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Local models of fractional quantum Hall
states in lattices and physical implementation
Anne E.B. Nielsen1, Germán Sierra2 & J. Ignacio Cirac1

The fractional quantum Hall effect is one of the most striking phenomena in condensed

matter physics. It is described by a simple Laughlin wavefunction and has been thoroughly

studied both theoretically and experimentally. In lattice systems, however, much less is

currently known, and only few models and mechanisms leading to it have been identified.

Here we propose a new way of constructing lattice Hamiltonians with local interactions and

fractional quantum Hall like ground states. In particular, we obtain a spin 1/2 model with a

bosonic Laughlin-like ground state, displaying a variety of topological features. We also

demonstrate how such a model naturally emerges out of a Fermi–Hubbard-like model at

half filling, in which the kinetic energy part possesses bands with non-zero Chern number, and

we show how this model can be implemented in an optical lattice setup with present or

planned technologies.

DOI: 10.1038/ncomms3864

1Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Stra�e 1, 85748 Garching, Germany. 2 Instituto de Fı́sica Teórica UAM/CSIC, C/ Nicolás Cabrera
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T
he fractional quantum Hall (FQH) effect1 is one of the
most fundamental phenomena in strongly correlated
electronic systems and a paradigm of topological

behaviour. It has been thoroughly studied and characterized
in situations, where the solid surrounding the electrons has a
modest effect on their properties2,3. This was possible, in part,
thanks to the successful description in terms of the celebrated
Laughlin wavefunctions4. The appearance of FQH behaviour
when the lattice structure created by the solid becomes important
is however not so deeply studied or understood. Nevertheless, the
interest in lattice systems5–12 has been sparked by the possibility
of observing such behaviour with ultracold atoms in optical
lattices13–18, obtaining high-temperature fractional quantum Hall
states19–22, or even its applications in quantum information
processing23. The relativistic FQH effect in graphene has also
been in focus in recent years, and this effect has already been
observed experimentally24,25.

The standard route to the FQH effect in solids involves
fractionally filled Landau levels (created by a strong, external
magnetic field) and electron–electron interactions. This mechan-
ism can be adapted to lattice systems by replacing the fractionally
filled Landau level by a sufficiently flat and fractionally filled
Chern band and adding near-neighbour interactions19–22,26,27

(the so-called flat band models). A Chern band can be obtained
by a proper choice of complex hopping amplitudes5 and can be
made flat with longer range hoppings19,28,29.

Here we propose and investigate a different approach to obtain
FQH states in lattice systems. The approach builds on conformal
field theory (CFT) combined with deformations, and we use it to
derive a model for spin 1/2 particles on a square lattice with some
specific short-range interactions. As we will show, the ground
state of the system is extremely well described by the Kalmeyer–
Laughlin (KL) wavefunction30,31 (the spin version of the bosonic
Laughlin wavefunction with Landau level filling factor n¼ 1/2)
and exhibits the topological behaviour expected for FQH states.
In particular, we consider periodic boundary conditions and
analyse the ground state (quasi) degeneracy, its response to
twisting the boundary conditions, the many-body Chern number,
the local indistinguishability of the ground states and the
topological entanglement entropy. We also show that our
model can be derived from a Fermi–Hubbard-like model, and
we use this insight to propose an alternative mechanism for
obtaining FQH states in lattices. Finally, we demonstrate how our
model can be implemented with ultracold atoms in optical
lattices. The temperatures, tunnelling amplitudes and interactions
required to observe the exotic topological behaviour are the same
as those required to observe the Néel antiferromagnetic order in
the standard Fermi–Hubbard model, so that our predictions can
be tested with present or planned technology32–36.

Results
Two perspectives on the proposed model. The mechanism
leading to the FQH properties can be viewed from two perspec-
tives. The first perspective leans itself on the facts that states with
interesting (topological) properties can be constructed from
correlators of chiral conformal fields11,37,38 and that nonlocal
parent Hamiltonians can be derived for a quite broad class of
such states38. We demonstrate here for the particular case of
correlators from the SU(2)1 Wess–Zumino–Witten model that
the nonlocal parent Hamiltonian can, in fact, be deformed into a
local Hamiltonian without crossing a phase transition, and this
leads to the proposed model. The second perspective considers
spin 1/2 fermions moving on a lattice with (not necessarily flat)
Chern bands and strong local interactions. When the lattice filling
factor is 1/2 for both spin up and spin down, a Mott state is

formed, and the spin state inherits the topological character of the
Chern bands.

The first perspective suggests natural generalizations to other
models (for example, to Moore–Read37-like states), and in the
present paper, we propose the CFT construction combined with
the idea of deforming the nonlocal parent Hamiltonian as a
general strategy to construct lattice models with interesting
physical properties and only local interactions. A side advantage
of this approach is that the ground state of the original
Hamiltonian is known (analytically or expressed as a
correlator), and this is a great help to determine the physical
properties of the phase in question. The local model with a KL-
like ground state that we derive below demonstrates the
applicability of the approach. We choose, rather arbitrarily, to
define the model on a square lattice, but we note that the CFT
construction allows any lattice in two dimensions (2D) to be
considered. We find that the deformation of the Hamiltonian, in
fact, changes the ground state very little, and we can therefore use
the ground state of the original Hamiltonian as an analytical
approximation to the ground state of the local Hamiltonian. This
is a significant advantage compared with models in which only
the Hamiltonian is known analytically.

The second perspective arises because the considered model
can also be derived from a Fermi–Hubbard-like model in a
certain parameter regime, as we shall demonstrate. This provides
additional insight and, in particular, enables us to compare our
model with flat band models. The comparison shows that the
properties of the Fermi–Hubbard-like model differ from those of
the flat band models, which is interesting, because it opens new
directions in the search for FQH states in lattices. We also use the
second perspective for proposing a scheme to implement the
model in ultracold atoms in optical lattices. Realizing a FQH state
in optical lattices would give unique possibilities for detailed
experimental investigations of the state under particularly well-
controlled conditions and would, in addition, be a hallmark for
quantum simulation.

Model. Referring back to the first of the two perspectives men-
tioned above, our starting point is a chiral CFT correlator

cCFT
P0 ðs1; s2; :::; sNÞ / fs1

ðz1Þfs2
ðz2Þ:::fsN

ðzNÞ
D E

; ð1Þ

which we intend to interpret as a spin wavefunction of N spins
sitting at fixed positions in the 2D plane. In this construction, the
chiral conformal field fsn (zn) with spin jn represents the nth spin
at the position (Re(zn),Im(zn)) with internal spin state sn and spin
quantum number jn. sn can take 2jnþ 1 different values, and :::h i
denotes the vacuum expectation value.

In the following, we shall take fsn (zn) to be the chiral spin 1/2
field of the SU(2)1 Wess–Zumino–Witten model and choose sn/
2¼±1/2 to be the third component of the spin. In this case, (1)
evaluates to39

cCFT
P0 ðs1; s2; :::; sNÞ¼dsws

Y
nom

zn � zmð Þðsnsm þ 1Þ=2 ð2Þ

for N even, where ds¼ 1 for
P

n sn¼0 and ds¼ 0 otherwise
and ws¼

QN
n¼1ð� 1Þðn� 1Þðsn þ 1Þ=2 is the Marshall sign factor. The

correlator is zero for N odd, and we shall thus take N to be even
throughout. It has been found in a previous study11 that the state
(2) is closely related to the KL state and reduces exactly to it in the
case of a square lattice of infinite extent. In the following, we shall
refer to (2) as the CFT state in the plane.

A nonlocal, exact parent Hamiltonian of cCFT
PO has been derived

in previous studies11,38 by utilizing the CFT properties of
the state. The Hamiltonian consists of interactions between all
pairs and triples of spins in the system and is simpler than

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3864

2 NATURE COMMUNICATIONS | 4:2864 | DOI: 10.1038/ncomms3864 |www.nature.com/naturecommunications

& 2013 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


the six-body parent Hamiltonians of the exact KL state with
periodic boundary conditions derived earlier7,9. The long-range
interactions can be challenging to achieve experimentally. One
may argue however that deforming the Hamiltonian will not
dramatically change the physical properties of the ground state as
long as no phase transition is crossed. With this in mind and
specializing to an Lx� Ly square lattice with Lx even, we
investigate the local Hamiltonian that remains after removing
all long-range interactions and making all coupling strengths
position independent:

H¼J2
X

on;m4

2Sn � Sm þ J 02
X

� n;m�
2Sn � Sm

� J3
X

on;m;p4’

4Sn � Sm�Sp
� �

:
ð3Þ

Here Sn¼ðSxn; S
y
n; SznÞ is the spin operator of the nth spin. As

indicated in Fig. 1a, the first (second) two-body term is summed
over all pairs of nearest (next-nearest) neighbour spins, and the
three-body term, which breaks time reversal symmetry, is
summed over all triangles of neighbouring spins (for each
triangle only one term is included and n,m,p label the vertices of
the triangle in the counter clockwise direction as indicated with
the arrow). The Hamiltonian conserves the total spin Stot¼

P
n Sn

and is hence SU(2) invariant. In the following, we shall
parameterize the coupling strengths as J2¼ Jcos(f1)cos(f2),
J02¼ Jsin(f1)cos(f2) and J3¼ Jsin(f2).

To test how much the deformation of the Hamiltonian affects
the ground state, we show the overlap between the ground states
before and after the deformation as a function of f1 and f2 in
Fig. 2 and as a function of lattice size in Table 1. Even if the states
are close, the overlap is expected to decrease exponentially with
the total number of spins in the system due to the increase in
Hilbert space dimension. This effect can be counteracted by
considering the overlap per site, which is defined as the Nth root
of the overlap, and we also provide this measure in the table. The
figure reveals a region with overlaps close to unity and shows that,
for example, f1¼ 0.07� 2p and f2¼ 0.03� 2p (marked with the

white circle) is a reasonable choice of parameters. The overlaps
per site in Table 1 are around 0.999 for all the considered lattice
sizes and seem not to decay with lattice size. These results are a
strong indication that the deformation of the Hamiltonian does
not bring the system to a different phase. In fact, we may regard
equation (2) as an analytical approximation to the ground state,

J2

J ′2
J3
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y

z Er1
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Figure 1 | Model and implementation. (a) The considered spin lattice Hamiltonian (3) is a sum of local two- and three-body interactions. (b) For suitable

parameters, it is effectively equivalent to the Fermi–Hubbard-like Hamiltonian in equation (5), of which we here show the kinetic energy parts

Hkin,s, sA{m, k}. Specifically, each arrow/line/wiggle from position n to m on the lattice represents the contribution~tðeifâymsâns þ e� ifâ
y
nsâmsÞ to Hkin,s with

~t and f given in the figure. (c) N fermions trapped in the optical lattice potential we propose to use for implementing the Fermi–Hubbard-like Hamiltonian.

(d) We encode the spin-up and -down states in four internal hyperfine levels of the fermions. The blue/red states feel the blue/red potential in

(c) and are hence trapped at the blue/red lattice sites. In this setting, we can implement the nearest-neighbour hopping terms through Raman transitions

as indicated with the dashed blue and red lines in (d). For this we need the three standing wave laser fields shown in (b). Er1 and Er2 are directed

along the x- and y axis, respectively, and are illustrated with the red dashed lines. Eb3 is directed along the z axis and is illustrated with the blue round

shadow (explicit expressions for the fields are given in Table 3). The next-nearest-neighbour hopping terms are implemented as a combination of

hops induced by the fields listed above and tunnelling between nearest-neighbour sites in the blue/red lattice.
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Figure 2 | Phase diagram. Phase diagram of the Hamiltonian in

equation (3). The background colour gives the overlap between the CFT

state in equation (2) and the ground state of the Hamiltonian in

equation (3) for a 4� 5 lattice with open boundary conditions. C is the total

Chern number of the states c0
T0 and c0

T1 on a 4� 5 lattice with periodic

boundary conditions, where c0
T0 (c0

T1) is the lowest energy state in the

subspace spanned by all states with the same eigenvalues of Sztot and the

translation operators in the x- and y directions as cCFT
T0 (cCFT

T1 ). Within the

topological phase (C¼ 1), the two states are well separated from higher

energy states in the same subspaces and flow into each other under

flux insertion (like in Fig. 3b). The white square, triangle and circle mark

possible parameter choices considered in the text. We omit f2¼0 because

the additional symmetries present for this case may cause the lowest

energy states in the considered subspaces to be degenerate.
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which is extremely helpful to see the underlying physics and to
perform computations for systems that are too large for exact
diagonalization.

The model we have looked at so far is defined in the plane and
hence has open boundary conditions. To investigate the
topological properties of H and the CFT state, we shall also need
to consider periodic boundary conditions. On the torus, that is,
for periodic boundary conditions in both directions, there are two
CFT states, ~cCFT

0 and ~cCFT
1=2 , and we find analytically that these are

proportional to the KL states on the torus (see Methods for
explicit expressions). To ensure that the states are eigenstates of
the translation operators and of the operator that rotates the
lattice by 90� for Lx¼ Ly, we form the linear combinations

cCFT
T0 ¼~cCFT

0 ; cCFT
T1 ¼~cCFT

1=2 ; ðeven-by-oddÞ ð4Þ

cCFT
Tl ¼~cCFT

0 þ � 1þð� 1Þl
ffiffiffi
2

p� �
~cCFT
1=2 ; ðLx¼LyÞ

for even-by-odd lattices and for Lx¼ Ly, respectively, where
lA{0,1}. Table 2 shows that the large overlap between the ground
states of H and the CFT states also hold on the torus and provides
quantum numbers of the states.

Topological properties. FQH states are examples of topological
states, and in the following we demonstrate that H and the CFT
states exhibit topological properties that fit the properties of the
n¼ 1/2 Laughlin state in the continuum. Characteristic features of
topological states are a ground state degeneracy that depends on
the topology of the surface on which the states are defined40, the
lack of ability to distinguish the topologically degenerate states
through local measurements40,41 and a non-zero topological
entanglement entropy42,43. For FQH states in solids another
important quantity is the Hall conductivity. The Hall conductivity
is closely related to the Chern number44–46, which can also be
computed for spin systems. For Laughlin states the expected
behaviour is a many-body Chern number of the ground state
manifold on the torus that is unity and spectral flow of the
ground states into each other for certain choices of the lattice size
under continuous twisting of the boundary conditions22,47.

We compute the spectrum on the torus through exact
diagonalization of H (see, for example, the study by Läuchli48

for a description of the numerical approach), and the results are
shown in Fig. 3a. The exponential increase of the dimension of
the Hilbert space with the number of spins limits the system sizes
we can consider. It is seen that the two lowest energy states
approach each other as the system size is increased, and
extrapolating the energy difference between the third lowest
and the lowest energy state to the limit N-N points to the
existence of a gap in the thermodynamic limit.

For finite size systems, the local indistinguishability of
topologically degenerate states is not perfect, but the ability to
distinguish the states decreases exponentially with the size of the
system. In Fig. 4, we plot the deviation d between the correlators
of local operators computed for the two states on the torus for
both the exact ground states and the CFT states. In both cases, d
decreases with increasing system size, and for the CFT states the
decay is clearly exponential. We also observe that d is not small
unless the lattice size is at least 6� 5. This explains why the
ground state degeneracy is more pronounced for the 6� 5 lattice
in Fig. 3a than it is for smaller lattices, and the general decrease of
d in Fig. 4 provides further evidence that the two lowest energies
will approach each other further for larger lattices.

In Fig. 5, we compute the topological entanglement entropy g
using the approach proposed in a previous study49. For the n¼
1/2 Laughlin state in the continuum, g¼ ln(2)/2 (ref. 42), and the
result we get for the CFT state is in perfect agreement with this
value. For the exact ground state of H, we can again only consider
rather small systems, but we observe that the results
approximately follow those of the CFT state and also point to a
non-zero value of g.

We have computed the many-body Chern number of the exact
ground states on the torus for a 4� 5 lattice as explained in
Methods, and the results are depicted as a function of f1 and f2

in Fig. 2. As the 4� 5 lattice does not display a clear two-fold
ground state degeneracy for all values of the parameters, it may
happen that the two lowest energy states are not the states that
resemble the CFT states. We circumvent this problem by noting
that the Hamiltonian is block diagonal, which allows us to select

Table 1 | Quantum numbers and overlap on the plane.

N Lx� Ly Sztot f r D hwPO jwCFT
PO i

�� �� j hwP0 jwCFT
P0 i j 1N

12 4� 3 0 þ 1 þ 1 252 0.9866 0.9989
16 4�4 0 þ 1 þ 1 3,299 0.9886 0.9993
20 4� 5 0 þ 1 þ 1 46,508 0.9848 0.9992

The table provides the overlap |/cP0|c
CFT
P0 S| and the overlap per site |/cP0|c

CFT
P0 S|1/N between the ground state cP0 of the local Hamiltonian in equation (3) with f1¼0.07� 2p, f2¼0.03� 2p, and

open boundary conditions and the CFT state cCFT
P0 in equation (2). Sztot is the eigenvalue of the z component of the total spin of cP0 and cCFT

P0 , f is the eigenvalue of the operator that flips all the spins, r is
the eigenvalue of the operator that rotates the lattice by 180� and D is the dimension of the subspace of Hilbert space that consists of all states with the given eigenvalues. In general, Sztot ¼0, f¼ (� 1)N/2

and r¼ (� 1)N/2 for the CFT state. The overlaps are remarkably high, in particular when taking the large dimension of the involved Hilbert spaces into account.

Table 2 | Quantum numbers and overlap on the torus.

N Lx� Ly Sztot f tx ty D |/wT0|w
CFT
T0 S| j hwT0 jwCFT

T0 i j 1N Sztot f tx ty D |/wT1|w
CFT
T1 S| j hwT1 j wCFT

T1 i j 1N
12 4� 3 0 þ 1 0 0 44 0.9509 0.9958 0 þ 1 2 0 42 0.9765 0.9980
16 4�4 0 þ 1 0 0 441 0.9697 0.9981 0 þ 1 0 0 441 0.9244 0.9951
20 4� 5 0 þ 1 0 0 4,654 0.9581 0.9979 0 þ 1 2 0 4,650 0.9717 0.9986
30 6� 5 0 � 1 3 0 2,585,850 0.9423 0.9980 0 � 1 0 0 2,584,754 0.9697 0.9990

The table provides the overlap and overlap per site between the two lowest energy eigenstates, cT0 and cT1, of the Hamiltonian in equation (3) with f1¼0.07� 2p, f2¼0.03� 2p and periodic
boundary conditions and the CFT states, cCFT

T0 and cCFT
T1 , in equation (4). Sztot is the eigenvalue of the z component of the total spin of the states, f is the eigenvalue of the operator that flips all the spins,

e2pitx=Lx ðe2pity=Ly Þ is the eigenvalue of the translation operator by one lattice constant in the x direction (y direction) and D is the dimension of the subspace of Hilbert space that consists of all states with
the given eigenvalues (columns 3–7 are for cT0 and columns 10–14 are for cT1. In general, Sztot ¼0 and f¼ (� 1)N/2 for the CFT states. For even-by-even lattices tx¼ ty¼0 for both CFT states and for
even-by-odd lattices e2pitx=Lx ¼ ð� 1ÞLx=2 and ty¼0 for cCFT

T0 and e2pitx=Lx ¼ �ð� 1ÞLx=2 and ty¼0 for cCFT
T1 .
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the right states based on quantum numbers as stated in the
caption. The KL states in equation (11) on the square lattice can
be generalized to twisted boundary conditions by modifying the
states in the same way as the n¼ 1/2 Laughlin states on the torus
are modified when subjected to twisted boundary conditions (see
equations (5.1–5.5) of the study by Read and Rezayi50 for explicit
expressions). From this we get that the many-body Chern
number of the KL states on the torus for a 4� 5 lattice is 1.
Figure 3b demonstrates the flow of the ground states of H into
each other when the boundary conditions are twisted, and for the
KL states this property can be shown analytically. Again, our
findings are thus in agreement with the properties of the n¼ 1/2
Laughlin state in the continuum.

Finally, we note that we have done the tests above also for the
parameters f1¼ 0 and f2¼tan� 1ð1=2Þ � 0:0738�2p (the white
square in Fig. 2), and the results are similar.

Connection to a Fermi–Hubbard-like model. As mentioned in
the introduction, each spin in our model may represent the spin
of a fermion sitting on a site in an optical lattice. Let us consider
the Fermi–Hubbard-like Hamiltonian

HFH¼
X
s

Hkin;s þU
XN
n¼1

âyn"ân"â
y
n#ân# ð5Þ

on a square lattice, where âns annihilates a fermion with spin s
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Figure 3 | Topological properties of the Hamiltonian. (a) Energy spectrum

in the Sztot ¼0 subspace on the torus for different lattice sizes (in green,

N¼ LxLy) obtained by exact diagonalization. The number to the right of each

energy level is the degeneracy and only the energies of the five lowest

states (n¼0, 1 , 2 , 3, 4) are displayed. Note that the spectrum in the

complete Hilbert space is the same except that each state is replaced by

2Sþ 1 degenerate states, where S is the total spin quantum number of the

state. As the two lowest states have S¼0, the results suggest that there

are two degenerate ground states and a gap to the first excited state in the

thermodynamic limit like for the n¼ 1/2 Laughlin state in the

continuum59,60. (b) Energies of the five lowest states in the Sztot ¼0

subspace on the torus for twisted boundary conditions in the x direction (yx
is the twist angle) and a lattice size of 6� 5. Twisting the boundary

conditions corresponds to gradually inserting a flux line through the hole of

the torus (inset), and we observe that the two ground states flow into each

other under this operation. f1¼0.07� 2p and f2¼0.03� 2p in both

panels.
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Figure 4 | Indistinguishability of local observables. (a) To demonstrate

local indistinguishability of the states on the torus in the thermodynamic

limit, we consider the set of all spin operators that act on a plaquette of four

spins. Note that all plaquettes are equivalent due to the translational

invariance. Using symmetries and the properties of spin operators, the

correlators of all such local operators can be expressed in terms of the eight

correlators depicted (the uppermost drawing, for example, represents the

correlator cðcÞ¼hc j Szn1S
z
n2

j ci=hc j ci, where the spins on the

plaquette are labelled n1, n2, n3, n4 in the counter clockwise direction

starting from the upper right corner). For the special case Lx¼ Ly, the

correlators displayed in black are not needed. (b) and (c), Dependence of

the relative difference d¼ |2(c0� c1)/(c0þ c1)| between the correlators

c0�c(cCFT
T0 ) and c1�c(cCFT

T1 ) on the size of the lattice for even-by-even and

even-by-odd lattices (we use the markers indicated in (a)). The extra set

of smaller fainter symbols for 4�4 in (b) and 4� 3, 4� 5 and 6� 5 in (c)

(see the upper axes) show the same for the exact ground states of the

Hamiltonian with f1¼0.07� 2p and f2¼0.03� 2p. The results are

obtained by exact computations for LxLyr30 and from Monte Carlo

simulations for LxLyZ36. The error bars of d are given as d±dd, where

dd¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@d
@c0

� �2
ðdc0Þ2 þ @d

@c1

� �2
ðdc1Þ2

r
; dci¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðciÞ=N

p
, and the variance is

taken over the outcome of N independent Monte Carlo trajectories.
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on lattice site n, U is a positive constant, Hkin,s is defined in
Fig. 1b, and we choose the total number of fermions to equal the
number of lattice sites. Hkin,s represents spin-preserving hopping
of fermions between nearest and next-nearest neighbouring sites
with complex hopping amplitudes, and the second term in HFH

represents interactions between fermions with opposite spin sit-
ting on the same lattice site. We note that the hopping terms give
rise to a staggered flux pattern with zero total flux through the
unit cell as in the Haldane model5.

When U is much larger than the hopping strengths t, t0, we
are in the Mott insulating regime, where each site is occupied
by a single fermion. In this limit, we can use the Schrieffer–Wolff
transformation51,52 to derive an effective Hamiltonian Heff

acting in the space of states with only single occupancy on all
sites in the same way as the Heisenberg model is derived from the
standard Fermi–Hubbard model. Reexpressing Heff in terms of
spins, we get Heff¼Hþ constant to third order in t/U, where H is
given by equation (3) with J2¼ 2t2/U, J02¼ 2t02/U, and J3¼ 6t2t0/
U2. This is not by chance: the SU(2) invariance of HFH is
automatically inherited to Heff and the chirality is built into the
model through the complex hopping amplitudes. The choice
f1¼ 0.07� 2p and f2¼ 0.03� 2p corresponds to t/U¼ 0.10
and t0/U¼ 0.07.

Overview of simulation scheme. The Fermi–Hubbard-like model
can be simulated in fermions in optical lattices as follows. We
encode the spin up and down states in four internal hyperfine
levels as shown in Fig. 1d. By choosing the internal states
appropriately and using polarized light, it is possible to construct
the optical lattice in Fig. 1c, where the levels shown in blue (red)
are trapped in a potential with minima located at the white
(black) squares of a checkerboard.

In this setup, the atoms can tunnel through the potential
barrier between nearest-neighbour sites in the blue/red sublattice,
which provides a contribution to the next-nearest-neighbour
hopping terms in the Hamiltonian. We propose to implement the
nearest-neighbour hopping terms by use of laser-assisted
tunnelling53,54. This can be done with the three standing wave
laser fields in Fig. 1b, which we refer to as r1, r2 and b3,
respectively. As explained further below, r1 and b3 (r2 and b3)
induce nearest-neighbour hops in the horizontal (vertical)
direction. A hop is accompanied by a Raman transition
between internal states as illustrated in Fig. 1d. The alternating
signs of the hopping amplitudes originate from the spatial
oscillations of the amplitudes of r1 and r2 with a period that is
twice the lattice spacing, and the i ’s on the hopping amplitudes in
the vertical direction appear because the amplitude of r2 is
imaginary. Note that it is possible to choose the internal states in
such a way that the energy difference between the blue and red
spin up states is the same as the energy difference between the
blue and red spin down states. r1, r2 and b3 therefore accomplish
the hops for both spin up and spin down. A particularly
convenient feature of the above model and implementation
scheme is that only on-site interactions are needed. These occur
naturally in the optical lattice, and so the Hamiltonian in
equation (5) is implemented directly.

Optical lattice potential. The main idea behind the scheme we
propose to realize the optical lattice potential in Fig. 1c is to
encode the blue (red) states in internal levels that interact more
strongly with right (left) circularly polarized light than with left
(right) circularly polarized light and then create a checkerboard
pattern of regions with highest intensity of right circularly
polarized light and regions with highest intensity of left circularly
polarized light. Since the blue and red sublattices are square lat-
tices when viewed from the (xþ y) or (x� y) directions, it is
natural to let laser beams travel along these directions to create a
standing wave pattern of intensity minima and maxima. In order
to be able to control the strengths and phases of right and left
circularly polarized light in the beams independently, however,
the momentum vectors of the beams should have a non-zero
z-component.

Let us demonstrate explicitly how this can be done for fermions
with one valence electron, when the ground state manifold is a
2S1/2 orbital, and the light fields couple the ground states
off-resonantly to a 2P1/2 orbital as in Fig. 6a, which can be
achieved with alkali atoms. We first create a standing
wave pattern in the (xþ y) direction by adding up the fields
labelled 1a and 1b in Table 3. Note that the intensity profile of
the right (left) circularly polarized component of E1aþE1b is
proportional to cos2ðkxðxþ yÞÞ (sin2ðkxðxþ yÞÞ) and that the
z-polarized components of the fields are fixed by the condition
that the polarization vectors of the fields must be perpendicular to
the wave vectors. As seen in Fig. 6a, the presence of the
z-polarized component causes the trapping lasers to induce
Raman transitions between the two ground states. This undesired
effect can, however, be cancelled by adding the fields 2a and
2b in Table 3. The fields 3a, 3b, 4a and 4b do the same for the
(x� y) direction.
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Figure 5 | Topological entanglement entropy. To compute the topological

entanglement entropy, we map the CFT state in equation (2) to a cylinder

(inset) with closed ends at±N (see Methods for details). We then cut the

cylinder in two halves (part A and B) as indicated with the blue plane,

and compute the entanglement entropy S
ð2Þ
Ly

� � lnðTrðr2AÞÞ as a function

of Ly for fixed Lx, where rA is the reduced density operator of part A. We

choose here to use the Renyi entropy with index 2 because it is less

demanding to compute numerically than the von Neumann entropy39,56.

For large Lx and Ly, S
ð2Þ
Ly

is independent of Lx and grows linearly with Ly, and

the intersection with the vertical axis is the topological entanglement

entropy (� g)42,43,49,61–63. The fact that the results for Lx¼ 10 and Lx¼ 16

practically coincide shows that we are already in the Lx-N limit. The black

dotted line is a linear fit to the results for Lx¼ 10 and LyZ10 and gives

g¼0.374. The solid cyan line is the same fit except that g is fixed to the

value g¼ ln(2)/2 E 0.347 of the n¼ 1/2 Laughlin state, and it is seen that

both fits fit the data well. The results for Lx¼4 are computed using the

lowest energy state of the Hamiltonian in equation (3) with f1¼0.07� 2p,
f2¼0.03� 2p, and periodic boundary conditions in the y direction, and

they approximately follow the results for the CFT state. The results for

Lx¼ 10 and Lx¼ 16 are computed from Monte Carlo simulations of

r � expð� S
ð2Þ
Ly
Þ. The error bars are given as S

ð2Þ
Ly

	 dSð2ÞLy
, where

dSð2ÞLy
¼ @lnðrÞ

@r

��� ��� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðrÞ=N

p
and the variance is taken over the outcome of

N independent Monte Carlo trajectories.
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Eliminating the excited states with a Schrieffer–Wolff trans-
formation, we get the trapping potentials

V�¼�V0ð2b2 þ a2 � 1ÞSþ 2V0ð2b2 þ a2Þ; ð6Þ

Vþ¼�V0ð1þ 2a2b2 � a2ÞCþ 2V0ð1þ 2a2b2Þ; ð7Þ
for |g�S and |gþS, respectively, where V0 p E2/(b2D), the
detuning D, defined in Fig. 6a, and V0 are negative (positive) for
red (blue) detuning, and

S¼sin2ðkxðxþ yÞÞþ sin2ðkxðx� yÞÞ; ð8Þ

C¼cos2ðkxðxþ yÞÞþ cos2ðkxðx� yÞÞ: ð9Þ
For �V0(2b2þ a2� 1)40 and �V0(1þ 2a2b2� a2)40, we

thus conclude that |g�S (|gþS) is trapped around the minima of
S (C), which gives the desired checkerboard pattern.

So far, we have considered the states at the level of fine
structure. Assuming, as an example, that the nuclear spin is I¼ 1,
which is the case for 6Li, the ground state manifold consists of six
hyperfine states as depicted in Fig. 6b. The states |3/2,1/2S and
|1/2,� 1/2S see the potential 2Vþ /3þV� /3, and the states
|3/2,� 1/2S and |1/2,1/2S see the potential Vþ /3þ 2V� /3. For
suitable parameters, for example, V0o0 and

2
3 b

2 � 1
4
3 b

2 � 1
oa2o

4
3 b

2 � 1
2
3 b

2 � 1
; ð10Þ

one can therefore obtain the desired checkerboard potential by
choosing the blue and red spin-up and -down states as in Fig. 6b.
The states 3

2 ;
3
2

�� �
and 3

2 ; � 3
2

�� �
see the potentials Vþ and V� ,

respectively, and are hence, in general, shifted away in energy, so
that they can be ignored.

The energy difference between the blue and red spin-up states
is the same as the energy difference between the blue and red
spin-down states for the above choice as desired, and this also
holds when the trapping in the z-direction is taken into account.
If this symmetry cannot be achieved in a given set-up, one can
compensate by choosing the right and left circularly polarized
components of the field b3 in Fig. 1b to have different
frequencies. Note also that the energy difference between a spin
sitting on a blue site and a spin sitting on a red site must be non-
zero for the implementation of the hopping terms to work. If this
difference is not appropriate for a given set of parameters, it can
be adjusted by adding an independent standing wave laser field
along the z axis with right or left circular polarization.

Laser-assisted hopping. The transitions induced by the fields r1,
r2 and b3 in Fig. 1b can be understood by noting that the tran-
sition amplitudes are proportional to the spatial integral of the
product of the Wannier functions at the two sites and the two
field components that are involved in the transition. Since the
Wannier functions decay rapidly, there are only transitions
between nearby sites.

Let us first consider the hops between neighbouring blue and
red lattice sites induced by r1 and b3. The transition amplitude
for hops along the y axis vanishes because the Wannier functions
and b3 are even functions and r1 is an odd function with respect
to reverting the x axis around the x coordinate of the sites. Hops
along the x axis are allowed, and since the sign of the amplitude of
r1 between two neighbouring sites is alternatingly plus and minus
(see Fig. 1b), the signs of the hopping amplitudes also alternate. r2
and b3 similarly induce hops in the y direction, but not in the x
direction. For the choice of hyperfine levels considered above, it is
the right (left) circularly polarized component of b3 that is
involved when a fermion in the spin up (down) state hops.
Therefore, one can make the hopping amplitudes for up and
down spins equal by adjusting E± appropriately, that is, by
adjusting the polarization state of b3.

Let us also consider transitions involving one photon from r1
and one photon from r2. In this case, the fermion cannot change
its internal state due to energy conservation, and it cannot hop to
a site of different colour. If the fermion remains at the same site,
the transition amplitude is zero due to symmetry. If the transition
involves a hop to a next-nearest-neighbour site, there is
destructive interference between absorbing a photon from r1
and emitting a photon into r2 or absorbing a photon from r2 and
emitting a photon into r1, and therefore no transitions occur.

r1, r2 and b3 also induce transitions, where a fermion absorbs
and emits a photon from the same beam without changing its
internal state and either remains at the same site or hops to a

Table 3 | Laser fields needed for the implementation.
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Hopping
Er1(x, y, z, T)¼ � Erezsin(px/a)e� iorTþc.c.
Er2(x, y, z, T)¼ � iErezsin(py/a)e� iorTþc.c.
Eb3(x, y, z, T)¼ (Eþ eþ þ E� e� )cos(obz/c)e

� iobTþc.c.

The eight laser fields listed below the word ‘Trap’ produce the checkerboard optical lattice in
Fig. 1c, and the three standing wave fields listed below the word ‘Hopping’ bring about the
hopping terms and ensure trapping in the z direction. T is time, E¼ E*, Er¼ E
r , Eþ and E�
determine the amplitudes, eþ ¼ð� 1; � i;0Þ=

ffiffiffi
2

p
is the polarization vector of right circularly

polarized light, e�¼ð1; � i;0Þ=
ffiffiffi
2

p
is the polarization vector of left circularly polarized light,

ez¼ (0,0,1) is the polarization vector of z polarized light, a and b are real, adjustable parameters,
a is the lattice constant, c is the speed of light in vacuum, kx¼ ki(2þb2)� 1/2,
kz¼ kib(2þb2)� 1/2, ki¼oi/c, the quantities o1, o2, o3, o4, or¼ cp/a, and ob are angular
frequencies, and þ c.c. stands for adding the complex conjugate of the preceding term. The
frequencies oi, i¼ 1, 2 , 3, 4, are assumed to be slightly different such that coherent interference
between fields with different oi is avoided. This can be done while introducing only negligible
differences in the lengths of the wavevectors, and we hence assume k1, k2, k3, and k4 to be equal.
Note that b2E2 is a particularly convenient choice because orEoi in this case, and therefore
the same set of excited states can be used for implementing both the trap and the hopping
terms. The value of a2 is chosen to get a suitable relative height of the red and blue potentials.
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Figure 6 | Atomic levels and light–atom interactions. (a) Off-resonant

coupling of a 2S1/2 ground state manifold to a 2P1/2 excited state manifold

with polarized light. (b) Hyperfine levels of the ground state manifold when

the nuclear spin is I¼ 1. The states are labelled |F,mFS, where F is the total

angular momentum, and mF is the projection of the total angular

momentum on the z axis. The choice of blue and red spin up and down

states is indicated.
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next-nearest-neighbour site. The former case gives rise to the
trapping in the z direction and also slightly modifies the potential
in the xy plane. The modification can however be made
insignificant by decreasing Er and increasing E± without affecting
the nearest-neighbour hopping amplitudes that are proportional
to ErE±. The latter case gives rise to a contribution to the next-
nearest-neighbour hopping terms in the Hamiltonian. For a given
choice of E± it may happen that hops between blue lattice sites
occur at a different rate than hops between red lattice sites. As
mentioned above, however, one can lower the potential barriers
between the sites for the sublattice with slow hops relative to the
other to compensate.

Discussion
In the present article, we have constructed a lattice model with
local interactions and a KL-like ground state and proposed a
scheme for implementing it experimentally. The observation that
the Fermi–Hubbard-like Hamiltonian in equation (5) captures
the physics of the investigated model for t; t0 � U provides some
insight into how our model compares with previous proposals for
obtaining FQH-like behaviour in lattice systems. Specifically, HFH

can be seen as a sum of two free fermion models, Hkin,m and
Hkin,k, and a local interaction term. Each of the free models has
two bands of which the lowest is filled and the highest is empty.
The Chern number of the filled band is plus or minus one for all
non-zero t and t0, and the band flattening, that is, the ratio of the
gap between the bands to the width of either of the bands, is
moderate F � 2=ð

ffiffiffi
2

p
� 1Þ � 4:8. Our results thus show that two

copies of a fermionic Chern insulator with integer band filling
plus on-site interactions can give rise to a bosonic FQH state. This
behaviour is different from flat band models, where a fermionic
(bosonic) Chern insulator with flattened and fractionally filled
bands plus interactions give rise to a fermionic (bosonic) FQH
state19–21. We therefore conclude that our model provides a
different mechanism to get the FQH effect in lattices.

The experimental requirements to observe the desired physics
in the proposed set-up are those needed to observe the Néel
antiferromagnetic order in the Mott insulating regime of the
standard Fermi–Hubbard model combined with the ability to
perform laser-assisted hopping in a checkerboard optical lattice.
Laser-assisted hopping has been demonstrated experimentally54,
and the Fermi–Hubbard model has also been investigated
experimentally. The Mott insulating regime of the Fermi–
Hubbard model has been previously realized33,34, where
measurements of compressibility and of the fraction of doubly
occupied lattice sites were used to analyse the state. To observe
the physics predicted by the effective Hamiltonian obtained by
the Schrieffer–Wolff transformation, the temperature should be
low compared with t2/U. By using a local entropy redistribution
scheme, this regime has been reached for a subset of lattice bonds
in a recent experiment36. Altogether, these results are promising
for the implementation scheme proposed here.

We note that the condition t; t0 � U is needed to ensure the
validity of the Schrieffer–Wolff transformation. It is possible,
however, that similar physics can be observed even if HFH does not
exactly reproduce the model in equation (3). This suggests that,
for example, the choice t/U¼ 1/2 and t0/U¼ 1/6 (corresponding to
the white triangle in Fig. 2), which leads to more moderate
temperature requirements, may already give interesting results.

The method proposed previously38 to derive (nonlocal) parent
Hamiltonians for states constructed from CFT correlators is quite
general, and an interesting next step, for example, could be to
apply the strategy proposed in the present paper to the Moore–
Read-like state for which a parent Hamiltonian has already been
derived38.

Note added: it has been found recently in a preprint by Bauer
et al.55 that a local three-body Hamiltonian on a kagome lattice
can also give rise to a state having the same topological properties
as the bosonic Laughlin state at half filling. This model is, in fact,
another particular case of the CFT model presented in the present
paper and can be derived following the lines above using a
kagome lattice rather than a square lattice. Specifically, we find
that the overlaps per site between the ground states of the
Hamiltonian considered previously55 and the CFT states in
equation (11) for a kagome lattice of 12 sites with periodic
boundary conditions are 40.98 for both states and can be
improved to values similar to those in Table 2 by adding nearest-
neighbour two-body interactions. The CFT framework thus
provides an analytical approximation to the ground states found
numerically in the study by Bauer et al.55 and puts their model55

into a broader context. In addition, it is encouraging for the
method presented here to observe that similar results are obtained
on different lattices.

Methods
Monte Carlo simulations. The Monte Carlo simulations are done using the
Metropolis–Hastings algorithm. To compute correlation functions we write

hc j Ô jci
hc jci ¼

X
s1 ;:::;sN

hs1; :::; sN j Ô jci
hs1; :::; sN jci Pðs1; :::; sN Þ

and sample the probability distribution P(s1,y,sN)¼ |/s1,y,sN|cS|2//c|cS as
follows. We start from a random configuration s1,y,sN fulfilling

P
n sn¼0. In each

step of the algorithm we choose a spin up and a spin down at random and flip the
two spins if and only if Pð~s1; :::;~sN Þ=Pðs1; :::; sN Þ4q, where ~s1; :::;~sN is the con-
figuration with the two spins flipped and q is a uniformly distributed random
number between zero and one. Disregarding a warm-up period, the correlation
function is then the average of hs1; :::; sN j Ô jci=hs1; :::; sN jci over
the trajectory.

The entanglement entropy is similarly computed from the expression39,56

e
� Sð2ÞLy ¼

X
sA ;sB ;s0A ;s

0
B

hsA; s0B jcihs0A; sB jci
hsA; sB jcihs0A; s0B jci

PðsA; sBÞPðs0A; s0BÞ

where sA (sB) is shorthand notation for the spins in part A (B) of the system. The
sampling is done as before, except that there are now two copies of the spins,
s1,y,sN and s01,y,s0N, and we therefore choose at random in each step whether we
choose two spins from s1,y,sN or two spins from s01,y,s0N.

Wavefunction on the cylinder. A cylinder with circumference Ly can be mapped
to the plane via the coordinate transformation z¼ e2pðlx þ ilyÞ=Ly , where (lx,ly) is a
point on the cylinder and z is the corresponding point in the plane written
as a complex number. The wavefunction cCFT

C0 for a square lattice on the cylinder is
therefore easily obtained from cCFT

P0 by choosing zn¼ e2pðlx;n þ ily;nÞ=Ly for n¼ 1,2,
y,N, where lx,nA{� (Lx� 1)/2,� (Lx� 1)/2þ 1,y,(Lx� 1)/2} and
ly,nA{1,2,y,Ly}.

Wavefunctions on the torus. In the spin basis, the states ~cCFT
0 and ~cCFT

1=2 take the
form

~cCFT
k ðs1;s2;:::;sN Þ¼dswsyk;0

XN
n¼1

znsn
o1

;
2o2

o1

 !
�
Y
nom

y1
2;
1
2

zn � zm
o1

;
o2

o1

	 
ðsnsm þ 1Þ=2
;

ð11Þ
where kA{0,1/2}, ds and ws are defined below equation (2), o1 and o2 are the
periods of the torus fulfilling Im(o1)¼ 0 and Im(o2/o1)40, and
ya;bðw; tÞ¼

P1
n¼�1 eiptðnþ aÞ2 þ 2piðnþ aÞðwþ bÞ is the theta function. For the Lx � Ly

square lattice, o1¼ Lx, o2¼ iLy, and zpþ Lx(q� 1)¼ p� (Lxþ 1)/2þ i(q� (Lyþ 1)/2)
with pA{1,2,y,Lx} and qA{1,2,y,Ly}. Note that the states in (11) are not neces-
sarily orthogonal, but the linear combinations in equation (4) for square lattices
are.

Twisted boundary conditions and Chern number. Let Sn,m be the spin operator
of the spin at position (n,m) on the lattice, and let S	

n;m¼Sxn;m 	 iSyn;m . Twisted
boundary conditions are then defined such that S	

Lx þ 1;m¼e� iy1S	
1;m ,

S	
n;Ly þ 1¼e� iy2S	

n;1, S
z
Lx þ 1;m¼Sz1;m , and Szn;Ly þ 1¼Szn;1. We compute the many-body

Chern number by following a previously described approach14,57. In brief, this is
done by first computing c0

T0 and c0
T1 (defined in Fig. 2) as functions of y1 and y2

in the interval y1,y2A[0,2p]. Let c(y1,y2)¼ (|c0
T0(y1,y2)S,|c0

T1(y1,y2)S) and
choose two sets of reference angles (y1a,y2a) and (y1b,y2b). For each zero of
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det(cw(y1a,y2a)c(y1,y2)cw(y1,y2)c(y1a,y2a)), the increase in the phase of
det(cw(y1a,y2a)c(y1,y2)cw(y1,y2)c(y1b,y2b)) when going in a small circle around the
zero is computed. Adding up the contributions from all the zeros and dividing by
2p gives the many-body Chern number, which is necessarily an integer. The Chern
number of the bands of the free fermion model Hkin,s is computed using
equation (12) of the study by Shi and Cirac58.
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