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Symmetry breaking in a mechanical resonator
made from a carbon nanotube
A. Eichler1,2,w, J. Moser1,2, M.I. Dykman3 & A. Bachtold1,2

Nanotubes behave as semi-flexible polymers in that they can bend by a sizeable amount.

When integrating a nanotube in a mechanical resonator, the bending is expected to break the

symmetry of the restoring potential. Here we report on a new detection method that allows

us to demonstrate such symmetry breaking. The method probes the motion of the nanotube

resonator at nearly zero-frequency; this motion is the low-frequency counterpart of the

second overtone of resonantly excited vibrations. We find that symmetry breaking leads to

the spectral broadening of mechanical resonances, and to an apparent quality factor that

drops below 100 at room temperature. The low quality factor at room temperature is a

striking feature of nanotube resonators whose origin has remained elusive for many years.

Our results shed light on the role played by symmetry breaking in the mechanics of nanotube

resonators.
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Campus de la UAB, E-08193 Bellaterra, Spain. 3 Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA.
w Present address: Department of Physics, ETH Zurich, Schafmattstrasse 16, 8093 Zurich, Switzerland. Correspondence and requests for materials should be
addressed to A.B. (email: adrian.bachtold@icfo.es).

NATURE COMMUNICATIONS | 4:2843 | DOI: 10.1038/ncomms3843 | www.nature.com/naturecommunications 1

& 2013 Macmillan Publishers Limited. All rights reserved.

mailto:adrian.bachtold@icfo.es
http://www.nature.com/naturecommunications


A
carbon nanotube is a unique system that can be seen both
as a crystal and as a polymer. Its crystallinity confers
excellent mechanical properties to nanotube-based

resonators1–6, such as high resonant frequencies7,8 and low
dissipation at low temperature9,10. As a result, these resonators
are well suited for ultra-sensitive detection of mass11,12, charge2,3

and force13. A nanotube has also much in common with a
polymer as both can bend by a large amount. In a resonator, the
bending can be generated by the mechanical tension that builds in
during the fabrication process as well as by the electrostatic force
used in most studies. This curvature is expected to have profound
consequences on the dynamics of nanotube resonators, as the
transverse vibrational modes lack inversion symmetry.

In a bent nanotube, if one thinks of a vibrational mode as an
oscillator, its potential is not symmetric with respect to the
displacement from the equilibrium position (Fig. 1a). This leads
to a nonlinear term in the restoring force that depends
quadratically on the displacement, F2¼mb� dz2(t) with m the
effective mass of the resonator, b a constant quantifying the
strength of the symmetry breaking effect and dz(t) the transverse
displacement of the resonator for the given mode. The
mechanism underlying the effect can be understood as follows.
For a resonator that is curved and clamped at both ends, the
length is different for þ dz and � dz and, therefore, the tension
induced by the motion is asymmetric with respect to dz (Fig. 1b).

In a potential with broken symmetry, the equilibrium position of
the mode depends on its vibrational amplitude zvibra (see Fig. 1a).
Indeed, if the resonator vibrates as dz(t)¼ zvibra� cos(ot),
the quadratic term in the restoring force becomes

F2 ¼ mb
z2vibra
2

½1þ cosð2otÞ�: ð1Þ

The second term in the bracket leads to the second overtone,
that is, motion at 2o. The first term corresponds to a time-
independent force and, therefore, generates a shift of the
equilibrium position, dzeq. In other words, it is possible to move
the equilibrium position by varying zvibra. The timescale of this
motion is characterized by the ring-down time associated to zvibra.
When considering the thermal motion of such a resonator, the

power spectrum of the displacement is expected to feature a peak
at zero-frequency, its width being roughly the inverse of the ring-
down time14,15. To the best of our knowledge, this low-frequency
motion of the equilibrium position of oscillators with high quality
factor Q has not been observed in nanomechanical resonators or
other condensed-matter systems.

Here we report on a new method to measure the motion of the
equilibrium position in response to resonant excitation of the
vibrations. We use this method to determine the symmetry
breaking strength. We further discuss the connections between
symmetry breaking and the mechanics of nanotube resonators.
Symmetry breaking controls the dependencies of the resonance
frequency on the constant voltage applied to the gate electrode
and on the amplitude of the driving force. It leads to the
dependance of the resonance frequency on the vibrational
amplitude; this dependence induces a sizeable spectral broad-
ening of the mechanical resonances at room temperature.

Results
Device. The device consists of a single carbon nanotube that is
clamped by two metal electrodes and is suspended over a trench.
A gate electrode is defined at the bottom of the trench (Fig. 1c).
The fabrication is described elsewhere10. Briefly, we pattern the
three electrodes and the trench using standard electron-beam
lithography techniques. We grow the nanotube by chemical
vapour deposition in the last fabrication step in order to avoid
contamination9. All measurements are performed at 65K to avoid
Coulomb blockade2,3. We have studied five nanotube devices in
total. We discuss in the following the data for one device. Data
for a second device yielding similar results are shown in
Supplementary Fig. S1 and discussed in Supplementary Note 1.

Detection method. We use a new technique to detect the motion
of nanotube resonators. We capacitively drive the vibrations at
odrive near the resonant angular frequency o0 by applying a
constant voltage Vdc

g and an oscillating voltage of amplitude Vac
g

on the gate electrode. Central to the technique is that the
oscillating voltage is amplitude modulated (AM). The resulting
displacement near o0 for not too large Vac

g is proportional to the
driving amplitude,

dzðtÞ ¼ zvibra� cosðodrivet�jmÞ�½1� cosðoAMtÞ� ð2Þ

where the amplitude modulation has a depth of 100% and its
angular frequency oAM is typically 2p� 1 kHz (Fig. 1d; we
checked that the measurements do not depend on oAM for oAM

up to 2p� 10 kHz); jm is the phase difference between the dis-
placement and the driving force. We apply a constant voltage Vdc

sd
to the source electrode and measure from the drain electrode the
low-frequency current at oAM with amplitude ILF using a lock-in
amplifier (Fig. 1e; see Methods for details). We show below that
this technique allows us to measure the motion of dzeq associated
with the symmetry breaking in nanotube resonators.

We observe that ILF features a peak when odrive is swept
through a mechanical resonance (Fig. 2a); the mechanical
resonance is also verified by directly measuring the vibrational
motion using the frequency modulation (FM) mixing technique
(Fig. 2b)4. The height Imax

LF of the peak in ILF goes linearly to zero
as Vdc

sd is decreased (Fig. 2c,d; black squares). These data show
that the detected peak in ILF is related to the modulation of the
nanotube conductance dG¼ ILF/Vdc

sd at oAM. It rules out an
artefact related to the capacitive coupling between the gate and
the source electrodes. (This coupling could result in a sizeable
AM oscillating voltage at the source electrode, and could thus
drive the resonator, but ILF would then be independent of Vdc

sd .)
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Figure 1 | Effect of curvature in a nanotube resonator. (a) Symmetry

breaking of the restoring potential U(z). The equilibrium position depends

on the energy of the resonator mode. (b) Schematic of a curved resonator.

The dashed line represents the static profile of the resonator, that is, when

it does not vibrate. The plain lines show the profiles for displacements þ dz
and � dz. (c) The resonator studied consists of a carbon nanotube

suspended over a trench between source (S) and drain (D) electrodes. A

gate electrode (G) is defined at the bottom of the trench. The trench has a

width of 1.8mm and a depth of B350nm. (d,e) The vibrational motion is

amplitude modulated at a slow angular frequency oAM. As a result, the

equilibrium position is modulated with the same period.
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We also observe a current peak when setting the reference
(angular) frequency of the lock-in amplifier to 2oAM. The peaks
measured at oAM and 2oAM are similar in that they appear at the
same driving frequency and their heights depend linearly on Vdc

sd
(Fig. 2d). However, the height of the peak measured at 2oAM is
four times smaller. These observations suggest that the measured
peaks are related to a nonlinearity that scales as (dz(t))2 and
therefore z2vibra. (Indeed, if dz(t)p1� cos(oAMt), any physical
quantity that is proportional to (dz(t))2 will be modulated at oAM

and 2oAM with a ratio of four between the amplitudes of the two
components.)

Estimation of vibrational amplitude. We estimate zvibraC2.1 nm
at resonant frequency for the driving force used in Fig. 2c. For
this, we use the 2-source mixing technique with a driving voltage
of 1.1mV (Fig. 3a,b). The value of zvibra is inferred by comparing
the signals on and away from the resonance16 (see Methods).

Driving different eigenmodes. The peak in ILF is detected only
for a fraction of the mechanical eigenmodes. In the resonator
discussed thus far, the peak is observed for the second eigenmode
but not for the first one (by comparing ILF in Fig. 4a and the
current in Fig. 4b obtained with the FM mixing technique). In all
the five studied resonators, we find that about half of the eigen-
modes feature a peak in ILF.

Discussion
We now discuss different possible origins of the peak in ILF. It
could be related to the nonlinear capacitive coupling between the
nanotube and the gate electrode, which leads to a (dz(t))2

nonlinearity in the conductance of the nanotube. However, we
estimate that the current associated to this effect is IcapaLF ¼ 10 pA,
which is 20 times smaller than the measured value in Fig. 2c
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Figure 2 | Characterization of the low-frequency current. (a) Low-frequency current ILF measured at angular frequency oAM as a function of angular

driving frequency odrive. We use an oscillating gate voltage Vac
g ¼0.53mV, a source voltage Vdc

sd ¼ 10mVand a gate voltage Vdc
g ¼ �0.45V. (b) Mechanical

vibrations detected with the FM technique4. VFM¼ 1.1mV and Vdc
g ¼ �0.45V. (c) ILF versus odrive with Vac

g ¼ 1.1mV, Vdc
sd ¼ 10mV and Vdc

g ¼ �0.4V.

(d) The height Imax
LF of the peak in ILF as a function of Vdc

sd measured at oAM (black squares) and 2oAM (open squares). Vac
g ¼ 2.2mV and Vdc

g ¼ �0.4V.
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Figure 3 | Vibrational motion measured with the 2-source mixing

technique. (a) X quadrature (IXvibra) and (b) Y quadrature (IYvibra) of the

current measured with the lock-in amplifier. IXvibra consists of a current

proportional to the in-phase component of the vibrational displacement in

addition to a purely electrical background current. IYvibra is proportional to

the quadrature component of the vibrational displacement. The oscillating

gate voltage is Vac
g ¼ 1.1mV, the oscillating source voltage Vac

sd ¼0.3mV and

the constant gate voltage Vdc
g ¼ �0.4V.
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(Methods). Thus, we reject the (dz(t))2 nonlinearity induced by the
capacitive coupling as the physical origin of the peak in ILF. Neither
is the ILF peak attributed to the nonlinearity of the conductance in
gate voltage9, as it leads to a current that is three orders of
magnitude lower than that measured in Fig. 2c (Methods). Another
mechanism for the ILF peak could be the piezoresistance of the
nanotube, whose dependence on the displacement is quadratic to a
good approximation17. The piezoresistance effect in nanotubes is
by far strongest for positive gate voltages (where electrons tunnel
from the p-doped regions of the nanotube near the metal electrodes
into the n-doped region of the suspended part of the
nanotube18,19). However, the observed height of the peak in ILF
can be as large for negative as for positive gate voltages (see Fig. 4a).
We can thus rule out the piezoresistive effect.

It is compelling to assume that the peak in ILF is due to
symmetry breaking of the vibrations. For the AM
modulationp[1� cos(oAMt)], ILF depends on the maximal
displacement of the equilibrium position dz0eq as

ILF ¼ Vdc
sdV

dc
g @VgG�

@zCg

Cg
dz0eq ð3Þ

where dz0eq is proportional to z2vibra. Here qzCg is the derivative of
the nanotube-gate capacitance Cg with respect to displacement; it
is determined from Coulomb blockade measurements at helium
temperature (see Supplementary Fig. S2). From the measured
Imax
LF in Fig. 2c, we get that dz0eq ¼ 0.18 nm and b¼ 4.3� 1024

m� 1 s� 2 using the relation b¼o2
0dz

0
eq=z

2
vibra (Methods).

This value for the symmetry breaking strength can be compared
with the one estimated from the measurement of o0 as a function

of the oscillating driving force. Figure 4c,d Shows that the peak
in ILF shifts to lower frequency upon increasing the driving
force. Disregarding the cubic restoring force (which in nanotubes
leads to the shift in the opposite direction, see ref. 20), we
obtain from the shift in o0 that b¼ 4.1� 1024m� 1 s� 2

(Methods). This value agrees with the one estimated from Imax
LF ,

demonstrating that the peak in ILF is due to symmetry breaking of
the vibrations.

The strength of symmetry breaking can be made large in
nanotubes, as it scales as b ’ E

r zs
p
L

� �4
and the length L can be as

short as 100 nm (refs 7,8). This expression is derived for the
fundamental mode of a rod (Supplementary Equation S6 in the
Supplementary Information of ref. 20), and zs is the characteristic
static displacement induced by the bending. Assuming that zs
ranges from 1 to 10 nm, and using L¼ 1.8 mm and the graphite
density r¼ 2,300 kgm� 3 and Young modulus E¼ 1 TP, we
obtain b¼ 3� 30� 1024m� 1 s� 2, which is consistent with the
value obtained from our measurements. The quadratic non-
linear force associated to symmetry breaking is three orders of
magnitude larger than the quadratic electrostatic force,

� @3
z Cg Vdc

g

� �2
=2m�dz2ðtÞ. The observed decrease of o0 with

the increasing resonant driving in Fig. 4c,d indicates that the
cubic nonlinear (Duffing) force has no substantial effect on the
dynamics of the resonator. This points out that the actual static
deformation zs is large compared with the vibration amplitude
(because the dynamical cubic restoring force scales as
F3CF2 � dz(t)/zs), and thus supporting our above assumption
that zs¼ 1� 10 nm.

The observation of a peak in ILF for only about half of the
mechanical eigenmodes indicates that b varies from one
eigenmode to the next. This is something expected from the
interplay between the shapes of the vibrational eigenmodes and
the static deformation along the nanotube if the static displace-
ment is primarily in one plane. Our data suggest that the static
displacement is essentially perpendicular to the gate electrode. In
such a geometry, the lowest-frequency eigenmode detected in
Fig. 4b corresponds to the lowest-energy mode vibrating
(essentially) parallel to the surface of the gate electrode, as shown
in ref. 20. A comparatively small static deformation of the
nanotube towards the gate electrode does not break the vibration
symmetry of this mode (because the elastic tension inside the
nanotube is equal for þ dz and � dz). As a result, ILF should be
weak, in agreement with the measurements. The second
eigenmode in Fig. 4b is assigned to the lowest-energy mode
vibrating in a direction (essentially) perpendicular to the gate
electrode20. In the presence of a static deformation towards the
gate electrode, this mode experiences symmetry breaking of
vibrations. A peak shows up in ILF, as observed in Fig. 4a.

Having shown that symmetry breaking leads to motion at
(nearly) zero-frequency, we demonstrate other connections
between symmetry breaking and the mechanics of nanotube
resonators. A hallmark of nanotube resonators is that the
resonance frequency can be widely tuned with Vdc

g . Symmetry
breaking is expected to control this tunability in o0 by an amount

Do0 ¼
b@zCg

2mo3
0

Vdc
g

� �2
ð4Þ

as shown in Supplementary Discussion (Vdc
g is here offset so that

Vdc
g ¼ 0 when o0 is minimum). We estimate that mC4 ag

assuming that the length of the nanotube is equal to the trench
width (1.8 mm) and using the typical radius (1.5 nm) obtained
with our chemical vapour deposition recipe. Using the curvature
of Do0(Vdc

g ) near the minimum of o0, we get that b¼ 3(±1)
� 1024m� 1 s� 2, which is close to the value estimated above.
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Figure 4 | Response of the low-frequency current to static and oscillating

forces. (a) Low-frequency current ILF measured at angular frequency oAM

as a function of angular driving frequency odrive and constant gate voltage

Vdc
g . The oscillating gate voltage is Vac

g ¼0.53mV, and the source voltage

Vdc
sd ¼ 10mV. Colour bar: 0 (white) to 280 pA (dark red). The background

signal varies with Vdc
g ; this variation likely has a purely electrical origin.

The number of measurement points is kept as low as possible so that

resonances are captured with about three points along the frequency axis.

(b) Current as a function of odrive and Vdc
g measured with the FM technique.

VFM¼ 2.2mV. Colour bar: 0 (white) to 170pA (dark red). (c) Measured

lineshapes of ILF as a function of odrive for different V
ac
g . Vac

g ¼4.2, 3.5, 2.5,

1.6, 1 and 0.6mV, from top to bottom. (d) Resonance shift extracted from

the data in c (black dots) and from FM measurements (open squares).
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This result underscores that symmetry breaking is connected to
the response of the resonance frequency to Vdc

g . We emphasize
that Equation (4) is only valid for not too large Vdc

g , as this is the
leading-order term of the expansion of o0 in Vdc

g . Our results
indicate that b and the bending of the nanotube both remain
essentially constant over the whole range of Vdc

g that we studied.
This suggests that the bending is a consequence of the mechanical
tension built in during the fabrication process. In the future, it
will be interesting to measure b as a function of Vdc

g for other
nanotube resonators.

In the presence of thermal vibrations, symmetry breaking leads
to spectral broadening21. Because the amplitude of thermal
vibrations fluctuates in time, the nonlinearity-induced shift in o0

(Fig. 4d) also fluctuates and, therefore, broadens the mechanical
resonance. The broadening in o0 reads

do ¼ 5b2kBT=6mo5
0 ð5Þ

when the cubic restoring force is negligible compared
with the quadratic one (Supplementary Discussion). Using
b¼ 4.3� 1024m� 1 s� 2, we get do¼ 2p� 7.5� 105Hz at room
temperature. This corresponds to an apparent quality factor of 67,
which is comparable to the value of C50 measured with the FM
technique (Supplementary Fig. S3). We emphasize that this
broadening is analogous to dephasing of two-level systems and
qubits, which sets the characteristic time T2. The measured
broadening is not related to dissipation, so that the energy
relaxation time could be much longer than 1/do (in fact, it is in
this case that Equation (5) gives the spectral broadening). For
eigenmodes with a small b, the broadening can be due to the
cubic restoring force21. Mechanical resonances might be further
broadened by the coupling between eigenmodes21, as shown by
recent simulations of nanotube resonators22.

We assumed in our analysis of ILF that the response of the
amplitude of the vibrational motion is linear with the driving
force. When the response becomes nonlinear at large driving
forces due to the restoring force nonlinearity, the ratio of ILF at
oAM and 2oAM is expected to deviate from four. Calculations
show that the width of the peak in ILF remains nearly constant
upon varying the driving force, in contrast to the measurements
in Fig. 4c. A general theory that incorporates nonlinearities in
both the restoring force and damping10,23–26 as well as thermal
vibrations is beyond the scope of this article. We note that our
new technique to measure the motion of the equilibrium position
allows one to study the response of the resonator over a broad
parameter range in driving force.

In conclusion, we demonstrate that symmetry breaking leads to
motion at nearly zero-frequency in response to resonant
excitation of the vibrations. Our results indicate that symmetry
breaking of vibrational modes also leads to such important
dynamical properties as the apparent low quality factor of
nanotube resonators at 300K, and the shift of the vibration
frequency in response to both (i) the static gate voltage and
(ii) the amplitude of the oscillating driving force. A future strategy
to improve the apparent Q at 300K is to tune b with the gate
voltage in order to compensate the spectral broadening due to
symmetry breaking with that due to the Duffing nonlinearity.
Symmetry breaking is important for other vibrational systems of
current interest, such as graphene resonators10,27–31 and
levitating particles32–34. Our new technique may help to reveal
this effect in such systems. Symmetry breaking also leads to mode
mixing and to parametric resonance in response to additive
driving. This holds promise for a number of applications, such as
controlled mode mixing35–37 and phase noise cancellation38–40.

Methods
Electrical characterization of the nanotube device. In Supplementary Fig. S2a,
we show the electrical conductance G of the nanotube device as a function of the
gate voltage Vdc

g at 65 K. We find this measurement to be reproducible over a
timescale of weeks (a current annealing procedure is performed every day to
counter the effects of contamination with residual gas particles).

The capacitance Cg between the gate and the nanotube is determined as follows.
In the Coulomb blockade regime, the separation between two conductance peaks is
given by dVg¼ eCg, where e is the electron charge. From the measurement in
Supplementary Fig. S2b, we get Cg¼ 12 aF, which is in agreement with an
estimation based on the device geometry:

Cg ¼
2pE0L

lnð2d=rÞ ð6Þ

Here E0 is the vacuum permittivity, L¼ 1.8 mm is the nanotube length and
d¼ 350 nm is the equilibrium distance between the nanotube and the gate
electrode. As we cannot measure the diameter of the nanotube due to the large
surface roughness of the electrodes in the studied device, we use a typical value for
the radius (r¼ 1.5 nm). We determine qzCg and @2

z Cg by differentiating
Equation (6) and get qzCg¼ 5.6 pFm� 1 and @2

z Cg¼ 21mFm� 2.
From the measurements of the resonance frequency as a function of Vdc

g in
Fig. 4b, we obtain a voltage offset of 0.45 V, which corresponds to the work
function difference between the nanotube and the gate electrode. This offset in Vdc

g
is included in all the estimates. However, the values of Vdc

g that we indicate in the
text are always the voltages that are applied to the gate electrode.

Measurements of vibrational motion. We discuss first the frequency modulation
(FM) technique4. A driving voltage is applied to the source electrode taking the
form VFM� cos[otþod/oL� sin(oLt)], where o is the carrier angular frequency,
od is the angular frequency deviation (typically 2p� 100 kHz) and oL is the
modulation angular frequency (typically 2p� 671Hz). It results in a current (IFM)
at oL at the drain electrode. This technique has a low current background and is
typically more sensitive than the 2-source technique, so we preferentially use it to
detect the eigenmodes of a nanotube resonator. The main drawback of the FM
technique is that the measured signal is not proportional to zvibra but to the
derivative with respect to the frequency of the in-phase component of the
displacement.

In the 2-source technique1, we apply a driving voltage Vac
g cosot to the gate

electrode in addition to a DC voltage Vdc
g . The motion of the nanotube is detected

by applying a second voltage Vac
sd to the source electrode. The two oscillating

voltages are slightly detuned, and the mixing current Imix is measured at the
detuning frequency (typically do/2p¼ 10 kHz). When the displacement is written
as zðtÞ ¼ Re½~zðoÞ� cosðotÞþ Im½~zðoÞ� sinðotÞ, the mixing current Imix measured
with the 2-source technique has the form16

Imix ¼
1
2
Vac
sd@VgG Vac

g cosðdot�jEÞþVdc
g
@zCg

Cg
Re½~zðoÞ� cosðdot�jEÞ

�

þVdc
g
@zCg

Cg
Im½~zðoÞ� sinðdot�jEÞ

�

ð7Þ

where G is the conductance of the nanotube, and jE is the phase difference
between the voltages applied to source and gate. For a properly tuned phase of the
lock-in amplifier, the out-of-phase component of the lock-in amplifier output, Y,
corresponds to the quadrature of the resonant displacement (third term in
Equation (7)), whereas the in-phase component, X, corresponds to the in-phase
component of the resonant displacement (second term in Equation (7)) added to a
background (first term in Equation 7) that weakly depends on the frequency near
resonance with a given mode (we note that it can have contributions from other
modes). When the driving frequency matches the resonant frequency, we get for
the Y-component of the mixing current Imix, which we denote as IYvibra,

IYvibra ¼
1
2
�Vac

sdV
dc
g �@VgG�

@zCg

Cg
�zvibra; ð8Þ

where zvibra is the amplitude of resonant forced vibrations. For the considered small
Vac
g , zvibra is proportional to the amplitude of Vac

g .

Estimation of vibration amplitude. Equation (7) allows estimating the vibration
amplitude of the resonator for resonant driving by comparing the out-of-phase
current on resonance, IYvibra, with the background far from resonance, IXoffres

1,16.
Using Equation (6), we get

zvibra ’ d� ln
2d
r

� �
IYvibra
IXoffres

Vac
g

Vdc
g
: ð9Þ

If we use the distance to the gate electrode d¼ 350 nm and a nanotube radius
r¼ 1.5 nm, the measurement in Fig. 3 yields a value of zvibra¼ 2.1 nm for the
modulation amplitude Vac

g ¼ 1.1mV.
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Detection of the motion of the equilibrium position. In the following, we explain
in more detail the technique we develop to detect the motion of the equilibrium
position of the nanotube resonator due to symmetry breaking. We drive the
resonator with an AM-driving force, which causes an AM vibrational motion
(Equation 2). The amplitude change of the vibration is quasi-adiabatic from the
point of view of the resonator (we checked that the result is independent of the
modulation period 2p/oAM down to 0.1ms.) In the presence of AM modulation
the quadratic nonlinear force F2pdz(t)2 leads to the oscillation of the nanotube
equilibrium position, dzeq, as illustrated in Fig. 1e.

The conductance G of the nanotube is a function of the total charge q of the
nanotube. Using Supplementary Equations (S1–S3), the linear dependance of G on
the displacement is

dGðtÞ ¼ @VgG�Vdc
g
@zCg

Cg
dzðtÞ: ð10Þ

The slow oscillation of the conductance is caused by the motion of the
equilibrium position due to symmetry breaking. As shown in Fig. 1e, for
comparatively weak resonant modulation, where the AM vibrational motion is of
the form of dz(t)¼ zvibra� cos(odrivet)� [1� cos(oAMt)], the equilibrium position

dzeqp dzðtÞ2
h i

oscillates with period 2p/oAM. The vibrations are nonsinusoidal,

dzeqðtÞ ¼ dz0eq � cosoAMtþ
3
4
þ 1

4
cos 2oAMt

� 	
: ð11Þ

The amplitude of the low-frequency current oscillation measured at oAM is
then simply

ILF ¼ Vdc
sd�dG ¼ Vdc

sdV
dc
g @VgG�

@zCg

Cg










dz0eq: ð12Þ

This current corresponds to the second term in the bracket of Supplementary
Equation (S11). By comparing Equation (12) to Equation (8) and recalling that Imax

LF
is defined as the low-frequency current when odrive matches the resonant
frequency, we get

Imax
LF ¼ 2IYvibra�

dz0eq
zvibra

�Vdc
sd

Vac
sd

ð13Þ

provided that Imax
LF and IYvibra are measured with the same driving force and IYvibra is

taken at the resonant frequency. (The driving force comes from the gate voltage
oscillation at frequency o; however, in the 2-source technique used to measure
IYvibra the voltage amplitude is not modulated; we note again that we study the
regime where Vac

g is comparatively small.)

Estimation of ILF due to capacitive nonlinearity. In this section, we estimate the
current that is expected due to the nonlinearity of the capacitance with respect to
displacement, @2

z Cg (see Supplementary Equations (S2, S3 and S11)). From
Supplementary Equations (S2 and S3), the current at oAM that we expect due to the
capacitive nonlinearity in the presence of a DC bias voltage (Vdc

sd ) has the form

IcapaLF ¼ Vdc
sd�dG ¼ 1

2
Vdc
sdV

dc
g �@Vg G�

@2
z Cg

Cg
z2vibra: ð14Þ

Comparing Equation (14) with Equation (8), we can express this current in
terms of the 2-source mixing current measured on resonance in Fig. 3. We get

IcapaLF ¼ IYvibra�
Vdc
sd

Vac
sd

� @2
z Cg

@zCg
zvibra; ð15Þ

where the currents are taken at the resonance frequency and for the same
amplitude Vac

g . This relation is useful, because it depends on a small number of
parameters. Using IYvibra ¼ 37 pA from Fig. 3b, Vdc

sd ¼ 10mV, Vac
sd ¼ 0.3mV,

qzCg¼ 5.6 pFm� 1, @2
z Cg¼ 21mFm� 2 and zvibra¼ 2.1 nm, we get that IcapaLF ¼ 9.7

pA±5 pA, which is far below Imax
LF ¼ 219 pA that we measured in Fig. 2c.

Estimation of ILF due to conductance nonlinearity. We estimate the current that
is expected due to the nonlinearity of the conductance with respect to the gate
voltage, @2

Vg
G, which is described by the last term in Supplementary Equation (S1).

From Supplementary Equations (S2 and S3), the current at oAM is

IcondLF ¼ 1
2
Vdc
sd ðVdc

g Þ2�@2
Vg
Gð@zCg=CgÞ2z2vibra: ð16Þ

Using Vdc
sd ¼ 10mV, Vdc

g ¼ � 0.4 V, @zCg¼ 5.6 pFm� 1, Cg¼ 12 aF, zvibra¼ 2.1

nm and @2
Vg
G¼ 54 mSV� 2, we get that IcondLF ¼ 0.19 pA. We determine @2

Vg
G by

twice differentiating the conductance in Supplementary Fig. S2a with respect to the
gate voltage.

Estimation of the symmetry breaking strength. In the presence of the AM
vibrational motion of the form of dz(t)¼ zvibra� cos(odrivet)� [1� cos(oAMt)]
and in the limit of small dz0eq (such that the leading-order term in the restoring
force is mo2

0dz), dz
0
eq is related to the parameter b as

o2
0dz

0
eq ¼ j b j z2vibra ð17Þ

Using Equation (17) together with Equation (13), we arrive at the relation

Imax
LF ¼ 2IYvibra�

Vdc
sd

Vac
sd

� j b j
o2

0
�zvibra: ð18Þ

Here again the currents are taken at the resonance frequency and for the same
amplitude Vac

g . This relation also depends on a small number of parameters that, in
addition, are well characterized. With IYvibra ¼ 37 pA from Fig. 3b, Vdc

sd ¼ 10mV,
Vac
sd ¼ 0.3mV, o0¼ 2p� 51MHz, zvibra¼ 2.1 nm and Imax

LF ¼ 219 pA measured in
Fig. 2c, we get dz0eq ¼ 0.18 nm and b¼ 4.3� 1024m� 1 s� 2.

An alternative estimation of b is possible using the fact that the symmetry
breaking force leads to a shift of the resonance frequency with driving force. We
have measured the shift of the resonance frequency as a function of the vibrational
amplitude with the FM technique as well as with our new detection technique. The
values measured with the two methods agree well and are plotted in Fig. 4d. We use
the relation41

Do0 ¼
3
8
geff
o0

z2vibra; ð19Þ

where Do0 is the shift of the resonance frequency and

geff ¼ g� 10
9
o� 2

0 b2: ð20Þ

(g is the coefficient of the Duffing nonlinearity, see Supplementary Equation (S8)).
We estimate geff¼ � 1.8� 1032m� 2 s� 2 from Equation (19) by inserting
zvibra¼ 2.1 nm, o0¼ 2p� 51MHz and Do0C� 2p� 150 kHz from Fig. 4d at the
driving voltage Vac

g ¼ 1.1mV. We then get b¼ 4.1� 1024m� 1 s� 2 from
Equation (20) by assuming that g is negligible. A nonzero value of g40 would
slightly increase the estimate for b. See Supplementary Discussion for yet another
method to estimate b.
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