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Bulk magnetoelectricity in the hexagonal
manganites and ferrites
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Improper ferroelectricity (trimerization) in the hexagonal manganites RMnO3 leads to a

network of coupled structural and magnetic vortices that induce domain wall magneto-

electricity and magnetization (M), neither of which, however, occurs in the bulk. Here we

combine first-principles calculations, group-theoretic techniques and microscopic spin

models to show how the trimerization not only induces a polarization (P) but also a bulk M

and bulk magnetoelectric (ME) effect. This results in the existence of a bulk linear ME vortex

structure or a bulk ME coupling such that if P reverses so does M. To measure the predicted

ME vortex, we suggest RMnO3 under large magnetic field. We suggest a family of materials,

the hexagonal RFeO3 ferrites, also display the predicted phenomena in their ground state.
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T
wo themes at the forefront of materials physics are the
cross-coupling of distinct types of ferroic order1–4 and
topological defects in systems with spontaneous broken

symmetry5–8. Common to both are a plethora of novel
phenomenon to understand, and new properties and
functionalities to exploit for novel applications. Multiferroics9,10

are an ideal platform to realize both themes in a single material.
In this regard, an exciting development is the discovery of a
topologically protected vortex domain structure in one of the
most extensively studied class of multiferroics, the hexagonal
(hexa) rare-earth manganites11–15. Here, antiphase structural
(‘trimer’) domains are clamped to ferroelectric (FE) domain walls
(and vice versa) forming a ‘clover-leaf’ pattern (Fig. 1a). These
trimer domains have a particular phase relationship that result in
the appearance of structural vortices, which in turn induce
magnetic vortices16,17, strongly coupled antiferromagnetism and
the polarization at the domain wall. This domain wall
magnetoelectric (ME) phenomenon produces a magnetization
localized at the wall16,17.

The key to realizing these unusual effects is the improper
nature of ferroelectricity. Here the polarization P, which is stable
in the paraelectric (PE) P63/mmc structure, is induced by a zone-
tripling structural distortion, QF

K3
(refs 17–19). The latter, referred

to as the trimer distortion, is associated with a two-up/one-down
buckling of the R-planes and tilting of the MnO5 bipyramids
(Fig. 1b). It is nonlinearly coupled to the polarization,

F trimer � PzQ
3
K3
cosð3FÞ ð1Þ

the form of which implies that a non-zero trimer distortion
induces a non-zero polarization. There are three distinct F
domains (a, b and g) corresponding to one of the three
permutations of two-up/one-down. Moreover, there are two
tilting directions, either towards (þ ) or away (� ) from the ~2c
axis, that is, one-up/two-down or two-up/one-down, respectively.
This results in six P63cm structural domains. A consequence of
the improper origin of ferroelectricity is that the sign of the
polarization depends on the direction of the trimer distortion.
This simple fact leads to the non-trivial domain structure of the
hexa manganites (Fig. 1a)11–13,17.

Recently, thin films of RFeO3 rare-earth ferrites have been
epitaxially stabilized in the hexa manganite P63cm structure20–22.
This new family of hexa materials exhibit ferroelectricity above
room temperature, but with conflicting results as to its origin23,24.
As to the magnetic structure, experiments on LuFeO3 suggest a
considerably high antiferromagnetic (AFM) ordering temperature
TN¼ 440K (ref. 22). In addition, there is evidence of a second
magnetic transition (B100K) at which a non-zero magnetization
appears22–25, the significance of which, or even if it is an intrinsic
or bulk effect, is not known.

Our focus here is on elucidating a remarkable interplay of the
trimerization, magnetism and polarization in the hexa manganite
structure. We show that the trimer structural distortion not only
induces a polarization but can also induce both a bulk
magnetization and a bulk linear ME effect. This insight leads us
to discover bulk phenomena that were not previously seen in a
multiferroic, such as the existence of a linear ME vortex structure
and a bulk coupling of FE and ferromagnetic domains such that if
the polarization reverses 180�, so does the magnetization. We
make this clear by connecting an exact microscopic theory of
spin–lattice coupling to a simple phenomenological theory, which
we test on several hexa manganites and ferrites using first-
principles simulation methods. We show that ferroelectricity in
the hexa ferrites is of the improper structural type where the
trimer distortion induces the polalization, and therefore a similar
topological domain structure exists as in the manganites. We
explain how the difference in electronic structure between

manganites and ferrites requires Fe spins of any hexa ferrite to
order in the spin configuration that allows a net magnetization in
the ground state. In addition, the much stronger exchange
interactions leads to the possibility of spin ordering above room
temperature.

Results
First-principles calculations on switching U by 180�. Geometric
frustration of the strongly AFM nearest-neighbour (nn) Mn or Fe
spins leads to a planar 120� non-collinear order that, because of
symmetry, can be described by just two free parameters, CI and
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Figure 1 | Trimer domain and crystal structure. (a) Six structural domains

of the ‘trimer’ QF
K3

distortion and the polarization P. Here aþ3F¼0 and a

anticlockwise rotation corresponds to domains differing by F¼ þ p/3.
Arrows indicate the direction of the apical oxygen motion of the trimer

distortions, only distortions around the ~2c axis are shown for clarity. (b) FE

crystal structure (aþ domain).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3998

2 NATURE COMMUNICATIONS | 5:2998 | DOI: 10.1038/ncomms3998 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


CII, even though there are six spins within the unit cell. Note that
these reference spins are those connected by the ~2c axis that
remains in the FE phase, that is, CI�C1 and CII�C2 (Fig. 2e).
Previously, four principle spin configurations have been denoted
as A1 (� p/2,p/2) (Fig. 2a), A2 (p,0) (Fig. 2c), B1 (0,0) (Fig. 2g)
and B2 (p/2,p/2) (Fig. 2i). It is well-known that only A2 (magnetic
space group P63c0m0) and intermediate spin configurations that
contain a component of A2 allow a net magnetization along the
z axis. What has not been appreciated in the past is that this
symmetry-allowed magnetization is in fact induced by the trimer
distortion, the consequences of which are quite profound.

We now begin to make this clear by performing first-principles
calculations for two specific examples, LuFeO3 and LuMnO3, in
the A2 phase. Within a typical first-principles calculation of the
hexa manganite structure it is easy to reverse the trimer
distortion, and hence switch the polarization, via a structural
change from a one-up/two-down buckling and tilting ‘in’ of the
R-planes and MnO5 bipyramids, respectively, to a two-up/one-
down and tilting ‘out’, thus remaining in the same distinct
domain, for example, aþ-a� . We perform a series of
calculations that follow such a switching path and show these
results in Fig. 3. Our results indicate that the trimer distortion not
only induces ferroelectricity but also weak ferromagetism26,27.
This in turn implies that the trimer distortion induces a linear ME
effect,

azz ¼ @Mz=@Ez � @QMz�@QPz; ð2Þ
where E and M are the electric field and magnetization,
respectively (see Methods section for derivation). Furthermore,
notice that the reversal of the trimer distortion results in one of

the two symmetry equivalent situations. In the first case
(Fig. 3c,g), the AFM configuration remains fixed and the
direction of the spin canting reverses (for example, spins cant
up rather than down), resulting in the 180� switching of the
magnetization. In the second case (Fig. 3d,h), the AFM
configuration reverses and the spin canting remains fixed, that
is, the in-plane component of each spin locally rotates 180�, for
example, (CI¼ p,CII¼ 0)-(CI¼ 0,CII¼p), resulting in a sign
change of the linear ME tensor. These first-principles results are
true for all hexa manganites and ferrites in the A2 phase that we
have considered (additional results on ErMnO3 and ErFeO3 are
given in Supplementary Fig. S1) and, as we prove below, is a
general property of the A2 phase.

We pause now to stress the point that real switching will occur
via a rotation to a neighbouring trimer domain17, for example,
aþ-b� or g� . These first-principles results, however, contain
all of the unique ME physics, that is, if the polarization is
reversed, either the bulk magnetization will reverse or the AFM
order will change in such a way that the bulk ME tensor
changes sign.

Route to elucidate cross-coupling of bulk order. Our approach
to elucidate the bulk, cross-coupling between ferroelectricity and
magnetism is to introduce a P63/mmc PE reference structure that
has the same AFM configuration as the P63cm FE ground state.
The minimal model required to describe the spin structure28 is
the following effective spin Hamiltonian

H ¼
X
ij

JijSi � Sj þ
X
ij

Dij � Si�Sj þ
X
i

Si�t̂i � Si ð3Þ

where Jij is the symmetric exchange interactions, Dij is the
Dzyaloshinskii–Moriya (DM) antisymmetric exchange vectors
and t̂i is the single-ion anisotropy (SIA) tensor. Using this model
as a guide, we then calculate from first principles how the
material-specific parameters of this model change on going from
the PE reference structure to the FE ground state as a function of
the trimer distortion. This will also allow us to explain why
manganites and ferrites have qualitatively different magnetic
order. In addition, we will introduce a simple phenomenological
model that captures the essential physics, thereby explaining our
first-principles results and providing an intuitive rational for the
spin model.

The magnetic ground state. In addition to the four principle
magnetic configurations, we also considered the four intermediate
non-collinear magnetic structures (Fig. 2). The results of our total
energy calculations for LuFeO3 and LuMnO3 are presented in
Table 1. In agreement with nonlinear optical measurements29, we
find that LuMnO3 stabilizes in the B1 configuration. This state
displays weak antiferromagnetism (wAFM), that is, there is a
small canting of the spins out of the x–y plane that leads to a net
moment in each layer, but consecutive layers cant in opposite
directions, resulting in a net Mz¼ 0. Note that the B2 spin
configuration, for which the net magnetic moment in each layer is
zero by symmetry, is also close in energy, whereas the A2

configuration is clearly higher in energy (we point out, however,
that A2 has been stabilized experimentally with the application of
a large magnetic field30).

In contrast, we find that LuFeO3 stabilizes in the A2 spin
configuration. Here the spins also cant out of the x–y plane, but
unlike B1 the net moments in consecutive layers add. This leads to
a net Mz¼ 0.02 mB/Fe along the z axis, that is, LuFeO3 displays
weak ferromagnetism (wFM)26,27. It should be noted that the A1

(Mz¼ 0 by symmetry) and A0 (finite Mz allowed) configurations
lie energetically very close to ground state (we point out that these

S2 ˆ

ˆ

ˆ

B ′ B2B1

S1

I2

A2

I1

A1 A′

a b c

d e f

g h i

x̂

y

x

y

(0,0) (�/2,�/2)

(–�/2,�/2) (�,0)

(�1,�2)
�2

Ψ1

Figure 2 | Non-collinear spin configurations. Possible 120� spin ordering

patterns defined by angles CI�C1 and CII�C2 (in F¼0 structural

domain). The spin directions are indicated by the blue and red arrows for

the magnetic ions in layer I (light grey, small balls) and II (dark grey,

small balls), respectively. The centre (large) ball indicates the position of

the ~2c axis. The principle configurations, those compatible with crystal

symmetry, are denoted A1, A2, B1 and B2. Only A2 and those intermediate

configurations that connect A2 with A1 and B2, denoted as A0 and I2,

respectively, allow wFM.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3998 ARTICLE

NATURE COMMUNICATIONS | 5:2998 | DOI: 10.1038/ncomms3998 | www.nature.com/naturecommunications 3

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


results are robust with respect to the unknown parameter, U, see
Supplementary Table S1).

Electronic structure. In the PE structure, the crystal field at the
transition metal (TM) site has a D3h trigonal point symmetry,
which splits the atomic 3d levels into three sets of states as shown
in the insets of Fig. 4. In the order of increasing energy, these are:
e0 doublet composed of dxz and dyz states, e00 doublet composed of
dxy and dx2 � y2 states and a01 singlet that corresponds to d3z2 state.
It is convenient to adopt this notation in the lower symmetry FE
phase, even though in this case the crystal field has lower sym-
metry and the doublets split into singlets. The density-of-states
plots calculated for LuFeO3 and LuMnO3 in the FE structure are
shown in Fig. 4. LuFeO3 is a charge-transfer insulator with the
conduction band formed by minority Fe 3d states and the valence
band composed of oxygen (O) 2p states, below which are the
filled majority Fe 3d bands. In LuMnO3, the majority 3d bands

are partially filled with occupied e0 and e00. Owing to smaller
nuclear charge of Mn, these bands lie at higher energies as
compared with LuFeO3 and they overlap with O 2p states
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Figure 3 | First-principles results on switching trimer distortion 180�. Results are shown for LuFeO3 (left) and LuMnO3 (right). (a,e) Energy as a function
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(no other distortions present), (b,f) polarization P and c-h, magnetization M, as a function of

a fixed magnitude of QK3
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PpQK3
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, showing that QK3
mediates a bulk linear ME coupling. The fact that P¼0 when QF

K3
¼0, indicates that a proper FE mechanism

is not likely.

Table 1 | Non-collinear magnetic energies.

System Energy (meV)

A1 A0 A2 B1 B0 B2 I1 I2

LuFeO3 0.03 0.02 0.00 0.24 0.24 0.23 0.14 0.15
LuMnO3 0.23 0.25 0.25 0.00 0.03 0.04 0.14 0.14

Calculations for the parameters U¼4.5 eV and JH¼0.95 eV.
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bulk coupling of polarization and magnetism in ferrites. Insets: crystal
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forming the valence band. At the conduction band minimum we
have the empty majority a01 states, whereas minority 3d levels lie
at somehow higher energies. The importance of these differences
will be made clear when discussing the magnetic interactions.

Symmetric exchange. There are two important symmetric
exchange interactions. The first is a strong, AFM superexchange
interaction between in-plane, nn spins, Jnn. It is much larger in
magnitude for LuFeO3 than for LuMnO3 (see Supplementary
Table S2), suggesting a substantially larger magnetic ordering
temperature for ferrites (we calculate, within mean field theory,
YCW¼ 1,525K and YCW¼ 274K for the Currie–Weiss tem-
perature in the FE phase of LuFeO3 and LuMnO3, respectively
(see Supplementary Table S2)).

The second is a weak, super–superexchange interaction, Jc,
which couples consecutive spin planes via a TM-O-Lu-O-TM
exchange pathway, where TM¼ Fe or Mn (Supplementary
Fig. S2a). In the PE structure, a spin in one layer is connected
to three spins in a consecutive layer. Each of these degenerate
spin–spin interactions has two equivalent exchange pathways. We
find that the interlayer exchange is AFM for LuFeO3 but FM for
LuMnO3. Although the strength of this interaction is relatively
weak, this sign difference turns out to be the key.

In the PE structure, symmetry implies that the relative
orientation of the spins in consecutive spin planes is arbitrary.
The trimer distortion, however, splits the three degenerate
interactions into (1) a single J11c interaction, mediated by two
equivalent TM-O-Lu1-O-TM exchange pathways, and (2) two
J12c interactions, where each interaction is mediated by a
TM-O-Lu1-O-TM and a TM-O-Lu2-O-TM exchange pathway
(Supplementary Fig. S2b). Remarkably, this introduces an extra
contribution to the energy

ESE
inter ¼ 2DJc cosðCI �CIIÞ ð4Þ

where DJc¼ J11c � J12c , the sign of which is key in determining the
spin configuration type: A-type (CII¼CIþ p) for DJc40 or
B-type (CII¼CI) for DJco0.

A simple structural analysis shows that the super–
superexchange mediated through the Lu2 ion is always weaker
than that mediated through the Lu1 ion, and indeed our
calculations show that the magnitude of J11c is always larger than
J12c (Supplementary Table S2). We therefore see that the choice
between A-type and B-type in the FE structure is in fact
determined by the sign of Jc in the PE structure. This is
important. In ferrites, the AFM nature of the interlayer exchange
is uniquely determined by the orbital occupancy, it is always
AFM, and therefore ferrites will always prefer A-type magnetic
configurations and the wFM ground state (although the interlayer
exchange in LuMnO3 is FM, which explains why it prefers B-type
magnetic configurations, it is not universally so; a discussion is
given in the Supplementary Note 1).

DM and SIA. Symmetric exchange determines the magnetic
configuration type. It is the DM interactions and SIA that drives
spin canting (our calculations reveal that a dominant Dij exists
only between nn spins within the triangular planes). Let us first
consider the PE structure. Here the DM vector has only a ẑ
component, which favours spin ordering within the x–y plane,
whereas the SIA tensor is diagonal with only one independent
parameter, tzz. In the FE structure, however, the trimer distortion
induces both a transverse component of the DM vector, Dxy

ij ,
parallel to the x–y plane and an off-diagonal component to the
SIA tensor, txz. It turns out that these trimer-induced interactions
are key and all others can be safely ignored. They lead to a further
energy lowering if the spins in each layer, a, cant out of their

respective x–y plane. By minimizing equation (3), we find that the
canting angle in each layer is

Mz
a / tanð2yaÞ �

ffiffiffi
3

p
�Dxy þ txz

� �
9Jnn

cosðCaÞ; ð5Þ

for the F¼ 0 domain, which vanishes in the PE phase (as
�DxyptxzpQK3 ¼ 0, where �Dxy is the strength of the DM
interaction).

Although this result is easily generalizable to any F-domain (see
Methods section), next we consider a simple phenomenological
model that provides a more intuitive, yet rigorous, generalization
and interpretation of our spin-lattice model results. We will clearly
show that the trimer-induced exchange interactions are responsible
for the bulk polarization–magnetization coupling.

The phenomenological model. The crystallographic structure
suggests that insight may be gained by considering magnetic and
structural order parameters (OPs) local to each of the two
bipyramid layers. For the magnetic OPs, such consideration is
natural. Within each layer (a¼ I, II) the local magnetic structure
is a combination of 120� AFM order in the x–y plane, La¼
Lxy cosCax̂þ sinCaŷð Þ, where the angles CI and CII describe the
in-plane spin directions of the two reference spins that we pre-
viously introduced (and shown again in Fig. 5a for clarity of the
present discussion), and a magnetization along the z axis, Ma¼
Mz

aẑ. To describe the symmetry properties of the former, we
introduce a complex OP, La¼ LxyeiCa . In addition, the layer
magnetizations can be represented alternatively by the z com-
ponents of the total magnetization, Mz� Mz

I þMz
II

� �
/2, and

staggered magnetization, Lz� Mz
I þMz

II

� �
/2, per spin.

Following a similar line of reasoning, we describe the total
trimer distortion, QF

K3
, as the sum of two local ones, Qa¼

QK3 cosFax̂þ sinFaŷð Þ (Fig. 5b). Here we have generalized the
suggestion by Artyukhin et al.17 and defined Fa as the angle that
describes the in-plane displacement of the apical oxygen that
lies directly above the reference spin, La. The complex OP
can then be written as Qa ¼ QK3e

iFa . As the relationship
F1¼ p�F2�F is fixed by the symmetry of the trimer
distortion, specific Fa are associated with the different trimer
domains shown in Fig. 1a. Note that a single OP, for example, QI,
fully describes the trimer distortion. The introduction of the
second trimer OP, however, allows us to represent the structural
distortion in an analogous way as the magnetic ordering. This
leads to a particularly transparent form of coupling between
structure and magnetism.

The transformation properties of the OPs as well as their
complex conjugates with respect to symmetry operations of the
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P63/mmc10 reference structure are shown in the Supplementary
Table S3. In addition, the transformation properties of a specific
combination of these OPs, XZ¼QIL�I þ ZQIIL�II, are shown where
Z¼±. Note that XZ are the only bilinear combinations of the
AFM and trimer OPs that are invariant under translation.

From this symmetry analysis, it is clear that the following two
free-energy invariants are allowed:

FMz
tri / < Xþ½ 	Mz ¼ ðQI � LI þQII � LIIÞMz ð6Þ

FLz
tri / < X�½ 	Lz ¼ ðQI � LI �QII � LIIÞLz ð7Þ

with < denoting the real part.
Notice that equation (6) not only contains the spin model

result, equation (5), but also generalizes it to any F domain. This
connection can be made more apparent by defining the vector deffa
by Qa¼ ẑ�deffa . Then invariants (6) and (7) can be written as

FMz
tri / deffI � ðLI�ẑÞþ deffII � ðLII�ẑÞ

� �
Mz ð8Þ

FLz
tri / deffI � ðLI�ẑÞ� deffII � ðLII�ẑÞÞLz

�
ð9Þ

whereas the layer magnetization is given by Mz
a / deffa � ðLa�ẑÞ,

where deffI � deff1 and deffII � deff2 . We can thus interpret deffa as
an effective DM vector for layer a. In the Methods section, we
generalize the spin–lattice model and arrive at this exact result.
This microscopic analysis makes it clear that deffa originates from
the transverse component of the DM interaction and off-diagonal
elements of the SIA tensor, which are both induced by the
trimerization distortion. We verified this point by computing the
individual contributions of the DM interaction and the SIA,
following the method described in ref. 31.

Writing in terms of local OPs has several conceptual
advantages. First, it is immediately clear that in the FE phase
canting occurs only when there is a non-zero projection of an x–y
spin along the direction of the local trimer distortion, that is,
Mz

apQa � La. This is why there is no canting for the A1 and B2
spin configurations, as the local spins are perpendicular to the
local trimer distortions. In the A2 and B1 configurations, however,
the local x–y spins and trimer distortions are parallel (or
antiparallel), where the only difference being that in A2 this
projection has the same sign in adjacent layers, whereas in B1 the
projection changes sign, resulting in a non-zero FMz

tri and FLz
tri ,

respectively. As an intermediate spin state can be thought of as a
linear combination of principle spin structures, any one with a
non-zero A2 (B1) component will exhibit wFM (wAFM).

Implications of the trilinear coupling. The trilinear coupling of
equation (6) is quite remarkable. It implies that the trimer dis-
tortion not only induces a polarization but also mediates a non-
trivial, bulk P–M coupling for any system with A2 spin ordering.
To make this clear, we consider a thought experiment in which an
electric field, E, applied along the z axis can switch P to any one of
the three trimer domains with �P. Let the system be initially in
the aþ domain with polarization þP and Qa � La¼ � 1
(Fig. 6b). Next, there are two possible scenarios: {aþ-a� } and
{aþ-b� }. In a proper FE, e.g., PbTiO3, the structure of the þP
domain is related to the �P domain by a reversal in the direction
of the polar distortions with respect to the PE structure, for
example, the Ti4þ ion moving from up to down. The analogous
situation in the hexa systems corresponds to a structural change
from a one-up/two-down buckling and tilting ‘in’ of the R-planes
and bypyramids, respectively, to a two-up/one-down and tilting
‘out’, while remaining in the same distinct domain, for example,
aþ-a� . This corresponds to switching P via rotating F by p
(Fig. 6c). In this a� domain, because of equation (6), either La
has to rotate 180� (Qa � La¼ � 1) or the small canting angle has

to change sign (Qa � La¼ þ 1). It is not unreasonable to expect
the latter to be more favourable, leading to a reversal of M. The
improper nature of ferroelectricity, however, offers an even more
interesting possibility in that there exists three distinct and
accessible domains (a, b and g). As an example, let P switch via
rotating F by p/3 and consider the configuration immediately
after (Fig. 6d). In this b� domain � 1oQa � Lao0, implying the
system is not in equilibrium, and therefore La must rotate by
either |p/3| (Fig. 6e) or |2p/3| (Fig. 6f). In the former case
Qa � La¼ � 1 as in the initial aþ configuration and, therefore, M
is not reversed, whereas in the latter Qa � La¼ þ 1 and M
switches 180�.

Having elucidated how the non-polar trimer structural
distortion mediates an intrinsic and bulk trilinear coupling of

�− Domain Φ = �/3

Φ1=�−Φ2=Φ
(Fixed by symmetry)

�+ Domain Φ = 0

�− Domain Φ = � �− Domain Φ = �/3

a b

c d

e f

Φ1

Φ2

L switches by |�/3|

Q·L ~ +1
(+Pz, +Mz)

–1 < Q·L < 0

Q·L ~ –1
(+Pz, –Mz)

Q·L ~ +1
(+Pz, +Mz)

Q·L ~ –1
(–Pz, –Mz)

ˆ

ˆ
ˆ

ˆ
x

x
y

y

L switches by |2�/3|

Figure 6 | Bulk cross-coupling of polarization and magnetization in A2

phase. Thought experiment to elucidate the predicted cross-coupling of

ferroelectricity and magnetism, mediated by the trimer distortion, within A2.

(a) Definition of local trimer angles FI and FII (same as in Fig. 5b,

reproduced here for clarity); (b) Initial equilibrium aþ and L domains.

Immediately after switching to the (c) a� domain, L remains in equilibrium,

therefore �Mz-þMz; (d) b� domain, L is not in equilibrium and

must rotate by either (e) 60�, therefore �Mz-�Mz, or (f) 120�, therefore
�Mz-þMz.
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the polarization, magnetization and AFM order, it is natural to
ask what type of ME domains would one expect to see. Next, we
discuss two probable domain patterns (Fig. 7), but by no means is
this meant to be exhaustive. In each case, we assume that the only
AFM domain walls present are those clamped to the trimer
domain walls17.

Predicted ME domains. The first domain configuration (Fig. 7a)
is such that at trimer domain walls differing by DF¼p/3, for
example, at the aþ /b� domain wall, the AFM spins rotate
DCI,II¼ |p/3|. In this case, the direction of the magnetization
remains the same across the domain wall, that is, although P
switches, M is not reversed, similar to that shown in Fig. 3d,h.
Still, there exist a bulk linear ME effect

azz / cosð3FÞðLI �QI þ LII �QIIÞ ð10Þ
(see Methods section for derivation). This leads to a presence of a
remarkable linear ME vortex structure, as the projections, La � Qa,
are equal in all domains, and therefore azz is of opposite sign in
neighbouring trimer domains.

The second domain configuration (Fig. 7b) is such that at
trimer domain walls differing by DF¼ p/3, the AFM spins
instead rotate by DCI,II¼ |2p/3|. In this case, the magnetization
direction reverses with the polarization similar to that shown in
Fig. 3c,g. Note that this domain configuration at first appears less
likely to be realized than that previously discussed due to a
seemingly higher-energy AFM switching pathway. It does,
however, provide an avenue for the system to minimize the
magnetostatic energy without having to introduce free magnetic
domain walls. Indeed, in Fig. 7a there exists a homogeneous
magnetization across the entire trimer vortex. In zero field, this
has to be unstable towards the formation of ferromagnetic

domains. These domain walls can occur within the bulk of a
trimer domain, that is, a free AFM domain wall, but there is an
energy cost to form this kind of domain wall. An alternative path
to minimize the total energy of the system is for the AFM spins to
rotate by DCI,II¼ |2p/3| rather than by DCI,II¼ |p/3|, thereby
alleviating the need to introduce free domain walls. The domain
configuration displayed in Fig. 7b is therefore expected whenever
the energy to introduce a free AFM domain wall in the bulk of a
trimer domain is greater than the energy to rotate the AFM spins
by DCI,II¼ |2p/3| rather than by DCI,II¼ |p/3|. In Fig. 7c, we
sketch the expected response of these domains to electric-field
polling. In this process, the positive electric field, E, for example,
chooses the (þP,þM) state, and therefore reversing of the
direction of electric field not only switches the direction of
polarization but also reverses the direction of magnetization.

Discussion
In the hexa manganites, an A2 phase can appear under the
application of an external magnetic field30. As in this case there is
a uniform magnetization across the entire trimer vortex, the
expected domain configuration is that depicted in Fig. 7a, that is,
a linear ME vortex should appear. We have experimentally
imaged, using a new technique called ME force microscopy, this
predicted ME vortex structure in ErMnO3 under magnetic field
(Supplementary Fig. S3). Here, as the magnetic field is swept
from zero to a large (for example) positive value, an ME vortex
structure appears as ErMnO3 enters the A2 state. Our calculated
(from first principles) value of the lattice contribution32 to
the longitudinal linear ME response for ErMnO3 is azz¼
1.04 psm� 1, which is of the same order of magnitude as the
transverse component of Cr2O3 (see Supplementary Fig. S4 and
Methods section). The measured value, however, is an order of
magnitude greater. Understanding this difference between the
measured and the calculated value is an interesting problem that
should be further pursued. The ME vortex structure, however, is
clearly measurable.

In the hexa RFeO3 materials, the physics that we have
discussed can be realized in the ground state. Indeed, our work
indicates that ferroelectricity in these materials is of improper
structural type where the trimer distortion induces P (see
Supplementary Table S5 and Supplementary Fig. S5), and
therefore a similar topological domain structure exists as in the
manganites. The difference in electronic structure between
manganites and ferrites, however, requires Fe spins of any hexa
ferrite to order in the A2 spin configuration in ground state.
Therefore, both scenarios displayed in Fig. 7 are possible.

In addition, the much stronger exchange interactions leads to
the possibility of spin ordering above room temperature, as
recently suggested by the experiments of ref. 22. Although
unusual for a frustrated magnet, it had been inferred from
neutron diffraction22 that LuFeO3 orders above room
temperature in an AFM state with M¼ 0 and, at a lower
temperature, undergoes a re-orientation transition to the A0 phase
inducing a Ma0. As shown in Table 1, the A1 (M¼ 0 by
symmetry) and A0 (finite M allowed) states lie energetically very
close to ground state in LuFeO3. Although our calculations are
consistent with such a picture, the magnetic ordering in this
system at finite temperature needs to be further pursed, but it is
clear that the magnetic ground state is A2.

In this study, we have discussed an intriguing consequence of
improper ferroelectricity in the hexa manganite-like systems. We
have shown that a non-polar trimer structural distortion not only
induces an electrical polarization but also induces bulk wFM,
which is a universal feature of A2-type hexa systems. This is due
to the fact that the trimer distortion mediates an intrinsic bulk
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trilinear coupling of the polarization, magnetization and AFM
order, additionally manifesting in a non-trivial bulk ME effect
and domain structure.

Methods
First-principles calculations. The first-principles calculations were performed
using the density functional theoryþU method33 with the Perdew-Burke-
Ernzerhof (PBE) form of exchange correlation functional34. We considered Lu 4f
states in the core, and for TM 3d states we chose U¼ 4.5 eV and JH¼ 0.95 eV.
Structural relaxations, frozen phonon and electric polarization calculations were
performed without the spin–orbit coupling using the projector augmented plane-
wave basis-based method as implemented in the VASP35,36. We used a 4� 4� 2 k-
point mesh and a kinetic energy cut-off value of 500 eV. The Hellman–Feynman
forces were converged to 0.001 eVÅ� 1. The electronic and magnetic properties
were studied in the presence of spin–orbit coupling. We additionally cross-
validated the electronic and magnetic properties using the full-potential linear
augmented plane wave method as implemented in WIEN2K code37. All our
calculations were done at 0 K and without applying magnetic or electric filed.

The induced DM interaction of a single layer of bipyramids. The in-plane, nn
DM interactions are mediated by TM-Oeq-TM exchange pathways (here Oeq

denotes an equatorial oxygen atom). In the PE phase, all nn DM vectors are
equivalent and only their z components Dz

ij are non-zero. Note that the sz mirror
plane requires DM vectors for adjacent TM–TM bonds to be equal, but opposite in
sign (see Fig. 8a). Physically, this results from a difference in the handedness of the
TM-Oeq-TM hopping pathways associated with these DM vectors. The z compo-
nent of the DM vector acts to confine the spins within the x–y plane and does not
contribute to canting. We ignored them in the following discussion. In the FE
phase, we have two non-equivalent equatorial oxygens: O1

eq and O2
eq. Consequently,

the nn DM vectors split into two non-equivalent types: one mediated by a TM-O1
eq-

TM path and the other mediated by a TM-O2
eq-TM path, both of which acquire a

non-zero, transverse x–y component that is perpendicular to the corresponding
TM–TM bond. Note that a DM vector mediated by a TM-O2

eq-TM pathway
acquires a component parallel to the TM–TM bond (due to different orientations
of apical oxygen displacements for the two TM ions). It is expected and confirmed
by our first-principles calculations that this component is small and has a minor
effect on the TM–TM hopping. In the following, we therefore neglect this parallel
component. We point out that inclusion of the parallel component does not change
our main conclusions. The transverse components of the DM vectors between TM
site 1 and its nn for different trimer domains are shown in Table 2.

Next, we derive the relationship between the local structural distortions and the
induced Dxy

ij for a single layer a¼ I. The DM interaction energy (per spin) is given
by

EDM
I ¼ 2

3
Dxy

13 þDxy
130 þDxy

1300
� �

� ðS1�S3Þþ
2
3

Dxy
35 þDxy

3500 þDxy
305

� �
� ðS3�S5Þ

þ 2
3

Dxy
51 þDxy

501 þDxy
5001

� �
� ðS5�S1Þ

¼ 2
3
�D13 � ðS1�S3Þþ

2
3
�D35 � ðS3�S5Þþ

2
3
�D51 � ðS5�S1Þ

ð11Þ
where by considering Table 2 and/or Fig. 8a we have

�D13 � Dxy
13 þDxy

130 þDxy
1300 ¼ �Dxy cosðF� 2p=3Þ; sinðF� 2p=3Þð Þ ð12Þ

�D35 � Dxy
35 þDxy

3500 þDxy
305 ¼ �Dxy cosðFÞ; sinðFÞð Þ ð13Þ

�D51 � Dxy
51 þDxy

501 þDxy
5001 ¼ �Dxy cosðFþ 2p=3Þ; sinðFþ 2p=3Þð Þ ð14Þ

with �Dxy ¼ Dxy þD0
xy . Note that the �Dij vectors have equal magnitudes and form a

120� angle with each other. We therefore see a much simpler picture emerging; the
relationship between the local structural distortions and the induced DM vectors
for an entire layer of bipyramids can be derived by considering a single triangle of
spins (S1, S3 and S5) interacting via �Dij (Fig. 9).

As all spins cant in the same direction, we can write Si¼ LiþMI where Li is the
in-plane component of spin Si as previously defined (Fig. 5) and MI is the layer
magnetization parallel to the z axis. Substituting this into equation (11), we obtain

EDM
I ¼ 2

3
ð�D13 þ �D15Þ � ðL1�MIÞþ

2
3
ð�D35 þ �D31Þ � ðL3�MIÞ

þ 2
3
ð�D51 þ �D53Þ � ðL5�MIÞ ¼

1
3

X
i¼1;3;5

di � Li�MI½ 	
ð15Þ

where the di are the effective (transverse) DM interactions, for example,
d1�2 �D13 þ �D15ð Þ. Using A � (B�C)¼B � (C�A) and MI¼Mz

I ẑ, the DM energy
can be rewritten as

EDM
I ¼ 1

3
Mz

I

X
i¼1;3;5

Li � ẑ�di½ 	 ¼ 2
ffiffiffi
3

p

3
�DxyM

z
I

X
i¼1;3;5

Li � Q̂i ð16Þ

where the unit vector Q̂i is defined such that

2
ffiffiffi
3

p
�DxyQ̂i ¼ ẑ�di ð17Þ

If we assume for the moment that Q̂i is physically distinct from the DM
interaction, we can interpret this relation as saying a Q̂i induces an effective DM
interaction, di. The question remains whether this is simply a convenient definition
to make the analysis look more compact or whether Q̂i is something new and
distinct.

To this end, note that it is straightforward to show that a DM vector can be
written as Dxy

ij / r̂ij�uoeq (ref. 10) where uoeq is the displacement of the equatorial
oxygen away from the plane (Fig. 9a) that arises due to the tilting of the bipyramid
and r̂ij is the unit vector pointing from site i towards j (Fig. 9b). Note that in the PE
phase the equatorial oxygen is in the x–y plane and therefore uoeq¼ 0. In the FE
phase, however, uoeqp±ẑ (Fig. 9c) and changes sign depending on whether it is in
the aþ or a� domains. The effective DM vector in the a± trimer domains can
therefore be written as

d1 / 
 ẑ� r̂13 þ r̂15ð Þ ð18Þ
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Figure 8 | DM interactions and SIA. (a) The in-plane nn DM vectors for a

single triangular layer of TM ions; (b) SIA tensors for the PE phase and for

two opposite directions of the trimer distortion in the FE phase. All six DM

vectors acting on TM site 1 and SIA tensor for this site are shown. DM

vectors and SIA tensors for other bonds and sites can be generated by

applying the appropriate symmetry operations of crystal space group. In the

PE phase, only the z component of the nn DM vectors are non-zero, as

since triangular layers are mirror planes. The cross (dot) mark represents

direction of a DM vector along positive (negative) ẑ axis. In the FE structure,

the trimer distortion lowers the symmetry, leading to two non-equivalent

types of in-plane nn DM vectors: one mediated by TM-O1
p-TM path and the

other mediated by TM-O2
p-TM path.
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(other di in the a± domains can be found by cyclic permutations: 1-3, 3-5 and
5-1), which, considering equation (17), implies

Q̂1 / 
 ẑ�d1 ð19Þ
and therefore r̂13 þ r̂15 ¼ Q̂1 (if we had considered a different domain, for example,
bþ , the Q̂i ’s rotate appropriately). It is interesting that Q̂i is the direction of the in-
plane displacement of the apical oxygen that lies directly above spin Si. This is
precisely the structural distortion we had chosen to define the local trimer OP (see
Fig. 5) and first introduced by Mostovoy and coworkers17. Furthermore, note that

L1 � Q̂1 ¼ L3 � Q̂3 ¼ L5 � Q̂5 � LI � Q̂I ¼ Lxy cosðF�C1Þ ð20Þ
Thus, we obtain

EDM
I ¼ 2

ffiffiffi
3

p
�DxyM

z
I L1 � Q̂I ¼ Mz

I LI � ẑ�d1 ð21Þ
which leads to

Mz
I / LI � ẑ�d1 ¼ 2

ffiffiffi
3

p
�DxyLI � Q̂I ð22Þ

It is becoming clear that the microscopic origin of the layer magnetization is the
trimer-induced transverse components of the DM interactions, which cant spins
away from the x–y plane. As we will see in the next section, however, there is also
another contribution to the canting that originates from the SIA.

The SIA of a single layer of bipyramids. In the PE phase, the crystal field has the
same orientation for all TM ions; thus, the SIA tensor, t̂i , does not depend on
magnetic site index i. A global coordinate system (see Fig. 8a) can be thus chosen in
which t̂ is diagonal with elements txx, tyy and tzz (see Fig. 8b). A uniaxial site
symmetry and the zero-trace condition lead to txx¼ tyy¼ � tzz/2.

On the other hand, in the FE phase the crystal field may have different
orientations for different TM ions and therefore t̂i does depend on i. Even though
all TM ions remain equivalent and thus SIA tensors for different magnetic sites are
related by symmetry, in any global coordinate system SIA tensor for some magnetic
ions have off-diagonal components. In addition, the uniaxial site symmetry is lost
in the FE phase leading to the in-plane anisotropy (txxatyy). In the coordinate
system as in Fig. 8a, the SIA tensor for site 1 in the F¼ 0 trimer domain is given by

t̂ ¼
txx 0 txz
0 tyy 0
txz 0 tzz

2
4

3
5 ð23Þ

For a general trimer domain, the SIA tensor for site 1 is given by RF t̂R� 1
F where RF

is a rotation matrix

RF ¼
cosF -sinF 0
sinF cosF 0
0 0 1

2
4

3
5 ð24Þ

The effect of trimer distortion on the components of the SIA tensor can be
understood if we assume that the crystal field for a given TM ion is determined
solely by its oxygen bypyramid. In this case, the components of t̂ in equation (23)
can be expressed in terms of the tilting angle y and the value of tzz in the PE phase
(hereafter denoted by t0zz). For site 1, we have:

txx ¼ � t0zz=2 ð25Þ

tyy ¼ � cos2ðyÞt0zz=2þ sin2ðyÞt0zz ð26Þ

tzz ¼ cos2ðyÞt0zz � sin2ðyÞt0zz=2 ð27Þ

txz ¼ � 3 sinð2yÞt0zz=4 ð28Þ
First-principles calculations show that the in-plane anisotropy is very small

(see Supplementary Table S5). Indeed, as seen from equations (25) and (26), this

Table 2 | Trimer distortion-induced DM vectors.
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DM, Dzyaloshinskii–Moriya.
Transverse components of DM vectors between TM site 1 (see Fig. 8a) and its nearest
neighbours for different trimer domains.
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difference is proportional to sin2(y), which is a very small quantity. On the other
hand, the off-diagonal component, txz is proportional to sin(2y), and is
correspondingly substantially larger and plays important role in the canting.

Let us consider the SIA contribution to the canting energy (per spin) for the
layer a¼ I

ESI A
I ¼ 1

3

X
i¼1;3;5

Si � t̂i�Si ¼
2
3
txzMz

I

X
i¼1;3;5

Li � Q̂i ¼ 2txzMz
I LI � Q̂I ð29Þ

where we kept only the terms proportional toMz
I . The above equation has a similar

form as equation (16). Indeed, we can define a DM-like vector dSIAi as
2txzQ̂i ¼ ẑ�dSIAi . We then get

ESIA
I ¼ 1

3

X
i¼1;3;5

dSIAi � Li�Mz
I

� �
ð30Þ

Energy and magnetization of a single layer of bipyramids. Combining
equations (16) and (30), we obtain

Ecanting
I ¼ EDM

I þ ESIA
I ¼ 1

3

X
i¼1;3;5

deffi � Li�MI½ 	 ð31Þ

where deffi ¼ di þ dSIAi is the total effective transverse DM vector with strength
deff ¼ 2ð

ffiffiffi
3

p
�Dxy þ txzÞ. Again, using A � (B�C)¼B � (C�A) and MI¼Mz

I ẑ,
Ecanting can be rewritten as

Ecanting
I ¼ 1

3
Mz

I

X
i¼1;3;5

Li � ẑ�deffi
� �

¼ deffMz
I LI � Q̂I

ð32Þ

so that the layer magnetization due to canting is given by

Mz
I �

ffiffiffi
3

p
�Dxy þ txz

� �
9Jnn

LI � Q̂I ð33Þ

where Jnn is the nn exchange interaction. We thus recovered the result from
Landau theory.

The stacking of two layers (the real structure). Let us consider now a real hexa
structure, which is composed of two layers a¼ I and a¼ II, each with a, in prin-
ciple different, layer magnetization, Mz

I and Mz
II, respectively. The canting energy is

Ecanting ¼ Ecanting
I þ Ecanting

II

� �
=2 ¼ deff Mz

I LI � Q̂I

� �
þMz

II LII � Q̂II

� �� �
=2 ð34Þ

This can be alternatively written as

Ecanting ¼deffMz LI � Q̂I þ LII � Q̂II

� �
=2

þ deffLz LI � Q̂I � LII � Q̂II

� �
=2

ð35Þ

where Mz� Mz
I þMz

II

� �
=2 and Lz� Mz

I �Mz
II

� �
/2 are the total and stagger magnetic

moment per spin, respectively. Although the specific sites we choose to define I and
II are arbitrary, it is convenient to associate I with site 1 and II with site 2. As
symmetry implies F1¼p�F2, where F1 (F2) is the local trimer angle at site 1 ( 2),
a single trimer angle, F�F1, can be defined. This single angle was used to define
the trimer domains in Fig. 1a.

Note that equation (35) is the exact result we derived from Landau theory
and explains our first-principles calculations displayed in Fig. 3; in the A2 state,
LI � Q̂I ¼ þ LII � Q̂II and, therefore, M

z
I ¼ Mz

II , leading to a net magnetization as
we previously showed from first principles. For completeness, note that in the B1
state, however, the projection has the opposite sign in adjacent layers,
LI � Q̂I ¼ � LII � Q̂II . The spins in each plane still cant but as the projection
changes sign in adjacent layers no net magnetization exists, Mz

I ¼ �Mz
II . We call

this wAFM.
The above results can be rewritten in terms of the trimer phase and the spin

angles

EA2
canting / MzQK3Lxy cos C1 �Fð Þ� cos C2 þFð Þ½ 	 ð36Þ

EB1
canting / LzQK3Lxy cos C1 �Fð Þþ cos C2 þFð Þ½ 	 ð37Þ

describing wFM for the A2 phase and wAFM for the B1 phase, respectively.

Phenomenological derivation of linear ME tensor. Here we derive the long-
itudinal component of linear ME susceptibility tensor. The FE phase in the A2

magnetic structure has P63c0m0 space group. The corresponding point group is
6m0m0 , which allows for ME effect with ME susceptibility tensor,

â ¼
a? 0 0
0 a? 0
0 0 ak

2
4

3
5 ð38Þ

To understand the origin of this ME coupling, we consider Landau expansion with
respect to the P63/mmc10 reference structure. The part of the free energy that

depends on Mz can be written as

FðMzÞ ¼
1
2
aMM2

z �
1
2
ctrQK3MzðQ̂I � LI þ Q̂II � LIIÞ ð39Þ

where we defined Q̂a ¼ Qa=QK3 . Minimizing with respect to Mz, we find an
equilibrium magnetization

Mz ¼
1
2
ctr
aM

QK3 Q̂I � LI þ Q̂II � LII
� �

¼ 1
2
a0MQK3 Q̂I � LI þ Q̂II � LII

� �
ð40Þ

where a0M ¼ ctr
aM
.

Assuming the in-plane spin components are rigid (this assumption is rigorous
in the A2 phase), the zz component of the ME susceptibility is

ak ¼
@Mz

@Ez

				
Ez¼0

¼ 1
2
ctr
aM

Q̂I � LI þ Q̂II � LII
� � @QK3

@Ez

				
Ez¼0

ð41Þ

To find (qQK3
)/(qEz)|Ez¼ 0, we consider the free energy as a function of Pz and QK3

F Pz ;QK3ð Þ ¼ 1
2
aPP

2
z þ

1
2
aQQ

2
K3

þ 1
4
bQQ

4
K3

� dPzQ
3
K3

cos 3Fþ 1
2
d0P2

zQ
2
K3

� EzPz ð42Þ

In the above equation, Mz was integrated out resulting in renormalization of the aQ
coefficient. Minimizing with respect to Pz, we obtain

Pz ¼
dQ3

K3
cos 3Fþ Ez

aP þ d0Q2
K3

ð43Þ

We assume that we are well below the trimerization transition and QK3 is large and
satisfies d0

aP
Q2

K3
441. Next, the above equation simplifies to

Pz � d
d0
QK3 cos 3Fþ 1

d0Q2
K3

Ez ¼ dpQK3 cos 3Fþ 1
d0Q2

K3

Ez ð44Þ

where dp¼ (d)/(d0). Minimization of equation (42) with respect to QK3 leads to

aQQK3 þ bQQ
3
K3

� 3dPzQ
2
K3

cos 3Fþ d0P2
zQK3 ¼ 0 ð45Þ

Substituting equation (44) into equation (45), we obtain

aQQK3 þ ~bQQ
3
K3

� d
d0
Ez cos 3FþO E2

z

� �
¼ 0 ð46Þ

where ~bQ ¼ bQ � 2d2=d0 , and we took into account that within any trimer domain
cos3F¼±1. Taking derivative with respect to Ez at Ez¼ 0, we obtain

aQ
@QK3

@Ez

				
Ez¼0

þ 3~bQQ
2
K3

Ez ¼ 0ð Þ @QK3

@Ez

				
Ez¼0

� d
d0
cos 3F ¼ 0 ð47Þ

From equation (46), we obtain Q2
K3

Ez ¼ 0ð Þ ¼ � aQ=~bQ , leading to

@QK3

@Ez

				
Ez¼0

¼ � 1
2aQ

d
d0
cos 3F ð48Þ

Therefore, the ME susceptibility becomes

ak ¼ � 1
4

ctrd
aMaQd0

Q̂I � LI þ Q̂II � LII
� �

cos 3F ð49Þ

Note that from equations (40) and (44), it follows that

ak /
@Mz

@QK3

� @Pz
@QK3

� @QMz�@QPz ð50Þ

Few comments are in order. First, a8 is non-zero only when Q̂I � LI þ Q̂II � LII
� �

is non-zero, which is exactly the condition for the existence of wFM that
requires that the magnetic configuration has a non-zero A2 component. Second,
if ðQ̂I � LI þ Q̂II � LIIÞ is fixed (that is, the projections Q̂a � La are equal in all
domains), then the sign of a8 switches as we go from prime (F¼p, ±p/3) to non-
prime (F¼ 0, ±2p/3) trimer domains. In other words, the domains with parallel
Mz and Pz have an opposite sign of a8 than domains with Mz and Pz antiparallel.

Calculation of linear ME tensor from first principles. To estimate the value of
azz from equation (49), we calculated numerical values of the parameters used in
this equation from first principles. We considered the high-symmetry P63/mmc
phase and freezed in the trimer distortion, which corresponds to the zone
boundary K3 mode, then calculated total energy, polarization (Pz) and magnetic
moment (Mz) per unit cell as a function of the amplitude of the trimer distortion.
The aQ parameter was evaluated by fitting the energy versus QK3 curve using
equation (42) with Pz¼ 0. The linear region of the Pz versus QK3 curve was fitted by
the function dpQK3 to evaluate the value of dp and a0M is the slope of the Mz(QK3 )
curve. The computed sizes of the parameters dp, aQ, bQ, and a0M and azz are given in
Supplementary Table S6.

We followed the method described in ref. 32 to calculate the lattice linear ME
response. We only calculated the longitudinal component azz of the linear ME
susceptibility tensor for one of the specific example, ErMnO3. The energy
contribution as a function of atomic displacement can be written as

Eqn qnf g;Eð Þ ¼ 1
2

X
n

Cnq
2
n �

X
in

E � pdnqn ð51Þ
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where E denotes an external electric field and qn, Cn and pdn represent amplitude,
eigenvalue of the force–constant matrix and dielectric polarity of the nth mode,
respectively. Minimizing equation (51) with respect to qn, we obtain

qn ¼ 1
Cn

pdn � E ð52Þ

Next, the electric field-induced atomic displacements are given by

us ¼
X
n

qnens ð53Þ

where ens represents eigen vector of the nth mode. Thus, we obtain the atomic
displacements in the presence of electric field by calculating dielectric polarities, as
well as eigen values and vectors of the force–constant matrix at the G point of the
Brillouin zone of ground state FE P63cm phase. Only infrared active modes
contribute to linear ME response. There are ten infrared active modes having A1
symmetry at the G that contribute to the change in electric dipole moment along
crystallographic z axis. Among them, one is acoustic and nine are optical. We
therefore considered these nine infrared active modes and calculated corresponding
dielectric polarities, eigen values and vectors (see Supplementary Fig. S4c).
Dielectric polarity is the measure of change in dipole moment with respect to mode
amplitude, that is, pdn ¼ @d

@q.

The computed linear ME response azz¼ (qMz)/(qE) (see Supplementary
Fig. S4d) for ErMnO3 is 1.04 psm� 1, which is of the same order of magnitude as
the transverse component for Cr2O3 and is in good agreement with the estimated
value from equation (49) (see Supplementary Table S6).
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