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Discovery of the action of a geophysical
synchrotron in the Earth’s Van Allen radiation belts
Ian R. Mann1, E.A. Lee1, S.G. Claudepierre2, J.F. Fennell2, A. Degeling1, I.J. Rae1,3, D.N. Baker4, G.D. Reeves5,

H.E. Spence6, L.G. Ozeke1, R. Rankin1, D.K. Milling1, A. Kale1, R.H.W. Friedel5 & F. Honary7

Although the Earth’s Van Allen radiation belts were discovered over 50 years ago, the

dominant processes responsible for relativistic electron acceleration, transport and loss

remain poorly understood. Here we show evidence for the action of coherent acceleration due

to resonance with ultra-low frequency waves on a planetary scale. Data from the CRRES

probe, and from the recently launched multi-satellite NASA Van Allen Probes mission, with

supporting modelling, collectively show coherent ultra-low frequency interactions which high

energy resolution data reveals are far more common than either previously thought or

observed. The observed modulations and energy-dependent spatial structure indicate a mode

of action analogous to a geophysical synchrotron; this new mode of response represents a

significant shift in known Van Allen radiation belt dynamics and structure. These periodic

collisionless betatron acceleration processes also have applications in understanding the

dynamics of, and periodic electromagnetic emissions from, distant plasma-astrophysical

systems.
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I
t is now generally accepted that the acceleration processes
generating the relativistic electrons in the outer Van Allen
radiation belts act inside the Earth’s magnetosphere. However,

the processes which are most geo-effective in energizing the
belts under differing solar wind and geomagnetic conditions
remain hotly debated1–4. Prominent candidates for dominant
acceleration processes include resonance with waves in the
extremely low frequency/very low frequency band such as lower
band whistler mode chorus2,4,5, which violate the first adiabatic
invariant, and interactions with ultra-low frequency (ULF) waves
which violate the third invariant while conserving the first3,6–8, or
some combination thereof9.

Observations of local peaks in electron phase space density
have suggested the potential dominance of lower band chorus
acceleration2, although such signatures may also be generated by
short wavetrain coherent ULF waves10. Fast solar wind
speeds11,12, enhanced ULF wave power7,8,13, and enhancements
in radiation belt electron flux are also well correlated. Typically,
partly because of the paucity of observed discrete frequency
modulations in MeV electron flux, the ULF wave–electron
interaction is assumed to be stochastic and modelled using
radial diffusion theory3. Narrow-band coherent ULF waves can
accelerate particles proportional to time through drift resonance,
whereas diffusive radial transport is slower and acts as the square
root of time10,14. Determining the importance of coherent ULF
acceleration and transport is hence important for understanding
radiation belt morphology and dynamics; coherent acceleration
being analogous to particle acceleration in synchrotron machines.

In this Article, we present data and analysis of coherent
interactions between ULF waves and relativistic electrons in the
Van Allen belts. Using data from the Combined Release and
Radiation Effects Satellite (CRRES) and from the recently
launched NASA Van Allen Probes mission, we present observa-
tions of this coherent ULF wave acceleration process representing
the action of a process analogous to a geophysical synchrotron on
a planetary scale.

Results
CRRES observations and modelling. Figure 1 shows satellite
locations during a coherent large amplitude ULF wave–particle
interaction from 10:00–14:00 UT on 24 March 1991. The 24
March 1991 was a truly remarkable day for radiation belt physics
discovery, since around 8 h earlier following a sudden storm
commencement at 3:41 UT a new inner zone electron radiation
belt was formed in only a few minutes by a single shock passage
through the magnetosphere16.

The unfiltered ULF wave magnetic field from 10:00–14:00 UT
from the Oulu (OUL) station shown in Fig. 2 (top panel) is
remarkably monochromatic, having large amplitudes B400nT
p–p at L¼ 4.5 and the characteristics of a driven field line
resonance (FLR) standing along the background magnetic field, as
measured by European ground-based magnetometers in the local
noon sector17. Typically FLRs have maximum power in the
auroral zone around LB7–9 (ref. 18). However, in this case large
amplitude monochromatic ULF wave fields peaked in the heart of
the outer Van Allen belt. Likely the waves are a magnetospheric
cavity oscillation, excited in the near-noon sector by dynamic
pressure fluctuations in the solar wind (see Lee et al.17 for further
discussion).

The imprint of the coherent ULF wave can be seen globally
throughout the electron radiation belt in the omni-directional
flux from the SOPA instrument on two Los Alamos (LANL)
geosynchronous satellites19, and differential flux from the MEA20

(Medium Energy-A electron spectrometer) instrument on the
CRRES21 in-bound in the midnight-dusk local time sector
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Figure 2 | Ground-based and satellite observations from 24 March 1991.

From top to bottom: H-component magnetic field from Oulu (OUL) station

(61.4�N, 106.1�E, geomagnetic), omni-directional differential flux from the

SOPA instrument on the geosynchronous LANL 1990-095 and LANL 1989-

046 satellites, and 90� pitch angle differential flux from CRRES MEA,

respectively, from selected energy channels. The magnetic L-shells and

magnetic local time (MLT) of the CRRES satellite are shown in the axis

label; L-shell labels dipole magnetic field lines via the geocentric distance to

their equatorial crossing point in units of Earth radii.
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(Fig. 1). The panels in Figs 2 and 3a show ULF wave and electron
time series and power spectra, respectively. The second panel of
Figs 2 and 3a shows clear ULF modulation of electron flux at the
same frequency as the ULF waves seen on the ground at the Oulu
(OUL) magnetometer station (panel a). Note that the waves seen
at OUL exercise a non-local impact on the electrons, which is
seen by the satellite energetic particle detectors elsewhere around
the drift orbit. LANL 1990-095, in the pre-noon local time sector,
sees modulation peaking in the 315–500 keV energy channel with
clear 180� phase change across energy. As the gradient-curvature
drift frequency of the electrons increases with energy, the phase
change in the modulation as a function of energy is that expected
from what is effectively the response of harmonic oscillators with
different (drift) frequencies in response to a coherent single
frequency ULF wave driver through drift resonance6,10,13,14. This
is an expected but previously unreported observational ‘smoking
gun’ signature of ULF drift resonance with relativistic
(4B500 keV) electrons in the Van Allen belts13. Figure 3b
confirms the resonant amplitude and phase characteristics using
complex demodulation22 analysis applied to the LANL 1990-095
data. The CRRES data (shown in ref. 23) indicate a similar
resonant response, but with a larger phase change likely due to
crossing ULF resonance islands24 in-bound to lower-L. Note the
ULF advection of spatial gradients across the satellite can create
flux modulation, but with energy-independent phase13.

Figure 4 shows results from tracing 90� pitch angle electrons
using Liouville’s theorem with the Degeling and Rankin model24.
Resonant particles experience ULF wave drift resonance
o¼m �od, where o is the wave frequency, od is the particle
drift frequency and m is the (dimensionless) azimuthal
wavenumber under the action of a 1.67mHz FLR at L¼ 4.3
with m¼ 2 in a dipole field. An initial Gaussian spectrum with an
electron temperature of 0.1MeV is assumed, with background
radial gradients defined by conservation of the first adiabatic

invariant. The modelled flux response at geosynchronous orbit
(Fig. 4a), and along model CRRES trajectory (Fig. 4b), are in
excellent agreement with the observational data in Fig. 2. The
sharp rise in the CRRES data around 12:20 UT in Fig. 2 might
suggest a particle injection. However, the energy-dependent phase
response13 in the multi-satellite data (Figs 2 and 3) and modelling
(Fig. 4) provide the ‘smoking gun’ indicating a coherent and
monochromatic drift-resonant ULF wave interaction as CRRES
enters closed drift shells in the outer belt.

NASA Van Allen Probe observations. The launch of the two
satellite NASA Van Allen Probes (formerly named the Radiation
Belt Storm Probes (RBSP)) mission into near-equatorial geo-
transfer orbit from Cape Canaveral on 30 August 2012 heralds a
new era in radiation belt physics25. With apogee near L¼ 6, and
carrying a payload of a comprehensive suite of particle and fields
sensors designed to study the Earth’s radiation environment, the
Van Allen Probes offer a new opportunity for multi-point studies
of the dynamics of the radiation belts. Although the coherent ULF
acceleration seen in the CRRES data in Figs 2 and 3 is striking,
previous satellite data sets suggested that such modulations were
relatively rare, had limited impact across only a narrow range of
energies, and only lasted for short times. The unprecedented
energy resolution and cleanliness of the Energetic Particle
Composition and Thermal Plasma Suite (RBSP-ECT) data,
however, reveal an outer electron belt which very often displays
ULF flux modulation. Figure 5a shows spin-averaged, differential
electron flux data from the Magnetic Electron Ion Spectrometer26

(MagEIS) and Relativistic Electron Proton Telescope27

instruments in the RBSP-ECT suite from probe A (L¼ 6.01,
MLT¼ 5.94 at 16:00 UT), from 31 October 2012.

Following a sharp dynamic pressure increase, arising mostly
from a step in solar wind density, around 15:40 UT the
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RBSP-ECT data show clear ULF wave modulation at the drift
period spanning a very large range in energy from at least 200 keV
to over 4.5MeV. For example, at energies of around 1MeV, clear
modulation can be seen to last from at least 15:40–18:00 UT. In
Fig. 5, there is clear evidence of a modulation frequency which is
energy dependent. Higher energy particles demonstrate higher
frequency modulation, consistent with particle acceleration and
deceleration in response to the impulse generating drift-phase
bunching and hence modulations at the drift period–also known
as drift echoes. Although such drift echoes have been observed
before, the range in energy and the period of the response is
remarkably broad and long–reaching energies B4.5MeV, and
lasting from at least 15:40–18:00 UT. Interestingly, the 730 keV
energy channel does not show any ULF flux modulation – with
180� phase change in modulation across this channel. This will be
the subject of future analysis and detailed modelling.

Such drift echoes can be considered equivalent to the action of
an m¼ 1 drift resonance spanning a very broad range of energies
(and hence drift frequencies) in response to the broad frequency
ULF response excited in the magnetosphere by the solar wind
impulse. An important question is why such clear, and prevalent,
ULF modulation seen for such long intervals and across such a
wide range of energies by RBSP-ECT (of which this is but one
example of many) was not seen with other previous satellite
particle experiments? Figure 5b, which shows three channels of
MagEIS histogram data with unrivalled energy resolution of
around 9.6 keV, reveal the answer: phase mixing in broader
energy channels would likely quickly smear out ULF modulation.
In contrast to earlier observations, the ECT data (including the
MagEIS histogram data in Fig. 5b) demonstrate the richness,
complexity and energy and frequency dependence of the electron
radiation belt response which is being revealed by the Van Allen
Probes.

The period from around 15:40–16:20 UT in Fig. 5a reveals an
additional very interesting coherent ULF modulation at B5.6
mHz from around 20–450 keV. As in the LANL and CRRES data
from 24 March 1991 (Fig. 2), the RBSP-ECT ULF modulation
also shows a clear 180� phase change with energy suggestive of a
ULF wave resonant response. However, unlike the relativistic
CRRES event (resonant energy B500 keV), RBSP-ECT event
suggests a resonant energyB60 keV at apogee around L¼ 5.5. To
be resonant at the observed RBSP-ECT energy range requires a
high-m wave with mB44. RBSP-B (L¼ 5.9, MLT¼ 6.7 at 16:00
UT; data not shown) was also close to apogee and east of RBSP-A;
it saw modulation at similar energies, but neither as coherent nor

at the same discrete frequency at RBSP-A (see Claudepierre
et al.28 for further details and analysis).

Such low energy particles cannot complete entire drift transits
around the Earth during the ULF wavetrain, suggesting that ULF
modulation was only active very close to RBSP-A–evolution along
the drift path explaining the signals seen further east at RBSP-B.
Interestingly, the RBSPs were over the western CARISMA
ground-based magnetometer array29—with RBSP-A magnetically
conjugate to Dawson City. Only this station saw a clear coherent
B5.6mHz ULF wavetrain, the same frequency as the electron flux
modulation seen by the Van Allen Probes, suggesting narrow
azimuthal spatial localization. Such spatial localization of ULF
waves is expected for moderate-m FLRs which can be excited by
energetic particles. Localized ULF waves may be excited by unstable
ring current particle distributions30, providing a potential pathway
for the ring current to drive the radiation belts31. Further detailed
observational and modelling studies of such events are warranted28,
motivated by the discovery and observations presented here.

Discussion
The results presented here show that rather than having an
azimuthally symmetric structure the Van Allen belts can have
significant ULF modulation fine structure which manifests itself
as a function of particle energy, azimuth, L-shell and time (see
Fig. 5). Figure 5c in particular shows a schematic of the coherent
interaction between eastward drifting, relativistic Van Allen Belt
electrons and ULF waves in the magnetosphere. The wave–
particle interaction creates drift-phase bunched electrons which
are observed as flux modulations by energetic particle detectors.
Based on the observations presented here, coherent interactions
with ULF waves appear to be much more important for radiation
belt transport, structuring, dynamics and energization than
previously thought–challenging the standard paradigm in
radiation belt modelling that transport on the drift timescale is
always diffusive in nature. In the future, further analyses using
data from the Van Allen Probes mission will enable the relative
impact of multiple plasma wave–particle acceleration and loss
processes to be compared. Determining the nature of the
dominant acceleration and loss processes is essential for
developing more accurate physics-based space radiation forecast
models. Even under the contemporaneous action of very low
frequency wave acceleration, for example, as discussed by Reeves
et al.5, additional redistribution of radiation belt flux under the
action of ULF waves represents a critical element of belt
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dynamics. Similarly, in a broader context, our results present
observational evidence for the importance of the action of
coherent periodic betatron acceleration process in the dynamics

of wind-driven astrophysical magnetospheres. Nowhere else in
the universe is there the opportunity to observe in situ, and with
such clarity, the physical nature of these collisionless processes.
This can be contrasted with astrophysical studies which typically
have to rely on remote sensing using electromagnetic emissions
for inferences about the nature of the dominant plasmaphysical
interactions.
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