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Reducing the impact of intrinsic dissipation in a
superconducting circuit by quantum error detection
Y.P. Zhong1, Z.L. Wang1, J.M. Martinis2, A.N. Cleland2, A.N. Korotkov3 & H. Wang1,4

A fundamental challenge for quantum information processing is reducing the impact of

environmentally induced errors. Here we demonstrate a quantum error detection and

rejection protocol based on the idea of quantum uncollapsing, using this protocol to reduce

the impact of energy relaxation owing to the environment in a three-qubit superconducting

circuit. We encode quantum information in a target qubit, and use the other two qubits to

detect and reject errors caused by energy relaxation. This protocol improves the storage time

of a quantum state by a factor of roughly three, at the cost of a reduced probability of success.

This constitutes the first experimental demonstration of the algorithm-based improvement in

the lifetime of a quantum state stored in a qubit.
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S
uperconducting quantum circuits are very promising
candidates for building a quantum processor owing to the
combination of good qubit performance and the scalability

of planar integrated circuits1–10. In addition to recent, very
significant improvements in the materials and qubit geometries in
such circuits, external control and measurement protocols are
being developed to improve performance. This includes the
use of dynamical decoupling11, measurement-based feedback
controls12,13 and preliminary experiments14 with quantum error
correction (QEC) codes, which allow the removal of artificially
induced errors14–18. To date, however, there has been little
experimental progress in control sequences that reduce a
significant source of qubit error: energy dissipation due to the
environment.

Although there are QEC proposals to correct intrinsic
dissipation errors18,19, these have not yet been demonstrated
experimentally, mostly due to gate fidelity limitations. Quantum
error detection and rejection (QEDR)20,21 provide an alternative,

albeit non-deterministic approach to handling errors, avoiding
some of the complexity of full QEC by simply rejecting errors
when they are detected. Using a variant of quantum uncollapsing
that combines a weak measurement with its reversal22–25, QEDR
has been predicted to significantly reduce the impact of energy
relaxation in qubits21, one of the dominant sources of error in
superconducting quantum circuits1–3.

The QEDR protocol based on uncollapsing22 is illustrated in
Fig. 1a. Starting with a qubit in a superposition of its ground |gi
and excited |ei states, |cii¼ a|giþb|ei, a weak measurement is
performed that detects the |ei state with probability
(measurement strength) po1. In the null-measurement
outcome (|ei state not detected), this produces the partially
collapsed state |c1i¼ a|giþ b

ffiffiffiffiffiffiffiffiffiffi
1� p

p
|ei (the squared norm

equals the outcome probability). The system is then stored for
a time t, during which it can decay (jump) to the |gi state or
remain in the no-jump state |cnji¼ a|giþb

ffiffiffiffiffiffiffiffiffiffi
1� p

p
e�Gt/2

|ei, where G¼ 1/T1 is the energy relaxation rate. (Instead of
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Figure 1 | Device geometry and uncollapsing protocol used for QEDR. (a) Quantum uncollapsing protocol in the phase qubit22,23. Top: pulse sequence,

where the weak measurement with strength p is followed by a delay (storage time) t, and then the measurement reversal, involving a px rotation, a weak

measurement with strength pu, and a second px rotation. Bottom: the delta-like electrical pulses lower the tunnel barrier for the qubit states on the left of

the potential landscape to allow partial tunnelling of the |ei state into the well on the right. (b,c) Optical micrograph and simplified schematic of the device.

Circuit elements are as labelled; those not used in this experiment are in grey. (d) Illustration of the qubit–resonator–qubit (QRQ) swap, analogous to the

partial tunnelling measurement. Left: schematic for the sequential qubit Q1-resonator B swap with swap probability (measurement strength) p (pu),

followed by a full iSWAP between resonator B and qubit Q2 (Q3). Right: the on-resonance, unit-amplitude qubit-resonator vacuum Rabi oscillations in the

qubit |ei state probability Pe (vertical axis), starting with the qubit in |ei and resonator in |0i. The measurement strength p¼ 1� Pe is set by the interaction

time (horizontal axis). (e) QEDR protocol, where we start with Q1 in |cii, consisting of the following steps: (1) the first weak measurement is performed

using the first QRQ swap involving Q1–B–Q2, with strength p. Q2 is measured immediately, and only null outcomes (Q2 in |gi) are accepted. (2) The state is
swapped from Q1 into memory resonator M1 and stored for a relatively long time t2, following which the state is swapped back into Q1. (3) The weak

measurement reversal is performed using a px rotation on Q1 and a second QRQ swap with strength pu to qubit Q3. Q3 is then measured, and only null

outcomes (Q3 in |gi) are accepted. (4) The double-null outcomes are analysed using tomography of Q1 to evaluate Q1’s final density matrix. To save time

and reduce errors, we do not perform the final px rotation appearing in the full uncollapsing protocol.
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using the master equation formalism for the density matrix to
account for the energy relaxation, here we prefer to use the Kraus
operator-based jump and no-jump scenarios, as this gives more
physical insight. See Supplementary Notes 2 and 3, and
elsewhere21,22 for details.) The uncollapsing measurement is
then performed, comprising a px rotation and a second weak
measurement with strength pu, followed by a final px rotation that
undoes the first rotation. Only outcomes that yield a second null
measurement are kept. These double-null outcomes give the
result |cj

f i¼ |gi if the system jumped to |gi during the time
interval t, while in the no-jump case, the final state is

jcnj
f i ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffi
1� pu

p
jgiþ b

ffiffiffiffiffiffiffiffiffiffi
1� p

p
e�Gt=2 jei: ð1Þ

Remarkably, the final no-jump state is identical to |cii if we
choose 1� pu¼ (1� p)e�Gt; the probability of this (desired)
outcome is Pnj

f ¼hcnj
f |c

nj
f i¼ (1� p)e�Gt, while the probability

of the undesirable jump outcome |gi is Pj
f ¼ |b|2(1� p)2e�Gt

(1� e�Gt). These two probabilities do not add to one; the
remaining probability covers situations other than these double-
null measurement outcomes. As the probability Pfj falls to zero
more quickly than Pnj

f as p-1, increasing the measurement
strength p towards 1 results in a higher likelihood of recovering
the initial state. This comes at the expense of a low probability
PDN¼Pnj

f þ Pj
f of the double-null result. The resulting density

matrix is rf¼ (Pnj
f |c

nj
f ihc

nj
f |þ Pj

f |gihg|)/PDN.
The QEDR protocol in Fig. 1a relies on partial tunnelling to

perform the weak measurement. We have performed the protocol
in this way, but found that this gave low fidelities. We therefore,
in addition, implemented a weak measurement using a partial
swap between the target qubit and an ancilla qubit, followed by a
projective measurement of the ancilla; the two weak measure-
ments in the QEDR protocol thus required two ancilla qubits.
Using this alternative measurement, here we show that a
quantum state suffering from dissipation errors can be almost
fully recovered, although only by rejecting a large fraction of the
measurement outcomes. This allowed us to extend the intrinsic
lifetime of a quantum state by a factor of about three. A
somewhat similar protocol has been demonstrated with photonic
qubits, but only to suppress intentionally generated errors26.

Results
Implementation of the weak measurement. The device we used
to implement the QEDR protocol is similar to that in Lucero
et al.27 (shown in Fig. 1b,c), with three phase qubits, Q1, Q2 and
Q3, coupled to a common, half-wavelength coplanar waveguide
bus resonator B, with a memory resonator M1 also coupled to Q1.
Relevant parameters are tabulated in Supplementary Table 1 (see
Supplementary Note 1 for sample fabrication details).

The partial measurement method is illustrated in Fig. 1d. Qubit
Q1 is the target, and Q2 and Q3 are ancillae, entangled with Q1 via
the resonator bus B, such that a projective measurement of Q2 or
Q3 results in a weak measurement of Q1. The entanglement
begins with a partial swap between Q1 and the resonator B: When
qubit Q1, initially in |ei, is tuned to resonator B, the probability Pe
of finding the qubit in |ei oscillates with unit amplitude at the
vacuum Rabi frequency28–30. A partial swap with swap
probability p¼ 1� Pe is achieved by controlling the interaction
time, entangling Q1 and B. We then use a complete swap (an
iSWAP) between resonator B and qubit Q2 (Q3), transferring the
entanglement, followed by a projective measurement of Q2 (Q3).
In general, we start with Q1 in |cii¼ a|giþ b|ei and perform the
qubit–resonator–qubit (QRQ) swap, followed by measurement of
the ancilla. A null outcome (Q2 or Q3 in |gi) yields the Q1 state
a|giþb

ffiffiffiffiffiffiffiffiffiffi
1� p

p
|ei, as with partial tunnelling. The swap

probability p is therefore equivalent to the measurement strength.

Full QEDR sequence. Our QEDR protocol can protect against
energy decay of the quantum state. However, as dephasing in
these qubits is an important error source, against which the
QEDR protocol does not protect, we store the intermediate
quantum state in the memory resonator M1, which does not
suffer from dephasing (as indicated by T2D2T1 for the resonator;
see Supplementary Table 1).

Our full QEDR protocol is thus shown in Fig. 1e, starting with
the initial state of the system as

jcii¼ða jgggiþb jeggiÞ� j00i; ð2Þ
where |q1q2q3i represents the state of the qubits Q1, Q2 and Q3,
with the ground state |00i of the B and M1 resonators listed last.
In step 1, we use a QRQ swap between Q1, B and Q2 with swap
probability (measurement strength) p, followed immediately by
measurement of Q2. This step takes a time t1 of up to 15 ns,
depending on p. A null outcome (Q2 in |gi) yields |c1i¼
a|gggi|00iþb

ffiffiffiffiffiffiffiffiffiffi
1� p

p
|eggi|00i (a more precise expression

appears in Supplementary Note 2). In step 2, we swap the
quantum state from Q1 into M1, wait a relatively long time t¼ t2,
during which the state in M1 decays at a rate G¼ 1/T1, and we
then swap the state back to Q1. In the no-jump case, the state
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Figure 2 | Fidelity of the uncollapsing protocol without storage.

(a) Measured w/Tr(w) (bars with colour), where w is the non-trace-preserving

quantum process tomography matrix for the sequence in Fig. 1e excluding

step 2, here with p¼ pu¼0.75. The desired matrix, wideal, corresponds to

a p rotation about the Bloch sphere x axis (identified by black frames).

(b) Process fidelity F for both the three-qubit QRQ-based uncollapsing

(blue circles) and the single-qubit partial-tunnelling version (red circles)23,

both as a function of p¼ pu. Statistical errors are shown by error bars,

defined as ±1 s.d., using the repeated sets of fidelity measurement. The

process fidelity is above 0.9 for pr0.8 using the QRQ swaps, while for the

partial-tunnelling scheme it decreases significantly for pZ0.5. This

decrease is primarily due to reduction in qubit T2 with measurement current

bias, shown in the inset; partial tunnelling occurs in the shaded region. Blue

line is a simulation using k1¼k3¼0.985, k2¼ 1, and kj¼0.95 (see

Supplementary Note 3); the red line is a guide to the eye.
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becomes |cnj
2 i¼ a|gggi|00iþ b

ffiffiffiffiffiffiffiffiffiffi
1� p

p
e�Gt2=2|eggi|00i. We then

perform step 3, comprising a px rotation on Q1 followed by the
second QRQ swap with strength pu, involving Q1, B and Q3,
which takes a time t3. t3 is between 20 and 35 ns, depending on
pu, dominated by the 20 ns-duration px pulse. Q3 is then
measured, with a null outcome (Q3 in |gi) corresponding to

jcnj
f i¼ða

ffiffiffiffiffiffiffiffiffiffiffiffi
1� pu

p
jeiþ b

ffiffiffiffiffiffiffiffiffiffi
1� p

p
e�Gt2=2 jgiÞ� j ggi j00i: ð3Þ

We recover the initial state |cii if we set 1� pu¼ (1� p)e�Gt2,
with the undesired jump cases mostly eliminated by the double-
null selection. To shorten the sequence, we do not perform the
final px rotation, so the amplitudes of Q1’s |gi and |ei states are
reversed compared with the initial state. In step 4, we apply
tomography pulses and then measure Q1 to determine its final
state, keeping the results that correspond to the double-null
outcomes (Q2 and Q3 in |gi).

Characterizing the QEDR performance. We use quantum pro-
cess tomography to characterize the performance of the protocol,
starting with the four initial states {|gi, |gi� i|ei, |giþ |ei, |ei}
and measuring the one-qubit process matrix w. As we
reject outcomes, where Q2 and Q3 are not measured in |gi, the
process is not trace preserving, so the linear map satisfies
rfPDN¼

P
n;m wnmEnriE

þ
m , where ri and rf are the normalized

initial and final density matrices of Q1, and En is the standard
Pauli basis {I,X,Y,Z}. We define the process fidelity F as31

F ¼Tr(widealw)/Tr(w), where wideal corresponds to the desired

unitary operation (here given by px), and the divisor accounts for
postselection. There are other ways to define the process fidelity
F; for instance, one can average the state fidelity over a set of pure
initial states, either with or without weighting by the selection
probability21,32. We have analysed the data using various
definitions of the fidelity and found similar fidelity
improvement due to QEDR for all of them. See Supplementary
Note 4 for more details.

We first tested the process with no storage, entirely omitting
step 2 in Fig. 1e, and choosing pu¼ p; we also delayed the
measurement of Q2 to the end of step 3 to minimize crosstalk
(see Methods). Figure 2a shows the measured w/Tr(w) for
p¼ pu¼ 0.75; the calculated process fidelity is F ¼ 0.92. In
Fig. 2b, we show the measured process fidelity F as a function of
the QRQ measurement strength p¼ pu (blue circles).

We can compare our no-storage uncollapsing fidelity to that
obtained using partial tunnelling for the weak measurement of a
single qubit23, shown in Fig. 2b (red circles). We see that even
though the QRQ-based protocol is more complex, it achieves
much better fidelities for pZ0.5. This is mostly because of strong
dephasing and two-level state effects4,29 during the partial
tunnelling current pulse (see inset in Fig. 2b).

Protection from energy relaxation. We then tested the full QRQ
protocol’s ability to protect from energy decay. The uncollapsing
strength pu is given by22 1� pu¼ (1� p)k1k2/k3, where
k2¼ exp(� t2/T1), and k1 and k3 are similar energy relaxation
factors for the steps 1 and 3 (here k1Ek3E0.985; see
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Supplementary Note 3). In Fig. 3a, we display the measured
fidelities for the storage durations t2¼ 0.9, 1.7 and 3 ms for the
memory resonator with T1¼ 2.5 ms, compared with simulations
using the pure dephasing factor kj¼ 0.95 (see Korotkov and
Keane22 and Supplementary Note 3). The simulations are in
excellent agreement with the data, and we see a marked
improvement in the storage fidelity using QEDR over that of
free decay (dashed line in each panel).

It is interesting to note that in Fig. 3a, the process fidelity is
significantly improved even for zero measurement strength p¼ 0
(note that pu 40), implying that a simpler QEDR protocol still
provides some protection against energy relaxation.

Another way to test QEDR is to monitor the evolution of
individual quantum states. In Fig. 3b, we display the final density
matrices measured either without (top row) or with (bottom row)
QEDR, for four initial states in Q1, with storage in the memory
M1 for t2E3 ms. Other than for the initial ground state |gi, which
does not decay, we see that the QEDR-protected states are much
closer to the desired outcomes than the free-decay states (note the
p rotation). If we look at the off-diagonal terms in the middle
panels, they have decayed from 0.5 to about 0.4; this decay takes
about 1.1 ms without QEDR, so the lifetime is increased by 3 ms/
1.1 msE3. Also, if we look at Fig. 3a, the free-decay fidelity at
0.9 ms (left panel) is about the same as the maximum QEDR
fidelity at 3.0 ms (right panel), also giving a factor of three
improvement.

Discussion
The price paid for the lifetime improvement is the small fraction
of outcomes accepted by the QEDR postselection, shown in Fig. 4.
The double-null probability PDN decreases with increasing
measurement strength p for all initial states. A balance must
therefore be struck between a larger T1 improvement, occurring
for larger p, and a larger fraction of accepted outcomes, which
occurs for smaller p.

QEDR will be challenging to implement in large-scale qubit
circuits, as it does not scale well, in particular when the fraction of
successful outcomes is small; QEC, when it becomes an
experimental reality, will clearly provide a far more efficient
route to fault-tolerance, even though it requires significantly more
resources (qubits and gates) than does QEDR (see Supplementary
Note 5). However, the simplest QEC proposal for energy
relaxation19 is expected to only yield a factor of about two
improvement in the state lifetime (assuming gate execution is
almost perfect), which is less than the factor of three
improvement demonstrated here using QEDR. The simpler
QEDR protocol can therefore serve as a suitable intermediate to
QEC, applicable to small and medium scale quantum circuits.

Methods
Readout correction and crosstalk cancellation. All data are corrected for the
qubit readout fidelities before further processing. The readout fidelities for |gi (Fg)
and |ei (Fe) of Q1, Q2 and Q3 are F1g¼ 0.95, F1e¼ 0.89, F2g¼ 0.94, F2e¼ 0.88,
F3g¼ 0.94, F3e¼ 0.91, respectively. Crosstalk is another concern when performing
QEDR to protect quantum states. We read out Q2 immediately after the first QRQ
swap in step 1 in Fig. 1e to avoid decay in Q2. However, due to measurement
crosstalk in the qubit circuit, this measurement can result in excitations in reso-
nator B; while this does not directly affect the other qubits, we must reset the
resonator prior to the second QRQ swap. This is done during the storage in the
memory resonator by performing a swap between B and Q3, and then using a
spurious two-level defect coupled to Q3 to erase the excitation in Q3. As the storage
time in M1 is several microseconds, there is sufficient time to reset both B and Q3

prior to the second QRQ swap.
The intermediate reset of B could not be performed when doing the

experiments in Fig. 2, for which there is no storage interval. To avoid crosstalk in
those measurements, we postponed the measurement of Q2 until the end of the
second QRQ sequence to step 3 of Fig. 1e. The |ei state probability in Q2 drops by
about 6% during this delay time, as estimated from Q2’s T1. We have corrected for
this drop when evaluating the Q2 measurements for Fig. 2.
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