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Time-resolved magnetic sensing with electronic
spins in diamond
A. Cooper1, E. Magesan1, H.N. Yum1 & P. Cappellaro1

Quantum probes can measure time-varying fields with high sensitivity and spatial resolution,

enabling the study of biological, material and physical phenomena at the nanometre scale. In

particular, nitrogen-vacancy centres in diamond have recently emerged as promising sensors

of magnetic and electric fields. Although coherent control techniques have measured the

amplitude of constant or oscillating fields, these techniques are not suitable for measuring

time-varying fields with unknown dynamics. Here we introduce a coherent acquisition

method to accurately reconstruct the temporal profile of time-varying fields using Walsh

sequences. These decoupling sequences act as digital filters that efficiently extract spectral

coefficients while suppressing decoherence, thus providing improved sensitivity over existing

strategies. We experimentally reconstruct the magnetic field radiated by a physical model of a

neuron using a single electronic spin in diamond and discuss practical applications. These

results will be useful to implement time-resolved magnetic sensing with quantum probes at

the nanometre scale.
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M
easurements of weak electric and magnetic fields at the
nanometre scale are indispensable in many areas,
ranging from materials science to fundamental physics

and biomedical science. In many applications, much of the
information about the underlying phenomena is contained in the
dynamics of the field. While novel quantum probes promise to
achieve the required combination of high sensitivity and spatial
resolution, their application to efficiently mapping the temporal
profile of the field is still a challenge.

Quantum estimation techniques1,2 can be used to measure
time-varying fields by monitoring the shift in the resonance
energy of a qubit sensor, for example, via Ramsey interferometry.
The qubit sensor, first prepared in an equal superposition of its
eigenstates, accumulates a phase fðTÞ ¼ g

R T
0 bðtÞdt, where g is

the strength of the interaction with the time-varying field b(t)
during the acquisition period T. The dynamics of the field could
be mapped by measuring the quantum phase over successive,
increasing acquisition periods3 or sequential small acquisition
steps4; however, these protocols are inefficient at sampling and
reconstructing the field, as the former involves a deconvolution
problem, while both are limited by short coherence times (T2*)
that bound the measurement sensitivity. Decoupling sequences5–7

could be used to increase the coherence time8–11, but their
application would result in a non-trivial encoding of the
dynamics of the field onto the phase of the qubit sensor12–16.

Instead, here we propose to reconstruct the temporal profile of
time-varying fields by using a set of digital filters, implemented
with coherent control sequences over the whole acquisition
period T, that simultaneously extract information about the
dynamics of the field and protect against dephasing noise. In
particular, we use control sequences (Fig. 1) associated with the
Walsh functions17, which form a complete orthonormal basis of
digital filters and are easily implementable experimentally.

The Walsh reconstruction method can be applied to estimate
various time-varying parameters via coherent control of any
quantum probe. In particular, we show that the phase acquired by
a qubit sensor modulated with Walsh decoupling sequences is
proportional to the Walsh transform of the field. This simplifies
the problem of spectral sampling and reconstruction of time-
varying fields by identifying the sequency domain as the natural
description for dynamically modulated quantum systems. At the
same time, the Walsh reconstruction method provides a solution
to the problem of monitoring a time-dependent parameter with a
quantum probe, which cannot be in general achieved via
continuous tracking due to the destructive nature of quantum
measurements. In addition, because the Walsh reconstruction
method achieves dynamical decoupling of the quantum probe, it
further yields a significant improvement in coherence time and
sensitivity over sequential acquisition techniques. These char-
acteristics and the fact that the Walsh reconstruction method can
be combined with data compression18 and compressive
sensing19,20 provide clear advantages over prior reconstruction
techniques3,4,21,22.

Results
Walsh reconstruction method. The Walsh reconstruction
method relies on the Walsh functions (Supplementary Fig. 1),
which are a family of piecewise-constant functions taking binary
values, constructed from products of square waves, and forming a
complete orthonormal basis of digital filters, analogous to the
Fourier basis of sine and cosine functions. The Walsh functions
are usually described in a variety of labelling conventions,
including the sequency ordering that counts the number of sign
inversions or ‘switchings’ of each Walsh function. The Walsh
sequences are easily implemented experimentally by applying

p-pulses at the switching times of the Walsh functions; these
sequences are therefore decoupling sequences23,24, which include
the well-known Carr-Purcell-Meiboom-Gill5 and periodic
dynamical decoupling sequences7.

Because a p-pulse effectively reverses the evolution of the qubit
sensor, control sequences of p-pulses act as digital filters that
sequentially switch the sign of the evolution between ±1. If wm

(t/T) is the digital filter created by applying m control p-pulses at
the zero crossings of the m-th Walsh function, the normalized
phase acquired by the qubit sensor is

1
gT

fmðTÞ ¼
1
T

Z T

0
bðtÞwmðt=TÞdt � b̂ðmÞ: ð1Þ

Here b̂ðmÞ is the m-th Walsh coefficient defined as the Walsh
transform of b(t) evaluated at sequence number (sequency) m.
This identifies the sequency domain as the natural description for
digitally modulated quantum systems. Indeed, equation (1)
implies a duality between the Walsh transform and the dynamical
phase acquired by the qubit sensor under digital modulation,
which allows for efficient sampling of time-varying fields in the
sequency domain and direct reconstruction in the time domain
via linear inversion.

Successive measurements with the first N Walsh sequences
wmðt=TÞf gN � 1

m¼0 give a set of N Walsh coefficients fb̂ðmÞgN � 1
m¼0

that can be used to reconstruct an N-point functional
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Figure 1 | Walsh reconstruction protocol. (a) A single nitrogen vacancy

centre in diamond, optically initialized and read out by confocal microscopy,

is manipulated with coherent control sequences to measure the arbitrary

profile of time-varying magnetic fields radiated by a coplanar waveguide

under ambient conditions. (b) Coherent control sequences, acting as digital

filters on the evolution of the qubit sensor, extract information about time-

varying fields. (c) An N-point functional approximation of the field is

obtained by sampling the field with a set of N digital filters taken from the

Walsh basis, which contain some known set of decoupling sequences such

as the even-parity Carr-Purcell-Meiboom-Gill sequences5 (w2n) and the

odd-parity periodic dynamical decoupling sequences7 (w2n–1).
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approximation to the field

bNðtÞ ¼
XN � 1

m¼0

b̂ðmÞwmðt=TÞ: ð2Þ

Equation (2) is the inverse Walsh transform of order N, which
gives the best least-squares Walsh approximation to b(t). With
few assumptions or prior knowledge about the dynamics of the
field, the reconstruction can be shown to be accurate with
quantifiable truncation errors and convergence criteria25,26.

Although the signal is encoded on the phase of a quantum
probe in a different way (via decoupling sequences), the Walsh
reconstruction method shares similarities with classical Hada-
mard encoding techniques in data compression, digital signal
processing, and nuclear magnetic resonance imaging27–29. All of
these techniques could easily be combined to achieve both spatial
and temporal imaging of magnetic fields at the nanometre scale,
given the availability of gradient fields and frequency-selective
pulses.

Walsh reconstruction of time-varying fields. We experimentally
demonstrate the Walsh reconstruction method by measuring
increasingly complex time-varying magnetic fields. We used a
single NV centre in an isotopically purified diamond sample as
the qubit sensor (details about the experimental setup can be
found in Methods). NV centres in diamond (Fig. 1a) have
recently emerged as promising sensors for magnetic30–32 and
electric33 fields, rotations34,35 and temperature36–38. These
sensors are ideal for nanoscale imaging of living biological
systems39–41 due to their low cytotoxicity, surface functionaliza-
tions42, optical trapping capability43,44 and long coherence time
under ambient conditions3. A single NV centre is optically
initialized and read out by confocal microscopy under ambient
conditions. A coplanar waveguide delivers both resonant
microwave pulses and off-resonant time-varying magnetic fields
produced by an arbitrary waveform generator.

We first reconstructed monochromatic sinusoidal fields,
b(t)¼ b sin (2pntþ a), by measuring the Walsh spectrum up to
fourth order (N¼ 24). The m-th Walsh coefficient f̂ ðmÞ of the
normalized field f(t)¼ b(t)/b was obtained by sweeping
the amplitude of the field and measuring the slope of the
signal SmðbÞ ¼ sinðgbf̂ ðmÞTÞ at the origin (Fig. 2a and
Supplementary Fig. 2). Figure 2b shows the measured non-zero
Walsh coefficients of the Walsh spectrum. As shown in Fig. 2c,
the 16-point reconstructed fields are in good agreement with
the expected fields. We note that, contrary to other
methods previously used for a.c. magnetometry, the Walsh
reconstruction method is phase selective, as it discriminates
between time-varying fields with the same frequency but different
phase.

We further reconstructed a bichromatic field b(t)¼ b[a1 sin
(2pn1tþ a1)þ a2 sin (2pn2tþ a2)]. Figure 3a shows the measured
Walsh spectrum up to fifth order (N¼ 25). As shown in Fig. 3b,
the 32-point reconstructed field agrees with the expected field,
which demonstrates the accuracy of the Walsh reconstruction
method (Supplementary Fig. 3). In contrast, sampling the field
with an incomplete set of digital filters, such as the Carr-Purcell-
Meiboom-Gill and periodic dynamical decoupling sequences,
extracts only partial information about the dynamics of the field
(Supplementary Fig. 4). By linearity of the Walsh transform, the
Walsh reconstruction method applies to any polychromatic field
(and by extension to any time-varying field), whose frequency
spectrum lies in the acquisition bandwidth [1/T, 1/t] set by the
coherence time TrT2 and the maximum sampling time t¼T/N,
which is in turn limited by the finite duration of the control
p-pulses.

Performance of the Walsh reconstruction method. The per-
formance of the Walsh reconstruction method is determined by
the reconstruction error eN and the measurement sensitivity ZN.
The least-squares reconstruction error eN ¼ bNðtÞ� bðtÞk k2 due
to truncation of the Walsh spectrum up to N¼ 2n coefficients is
bounded by eNrmaxt2 0;T½ � @tbðtÞj j=2nþ 1 (ref. 26) and vanishes to
zero as N tends to infinity (as needed for perfect reconstruction).
This implies that although the resources grow exponentially with
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Figure 2 | Walsh reconstruction of sinusoidal fields. (a) Measured signal

SmðbÞ ¼ sin gebf̂ ðmÞT
� �

as a function of the amplitude of a cosine magnetic

field for different Walsh sequences with m p-pulses. Here ge¼ 2p � 28Hz
nT� 1 is the gyromagnetic ratio of the NV electronic spin. The m-th Walsh

coefficient f̂ðmÞ is proportional to the slope of Sm(b) at the origin.

(b) Measured Walsh spectrum up to fourth order (N¼ 24) of sine and

cosine magnetic fields b(t)¼ b sin (2pntþa) with frequency n¼ 100 kHz

and phases aA{0, p/2} over an acquisition period T¼ 1/n¼ 10 s. Error bars

correspond to 95% confidence intervals on the Walsh coefficients

associated with the fit of the measured signal. (c) The reconstructed fields

(filled squares) are 16-point piecewise-constant approximations to the

expected fields (solid lines, not a fit). Error bars correspond to the

amplitude uncertainty of the reconstructed field obtained by propagation of

the errors on the estimates of the uncorrelated Walsh coefficients.
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n, the error converges exponentially quickly to zero, and only a
finite number of coefficients is needed to accurately reconstruct
the field.

The measurement sensitivity of the m-th Walsh sequence in M
measurements,

Zm ¼ u� 1
m

geC
ffiffiffiffi
T

p
f̂ ðmÞ
��� ��� ¼

Ẑm
f̂ ðmÞ
��� ��� ; ð3Þ

gives the minimum field amplitude, dbm¼ Zm/
ffiffiffiffiffiffiffiffi
MT

p
¼DSm/

(|qSm/qbm|
ffiffiffiffiffi
M

p
), that can be measured with fixed resources. Here

ge¼ 2p � 28Hz nT� 1 is the gyromagnetic ratio of the NV
electronic spin and C accounts for inefficient photon collection
and finite contrast due to spin-state mixing during optical
measurements30,45.

The sensitivity is further degraded by the decay of the signal

visibility, um ¼ e�T=T2ðmÞ� �pðmÞr1, where T2(m) and p(m)
characterize the decoherence of the qubit sensor during the
m-th Walsh sequence in the presence of a specific noise
environment. In general, T2(m)4T2, as the Walsh sequences
suppress dephasing noise and extend coherence times by many
orders of magnitude23,24. The sensitivity Zm is thus the ratio
between a field-independent factor Ẑm and the Walsh coefficient

f̂ ðmÞ
��� ��� for the particular temporal profile of the measured field.

The sensitivity formula of equation (3) can be used to identify
the Walsh sequences that extract the most information about the

amplitude of time-varying fields in the presence of noise. In
analogy to a.c. magnetometry30, which measures the amplitude of
sinusoidal fields, we refer to the problem of performing parameter
estimation of the amplitude of an arbitrary waveform as arbitrary
waveform (a.w.) magnetometry. Indeed, if the dynamics of the
field is known, the Walsh spectrum can be precomputed to
identify the Walsh sequence that offers the best sensitivity.
Because different Walsh sequences have different noise
suppression performances18,23, the choice of the most sensitive
Walsh sequence involves a trade-off between large Walsh
coefficients and long coherence times.

Measurements with an ensemble of NNV NV centres will
improve the sensitivity by 1/

ffiffiffiffiffiffiffiffiffi
NNV

p
, such that the sensitivity per

unit volume will scale as 1/
ffiffiffiffiffiffiffiffi
nNV

p
, where nNV is the density of NV

centres. Previous studies have demonstrated Z1E4 nT Hz� 1/2 for
a single NV centre in an isotopically engineered diamond3 and
Z1E0.1 nT Hz� 1/2 for an ensemble of NV centres46, with
expected improvement down to Z1E0.2 nT mm3/2 Hz� 1/2.

The amplitude resolution of the Walsh reconstruction method,

dbN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
m
db̂2m

r
, gives the smallest variation of the reconstructed

field that can be measured from the Walsh spectrum of order N.
If each Walsh coefficient is obtained from M measurements over
the acquisition period N, the measurement sensitivity of the
Walsh reconstruction method, ZN� dbN

ffiffiffiffiffiffiffiffiffiffiffi
MNT

p
, is

ZN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
X
m

Ẑ2m
r

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
PN � 1

m¼0 u� 2
m

q
geC

ffiffiffiffi
T

p ffiffiffiffiffiffiffiffi
nNV

p : ð4Þ

The Walsh reconstruction method provides a gain in sensitivity
of

ffiffiffiffi
N

p
over sequential measurement techniques that perform N

successive amplitude measurements over small time intervals of
length t ¼ T=N � T�

2 . Indeed, Walsh sequences exploit the long
coherence time under dynamical decoupling to reduce the
number of measurements, and thus the associated shot noise.
This corresponds to a decrease by a factor of N of the total
acquisition time needed to reach the same amplitude resolution
or an improvement by a factor of

ffiffiffiffi
N

p
of the amplitude resolution

at fixed total acquisition time (see Supplementary Discussion).
Thus, unless the signal can only be triggered once, in which case
one should use an ensemble of quantum probes to perform
measurements in small time steps, the Walsh reconstruction
method outperforms sequential measurements, which is an
important step towards quantum-optimized waveform
reconstruction47.

The measurement sensitivity ZN combines with the reconstruc-
tion error eN to determine the accuracy of the Walsh
reconstruction method. If some small coefficients cannot be
resolved due to low signal visibility, the increase in reconstruction
error can be analytically quantified using data compression
results18. In the same way, the acquisition time can be reduced by
sampling only the most significant coefficients and discarding
other negligible coefficients. Furthermore, if the field is sparse in
some known basis, which is often the case, a logarithmic scaling
in resources can be achieved by using compressed sensing
methods based on convex optimization algorithms19,20, an
advantage that is not shared by other sequential acquisition
protocols3,4,21.

Discussion
The Walsh reconstruction method is readily applicable to
measure time-varying parameters in a variety of physical systems,
including light shift spectroscopy with trapped ions16;
magnetometry with single spins in semiconductors31,48,49 or
quantum dots50; and measurements of electric fields33 or
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Figure 3 | Walsh reconstruction of a bichromatic field. (a) Measured

Walsh spectrum up to fifth order (N¼ 25) of a bichromatic magnetic field

b(t)¼ b [a1 sin (2pn1tþ a1)þ a2 sin (2pn2tþ a2)] with a1¼ 3/10, a2¼ 1/5,

n1¼ 100 kHz, n1¼ 250 kHz, a1¼ �0.0741, and a2¼ � 1.9686. The zero-th

Walsh coefficient f̂ð0Þ corresponds to a static field offset that was

neglected. (b) The reconstructed field (filled squares) is a 32-point

approximation to the expected field (solid line, not a fit). Error bars

correspond to the amplitude uncertainty of the reconstructed field obtained

by propagation of the errors on the estimates of the uncorrelated Walsh

coefficients.
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temperature36–38 with NV centres in diamond. Other promising
applications include magnetic resonance spectroscopy of spins
extrinsic to the diamond lattice51,52, measurements of the
dynamics of magnetic nanostructures53 or magnetic vortices in
nanodisk chains54.

An active research direction for quantum sensors is measuring
biological41,55,56 and neuronal4,57 activity at the nanometre scale.
Reference4 provided compelling evidence about the feasibility of
measuring the magnetic fields radiated by action potentials
flowing through single neurons. They calculated magnetic field
strengths of the order of 10 nT at distance up to 100 nm from a
morphologically reconstructed hippocampal CA1 pyramidal
neuron. These fields are within experimental reach using small
ensembles of shallow-implanted NV centres, for example, located
less than 10 nm below the diamond surface58,59, given
improvements in collection efficiency46,60 and coherence times61.

The Walsh reconstruction method may also prove useful in
neuroscience, alongside existing electrical activity recording
techniques and other emerging neuroimaging modalities, to
monitor the weak magnetic activity of neuronal cells at
subcellular spatial resolution, as needed to better understand
neurophysiology and map neuronal circuits. To achieve a
repeatable signal and reduce stochastic fluctuations during
averaging, sequential trains of action potentials could be evoked
with conventional electrophysiological techniques, photo-stimu-
lation methods or current injection through underlying nanowire
electrode arrays62. Technical issues associated with maintaing the
stability of the system over long time scale still remain to be
solved.

As a proof-of-principle experiment, we measured the magnetic
field radiated by a physical model of a neuron undergoing an
action potential F(t) approximated by a skew normal impulse63–
65. Due to its linear response in the kHz regime (Supplementary
Fig. 5), our coplanar waveguide acts as the physical model of a
neuron (see Supplementary Methods), with the radiated magnetic
field given by the derivative of the electric field66,67: b(t)¼ dF(t)/
dt (Supplementary Fig. 6).

The Walsh coefficients were measured by fixing the amplitude
of the field and sweeping the phase of the last read-out pulse to
reconstruct the absolute field b(t) rather than the normalized field
f(t). This protocol is in general applicable when the field
amplitude is not under experimental control. Figure 4a shows
the measured Walsh spectrum up to fifth order (N¼ 25). As
shown in Fig. 4b, the 32-point reconstructed field is in good
agreement with the expected field. Although neuronal fields are
typically much smaller than in our proof-of-principle experiment
with a single NV centre, they could be measured with shallow-
implanted single NVs51,52,58,59 or small ensembles of NV
centres41,46,57.

In conclusion, we used control sequences acting as digital filters
on the evolution of a single NV electronic spin to efficiently
sample and accurately reconstruct the arbitrary profile of time-
varying fields with quantifiable errors and formal convergence
criteria. The Walsh reconstruction method can easily be used
together with spatial encoding techniques to achieve both spatial
and temporal imaging of magnetic fields. In addition, this method
is compatible with data compression techniques18 and
compressed sensing algorithms19,20 to achieve a significant
reduction in resources, acquisition time and reconstruction
errors. Extension of the Walsh reconstruction method to
stochastic fields could simplify the problem of spectral density
estimation by removing the need for functional approximations
or deconvolution algorithms13,15,68. This would enable, for
example, in vivo monitoring of cellular functions associated
with cell membrane ion channel processes55,56. Finally, this work
connects with other fields in which the Walsh functions have

recently attracted attention, for example, in quantum simulation
to construct efficient circuits for diagonal unitaries69, in quantum
error suppression23,24, and in quantum control theory to improve
the fidelity of two-qubit entangling gates on trapped atomic
ions70.

Methods
Nitrogen-vacancy centres in diamond as qubit sensors. Measurements of time-
varying magnetic fields were performed under ambient conditions with a single NV
centre in an isotopically purified diamond sample (499.99% C-12). The NV centre
in diamond consists of a substitutional nitrogen adjacent to a vacancy in the
diamond lattice. The negatively charged defect exhibits a ground state electronic
spin triplet. The zero-field energy splitting between the ms¼ 0 and ms¼±1
sublevels is D¼ 2.87GHz. A static magnetic field b0¼ 2.5 mT directed along the
quantization axis of the NV centre lifts the energy degeneracy between the ms¼
þ 1 and ms¼ � 1 sublevels via the Zeeman effect. This gives an effective spin qubit
ms¼ 02ms¼ 1 that can be used to measure time-varying magnetic fields. The
strength of the interaction with external magnetic fields is given by the gyro-
magnetic ratio of the electron ge¼ 2p � 28Hz nT� 1. The NV centre was located in
a home-built confocal microscope via fluorescence emission collection and opti-
cally initialized to its ground state with a 532 nm laser pulse.

Coherent control of the optical ground-state levels of the NV electronic spin
was performed with resonant microwave pulses delivered through an on-chip
coplanar waveguide. We set the effective Rabi frequency to 25MHz to achieve 20
ns p-pulses and implemented phase cycling to correct for pulse errors. The
coplanar waveguide was also used to deliver non-resonant magnetic fields B(t)
generated with an arbitrary waveform generator. The magnetometry method
measured the resonance shift produced by the projection of the time-dependent
field along the NV axis, b(t)¼B(t) ez.
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Figure 4 | Walsh reconstruction of an arbitrary waveform. (a) Measured

Walsh spectrum up to fifth order (N¼ 25) of the magnetic field radiated by

a skew normal impulse flowing through the physical model of a neuron. The

Walsh coefficients were obtained by fixing the amplitude of the field and

sweeping the phase of the last read-out p/2-pulse. The acquisition time for

measuring all the Walsh coefficients was less than 4 h. Error bars

correspond to 95% confidence intervals on the Walsh coefficients

associated with the fit of the measured signal. (b) The reconstructed field

(filled squares) is a 32-point approximation to the expected field (solid line,

not a fit). Error bars correspond to the amplitude uncertainty of the

reconstructed field obtained by propagation of the errors on the estimates

of the uncorrelated Walsh coefficients.
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The qubit was optically read out via spin-state dependent fluorescence
measurements in the 600–800 nm spectral window around the 637-nm zero-
phonon line with a single-photon counter.

Walsh functions. The set of Walsh functions17,25,26 wmðtÞf g1m¼0 is a complete,
bounded and orthonormal basis of digital functions defined on the unit interval
tA[0,1]. The Walsh basis can be thought of as the digital equivalent of the sine and
cosine basis in Fourier analysis. The Walsh functions in the dyadic ordering or
Paley ordering are defined as the product of Rademacher functions (rk): w0¼ 1 and
wm¼�n

k¼1r
mk
k for 1rmr2n–1, where mk is the k-th bit of m. The dyadic ordering

is particularly useful in the context of data compression18. The Rademacher
functions are periodic square-wave functions that oscillate between ±1 and exhibit
2k intervals and 2k–1 jump discontinuities on the unit interval. Formally, the
Rademacher function of order kZ1 is defined as rk(t)�r(2k� 1t), with

rkðtÞ ¼ 1 : t 2 ½0; 1=2k�
� 1 : t 2 ½1=2k; 1=2k� 1�

�

extended periodically to the unit interval. The Walsh functions in the sequency
ordering are obtained from the grey code ordering of m. Sequency is a
straightforward generalization of frequency which indicates the number of zero
crossings of a given digital function during a fixed time interval. As such, the
sequency m indicates the number of control p-pulses to be applied at the zero
crossings of the m-th Walsh function. The sequency ordering is thus the most
intuitive ordering in the context of digital filtering with control sequences.
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