed
BG mode for subspace |/=%2) (|/=14)) generated an
average quantum contrast (see Methods) of QC=43.2%2.0
(QC=41.74£2.0) and a concurrence of C=0.95%0.02
(C=0.94£0.02). When the obstruction was placed 5mm from
the crystal, the concurrence dropped to C=0.40%0.02
(C=0.4310.02), but recovered to a value of C=0.94+0.02
(C=0.9120.02) at 50mm from the crystal. The results for the
coincidences, quantum contrast and concurrence of the
|/ = £2)-entangled photons are shown in Fig. 8a-c,
respectively. All three graphs display similar trends, where the
values increase after a minimum distance represented by the
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Figure 5 | Effect of an obstacle on the coincidence count rate. Measured
coincidence count rates as a function of the position of the obstruction after
the BBO crystal for a BG (green squares) and LG (purple circles) mode for
|/ = +2) subspace. The BG mode with k,=30radmm ~"is expected to
reconstruct after an obstruction with radius, R =200 pum, after a distance of
29 mm (yellow dashed line). The coincidence count rate remains
consistently low when measured in the LG basis (purple dashed line). The
count rates were averaged over a set of 10 measurements, each taken over
an integration period of 5s. Errors were estimated assuming Poisson
statistics for the photon counts given as an s.d.
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Figure 6 | CHSH-Bell measurements. (a) Normalized coincidence count
rate as a function of the orientation of the hologram on SLM B. The
hologram on SLM A was oriented at four different angles: Orad (blue
curve), n/8rad (yellow curve), /4 rad (green curve) and 3n/8rad (red
curve). The measured count rates were normalized by the denominator
in equation (5). The typical sinusoidal Bell curve was measured with the
obstruction placed in the propagation path at 45 mm from the crystal.
Examples of the binary Bessel holograms (|[/ = £2)) used to perform a
CHSH-inequality experiment are shown in the insets (b-e).

yellow dashed line. As in the classical case, where energy is lost in
the recovered field, the coincidence counts also do not fully
recover to the original unobstructed rate. Consequently, the
recovered quantum contrast does not return to the unobstructed
value, as the accidental count rate remains fairly constant with the
insertion of the obstruction.

From the high-dimensional density matrices in Fig. 7, we
calculated the fidelity of the states. Fidelity is a measure of how

close the measured state is to a maximally entangled state, where
a perfectly entangled state will have a fidelity of unity with the
maximally entangled state. We have extended this demonstration
to higher dimensions by reconstructing the density matrices for
dimension d =4, where |/ ={—2, —1, 1, 2} >. The reconstruc-
tion process via full-state tomography is time consuming and
thus only one high-dimensional state was chosen. The density
matrices for different placements of the obstruction are shown in
Fig. 7d-f. Table 1 shows the fidelity measurements recorded at
different positions of the obstruction from the crystal.

The measured fidelities for both dimensions recover to their
relative unobstructed values. Fidelity decreases as the state
dimension increases, however, the recovered fidelity for d=4
lies above the threshold states, which are defined by the minimum
probability for which a high-dimensional Bell inequality is
violated>®.

We have therefore demonstrated that the self-healing property
of Bessel beams, even when applied to single photons, can
overcome the losses associated with an obstruction, allowing
sufficient measurement of the spatial correlations to reveal the
quantum entanglement of the photon pairs.

Discussion
Our results show that by making projective measurements in the
BG basis, we were able to recover the reduction in the measured
degree of entanglement resulting from the losses introduced by the
obstruction. By comparison, when the LG measurement basis is
chosen, the entanglement is not recovered. From the density
matrices, we see that while the obstruction perturbs the system,
when measured beyond the minimum self-healing distance, the
density matrix reverts to the original unobstructed form. Compar-
ing the graphs of the coincidence count rates and concurrence in
both experiments, we observe a similar trend: the degree of
entanglement is low for low coincidence count rates and then
increases with the count rate. It appears that the off-axis
obstruction does not destroy the entanglement by scattering a
particular OAM state into man&f OAM states, as observed in
turbulence-related experiments?’, but rather decreases the
measured degree of entanglement by reducing the two-photon
count rates to background levels. For completeness, we also
measured the response of an unobstructed BG mode in the
presence of attenuation. By rotating a polarizer in the path of the
down-converted light the transmission of the photons could be
varied from background levels (~0 transmission) to normal
conditions (transmission of 1). The coincidence count rate,
quantum contrast and concurrence for various transmission
values are shown in Fig. 8d-f, respectively. The quantum contrast
(Fig. 8b) suggests that the obstacle blocks one of the entangled
photons, thus diminishing the coincidence rate but maintaining a
high single-photon count rate. However, the attenuated quantum
contrast remains fairly constant unlike that of the obstructed beam.
The attenuation reduced the count rates for both the single and
coincidence counts proportionally, thereby maintaining a constant
quantum-contrast ratio. The obstruction on the other hand
reduced only the coincidence count rate and in turn the
quantum contrast. The entanglement is therefore obscured by the
noise. The correlations are recovered beyond the minimum
distance after the obstacle because the mode itself recovers, thus
increasing the signal at the detector because of an improved overlap
between the hologram and the projected mode. Interestingly, the
measurement choice is made after the photons have encountered
the obstacle. By contrast, in a classical experiment, the mode is
chosen or generated before interacting with the obstacle.

In conclusion, we have exploited the self-healing property of
BG modes in a quantum entanglement experiment to recover the
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Figure 7 | Reconstructed density matrices from full-state tomography measurements. The density matrices are shown for dimensions d=2 (a-¢)
and d=4 (d-f). Real and imaginary parts of the reconstructed density matrices for (a) and (d) no obstruction, (b) and (e) obstruction placed 5mm
from the crystal, and (c¢) and (f) obstruction placed 45 mm from the crystal. It is clear that the density matrix recovers to the original unobstructed form for
a two-dimensional state as well as higher-dimensional states. The density matrices were calculated by measuring an over-complete set of modes and
applying a maximume-likelihood estimation using a least-squares fit to the measurements. This optimization technique ensures a density matrix with
non-negative eigenvalues and a trace of unity.
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Figure 8 | Comparison between an obstructed and attenuated beam. Measurements of the coincidence count rate, quantum contrast and concurrence
of obstructed (a-c) and attenuated (d-f) entangled photons for |/ = £ 2. The obstruction was moved in 5mm intervals along the propagation axis, at
which the measurements were recorded. The dashed yellow line represents z.i,, the calculated distance at which recovery is expected (recovery is not
expected within the yellow shaded region). A polarizer was rotated to attenuate the coincidence count rate and vary the degree of transmission from O
(background levels) to 1 (unattenuated and unobstructed). The coincidence count rates and quantum contrast represent the average of 10 measurements. The
average error for the concurrence is +0.01, which is calculated by generating additional data sets by adding 1/C; fluctuations to the measured coincidence
counts C; and then repeating the concurrence calculations described in the text. The unobstructed concurrence value is represented by the blue dashed lines.

reduction in the measured degree of entanglement. We showed distance owing to the self-healing feature of BG modes. This
that the coincidence count rate is reduced in the presence of an  trend was similarly reported for the degree of entanglement of the
obstacle, but that the count rate recovers after a particular quantum state, where the concurrence of the obstructed mode
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