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Predictive codes of familiarity and context during
the perceptual learning of facial identities
Matthew A.J. Apps1,2,3 & Manos Tsakiris3

Face recognition is a key component of successful social behaviour. However, the compu-

tational processes that underpin perceptual learning and recognition as faces transition from

unfamiliar to familiar are poorly understood. In predictive coding, learning occurs through

prediction errors that update stimulus familiarity, but recognition is a function of both sti-

mulus and contextual familiarity. Here we show that behavioural responses on a two-option

face recognition task can be predicted by the level of contextual and facial familiarity in a

computational model derived from predictive-coding principles. Using fMRI, we show that

activity in the superior temporal sulcus varies with the contextual familiarity in the model,

whereas activity in the fusiform face area covaries with the prediction error parameter that

updated facial familiarity. Our results characterize the key computations underpinning the

perceptual learning of faces, highlighting that the functional properties of face-processing

areas conform to the principles of predictive coding.
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T
he ability to recognize the identity of individuals from their
facial appearance is a key component of social interactions.
Prerequisite to such abilities is that familiarity increases

with a face each time it is perceived, regardless of the viewpoint
from which it is being observed1–3. Recognition therefore requires
continuous and simultaneous updating of the familiarity of a face,
and recognition of whether the face has been previously perceived
or not based on its familiarity. In dynamic environments facial
identities and the viewpoints from which they are observed are
perceived in an intermixed manner within context. That is, facial
identities are viewed from multiple different angles and are
presented in social situations in which they are more likely to be
familiar or, conversely, unfamiliar4. Yet, there has been little
empirical investigation of how view-independent familiarity or
contextual effects modulate face recognition. Similarly, there has
been no investigation into the neural plasticity that underpins the
acquisition of familiarity with faces. We developed a model that
made predictions about the computational mechanisms that
underpin familiarity acquisition and the evolution of view-
invariant representations of faces. This model made predictions
about how each presentation of a face increases the likelihood
that the same face will be recognized and how such effects will be
modulated by context.

Predictive coding (PC) accounts of perception suggest that
recognition is a function of both contextual information and the
learning of stimulus properties. Recent evidence supports the notion
that information processing in the visual system can be accounted
for by PC mechanisms5–8. In PC information is processed in
hierarchically organized sensory systems, with the overarching
functional property of the brain being the explanation of incoming
sensory information with probabilistically the most parsimonious or
efficient model9,10. Predictive contextual information acts as a top-
down influence, with each node within the hierarchy processing
expectations about what sensory input there is likely to be. When
sensory input is discrepant from predicted input (that is, it is
surprising), prediction errors drive learning and pass this
information up the hierarchy8,11.

In this framework there are two features that are relevant for
the processes of perceptual learning that drive familiarity
acquisition. First, context-dependent expectations about likely
sensory input will be processed prior to a stimulus and modulate
the processing of that stimulus. For face familiarity acquisition,
that equates to a prediction about how familiar the upcoming
stimulus will be. The importance that is placed on this contextual
information in PC sets it apart from other models of learning and
attention in which recognition is tied directly to the particular
characteristics of the stimulus12,13. Second, perceptual learning
must occur when facial identities are repeatedly presented, in
order that future presentations of the face are less surprising.
Familiarity with facial identities should therefore be acquired
independently of context and viewpoint, in order that the
presentation of the same face from any angle is less surprising in
the future. However, no study has examined whether faces
become familiar and recognized in a manner that conforms to the
assumptions of a PC account. Here we developed a computational
model of face recognition around the assumptions of PC11,14,15,
to examine how contextual and viewpoint independent
information influence face recognition and its neural
underpinnings.

Previous neuroimaging studies have identified a cortical
network that is specialised for processing faces, which responds
more to faces than any other category of stimulus4,16,17. Within
this core face perception network, the fusiform gyrus (specifically
the fusiform face area or FFA) and a portion of the superior
temporal sulcus (STS) are purportedly important for the process
of recognizing the identity of faces18. Neuroimaging studies have

highlighted how each of these areas show differential responses
for correct versus incorrect face recognition and for familiar
compared with unfamiliar faces processing19–21. In addition,
these areas have been shown to respond, to a certain degree, to
faces regardless of the viewpoint from which they are being
perceived22,23. This evidence highlights these regions as candidate
areas for updating the familiarity of faces and processing
contextual information about how familiar a face is likely to be.

There were three main aims of this study: first, to investigate
how view-independent and contextual effects impact upon face
recognition; second, to investigate how activity in the FFA and
the STS changes during the acquisition of familiarity with a face
independently of viewpoint and third, to test whether the
evolution of activity in the these areas can be accounted for by
a PC-based computational model. Participants were presented
with one face on each trial from a set of 24 unfamiliar facial
identities while undergoing fMRI. On each trial, participants were
presented with one of the facial identities, from one of three
different viewpoints. They were required to indicate whether they
had seen the ‘person’ before in the experiment or not. Fifteen of
the facial identities were presented from each viewpoint four
times. The remaining nine faces were presented once from only
one viewpoint. Participants were therefore able to monitor the
trial-by-trial view-independent familiarity of the face that was
being perceived, but they were also able to process information
about how familiar the faces had been on previous trials, that is,
the contextual familiarity.

To analyse choice behaviour we used a computational model in
which the familiarity of each facial stimulus was a function of the
view-independent familiarity multiplied by the contextual
familiarity. Both of these factors were updated each time a face
was presented by ‘prediction error’ parameters that conformed to
the assumptions of PC. We fitted the parameters output by the
model to neural activity at the time that the faces were presented.
As was hypothesised the computational model predicted
recognition choices on the task suggesting that face recognition
is dependent on both facial familiarity and contextual informa-
tion. In addition, activity in the FFA and STS covaried with the
contextual familiarity and the updating of facial familiarity,
respectively. These findings highlight that the mechanisms
outlined in PC may be fruitful explicators of the computational
and neural processes that underpin face recognition.

Results
Behavioural results. Participants were presented with one facial
identity from a set of 24 on each trial, 15 of which were repeated
12 times across the experiment, four times from each of three
different viewpoints. They were required to indicate whether they
recognized the identity of the face or not (Fig. 1). Participants
showed a clear learning effect, with number of ‘yes’ responses
increasing the more times that a facial identity had been pre-
sented (Fig. 2). A one-sample t-test showed a significantly higher
number of ‘yes’ responses for the last three presentations of each
face, compared with the first three presentations of the faces
(t(14)¼ 14.661, Po0.0001). Such effects could not be accounted
for by subjects responding ‘yes’ more as the experiment pro-
gressed, as novel faces were presented throughout (see Methods).
In addition, the familiarity of faces varied considerably over the
experiment (Fig. 1b,c)

We fitted a computational model to participant choices (see
Methods), in which decisions were assumed to be guided by the
overarching level of familiarity (F) with a stimulus. This
overarching familiarity was calculated as a function of the view-
independent familiarity (V) (that is, the level of familiarity with a
facial identity) multiplied by the context-dependent familiarity
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(C). C is the likelihood that a face will be recognized depending
on the view-independent familiarity of facial stimuli on the
preceding trials (for example, if the last five facial stimuli have
had a high level of view-independent familiarity, then the
context-dependent familiarity will be high, increasing the
likelihood that participants will indicate that they recognize a
face). Each of these two factors is updated by delta-learning rules
in a manner that conformed to the principles of PC (Methods).
That is, view-independent familiarity was updated by calculating
the discrepancy between the current view-independent familiarity
with a facial identity and the maximum familiarity of a facial
identity (we refer to this difference signal as the view-independent
update, d), multiplied by an idiosyncratic learning rate parameter
(a). The context-dependent familiarity was updated by a
prediction error parameter (e) that was calculated as the
discrepancy between the current view-independent familiarity
of a stimulus (V) and the context-dependent familiarity of faces
on preceding trials (C), multiplied by an idiosyncratic free
parameter. To ensure that this model was a good fit to the
behavioural data, we also compared its fit with the data with five
other ‘control’ models (see Fig. 2b and Supplementary methods).

t-tests between the winning model in which behaviour was a
function of view-independent and context familiarity had a
significantly higher negative log-evidence (Fig. 2) than all of the
control models (n¼ 15, Po0.05, FDR) apart from one, in which
the overall familiarity with a stimulus was a function of the view-
independent familiarity, the view-dependent familiarity (that is,
the familiarity of a face from the particular view it is being
perceived from) and context-dependent familiarity. However, this
control model contained a larger number of free parameters and
therefore its explanatory power is artificially boosted due to its
greater complexity. Despite this boosted explanatory power, its
summed log-evidence across participants was still lower than the
experimental model and thus, our experimental model reflected
the most parsimonious account of behaviour on the task.

To determine whether the experimental model significantly
explained the participants’ choices, we correlated the overall
familiarity (F) for each trial with the choices made by each
subject. A Spearman’s rank test revealed highly significant
correlation between these two factors (n¼ 15, R2¼ 0.41,
Po0.0001). Thus, a model in which facial familiarity is acquired
independently of viewpoint and decisions are made based on the
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Figure 1 | Trial Structure and trial order. (a) Each trial began with a 750ms face stimulus. This cue consisted of a single, coloured FaceGen stimulus

provided by the Social Cognition and Social Neuroscience Laboratory, Princeton51. The presentation of the face stimuli were jittered over the first two TRs

(TR¼ 3s) of each trial. The faces could be presented front on, 30� from the left (as above) or 30� from the right. The face stimuli were followed by a trigger

cue (1,000ms), which was jittered over the third and fourth TRs of each trial, at which point participants indicated their response on a keypad. This design

allowed us to sample activity at the time of the face stimuli independently from activity at the time of the trigger cue. The positions of the ‘yes’ and ‘no’ in the

trigger cue were randomly assigned to the left and right of the screen. Participants indicated the left response with their first finger and the right response with

their second finger. (b) Variability in the contextual familiarity was introduced by varying the average number of previous presentations of faces over a rolling

average of five trials. When the rolling average of the number of times previous faces had been seen was high, the contextual familiarity could be considered

as high and vice versa for low contextual familiarity. (c) Varying rate of novel faces over trials displayed as the rolling average of novel faces, regardless of

viewpoint over trials. The first ten trials are displayed as zero, to reflect the absence of a rolling average over 10 trials for these first stimuli.
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ongoing context-dependent familiarity significantly correlates
with the behaviour of participants on this face recognition task.

To identify whether the two components of our model (the
view-independent familiarity (V) and the context-dependent
familiarity (C)) predicted choices on the task we performed a
logistic regression between the values of these parameters and
choices on every trial. The two variables were entered as
predictors in a stepwise manner such that V was entered after
C to identify whether V predicted choices and C was entered after
V to identify whether C predicted choices. As such, only the
variance unique to each was examined when examining their
predictive power. To test whether there was a significant effect at
the group level, we took the betas output by the single-subject
regressions and performed a t-test between these betas and zero.
We found that both V (n¼ 15, t(14)¼ 6.669, Po0.001) and
C (n¼ 15, t(14)¼ 3.417, Po0.004) showed a significant effect.
Thus, both components of our model independently predict
choices on the task. That is, both learning the familiarity of a face
and also the contextual influence of the familiarity of other
recently perceived faces influences the likelihood of recognition.

An important feature of our hypotheses is that we argue that
previously perceived stimuli, even when they are different facial
identities, influence choice behaviour. Our model therefore
predicts that responses on trials should be consistent with
responses on previous trials and also that choice behaviour is
influenced by previous stimuli, even when a stimulus being
perceived violates the context instantiated by preceding trials. To
test the first of these tenets and highlight the effects of context on
choice behaviour, we analysed the consistency between responses
on a given trial (n) and responses on previous trials (n� 1, n� 2,
n� 3 and n� 10). We calculated the ratio of
‘yes’ or ‘no’ responses that were consistent with the responses

on a previous trial and baseline-corrected this measure by
the percentage of ‘yes’ trials across the whole experiment or the
percentage ‘no’ trials in the experiment depending on what
the response was on trial n. This enabled us to calculate the
percentage of trials that were consistent or inconsistent with
responses on previous trials without bias. A one-sample t-test
revealed that responses on n� 1 trials were significantly more
consistent with responses on trial n (mean¼ 8.2%,
s.e.m.¼±3.43) than predicted by chance (n¼ 15, t(14)¼ 2.415,
Po0.05). Responses on n� 1 trials were significantly more
consistent with responses on trial n than responses on trial n� 3
(n¼ 15, t(14)¼ 2.272, Po0.05FDR) or n� 10 trials (n¼ 15,
t(14)¼ 3.664, Po0.05 FDR). Responses on n� 2 trials were
also significantly more consistent than predicted by chance.
These results support the notion that responses on trials were
consistent with responses on the immediately preceding trials
more than any other, supporting our claim that context
influences recognition.

Our model predicts that responses to stimuli that are of equal
view-independent familiarity should be different when the view-
independent familiarity is congruent or incongruent with the
contextual familiarity. To examine this effect, we analysed the
number of ‘yes’ responses on ‘catch trials’ where the levels of
view-independent and contextual familiarity were incongruent,
with the responses on trials where these two factors were
congruent. To define the catch and non-catch trials, we calculated
the running average (over five trials) of the number of times a
face had been seen previously during the experiment. This is a
corollary of the level of contextual familiarity over trials. We then
selected the trials where the number of times the face had been
presented previously during the experiment was (A) more than
four times greater than the rolling average and (B) more than
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four times less than the rolling average. This gave us the catch
trials where the model would predict a bias towards responding
(A) ‘yes’ or (B) ‘no’ as a result of contextual familiarity. There
were 10 trials that fell into each of these categories. To compare
these with comparable trials where the level of familiarity of
stimuli and the contextual familiarity were congruent, we picked
the trials where the number of times the face had been presented
was within two of the rolling average in high and low contextual
familiarity conditions.

This created four trial-types: congruent high contextual
familiarity (where over the previous five trials, the average
number of times the faces had been presented previously during
the task was high (mean¼ 10.3) and the facial identity on on trial
n had been presented on average 10.3 times during the
experiment); incongruent low contextual familiarity (where the
identity presented on trial n had been presented on average 10.2
times during the experiment, but over the previous five trials, the
average number of times the faces had been presented previously
during the task was low (mean¼ 4.6)); congruent low contextual
familiarity (where the identity presented on trial n had been
presented on average only 1.5 times previously during the
experiment and over the previous five trials, the average number
of times the faces had been presented previously during the task
was also low (mean¼ 1.98)); and incongruent high contextual
familiarity (where the facial identity on trial n had been presented
on average 1.5 times during the experiment, but over the previous
five trials, the average number of times the faces had been
presented previously during the task was higher (mean¼ 6.2)).
Our model would predict that contextual information would bias
‘yes’ responses on the task when the contextual familiarity was
higher than the familiarity of the stimulus and bias ‘no’ responses
when the contextual familiarity was lower than the familiarity of
the stimulus. In line with the first of these predictions, a t-test
revealed significantly more ‘yes’ responses on the congruent high
contextual familiarity (M¼ 83%) trials as compared with the
incongruent low contextual familiarity (M¼ 67%) condition
(n¼ 15, t(14)¼ 3.055, Po0.005 FDR). As such, when previously
seen faces had been less familiar than a face being perceived, the
subjects were less likely to recognize the stimulus than when an
equally familiar stimulus was seen in the context of high
familiarity. A t-test did not show any significant differences
between the congruent low contextual familiarity and the
incongruent high contextual familiarity (n¼ 15, t(14)¼ 0.636
P40.05 FDR). However, broadly speaking, the first result
provides further behavioural evidence in support of the effects
of context and validation of our model.

fMRI results. We examined activity time-locked to the face sti-
muli and performed a parametric analysis. We took a region of
interest (ROI) approach and examined activity in three regions
within the core face perception network that were identified by a
localizer (Supplementary Fig. S1). This included the right STS and
bilateral FFA. The aim of the study was to identify whether activity
in these regions covaried with parameters from the computational
model. We tested whether the activity in these regions could be
explained by any of the following parameters: first, the overall
familiarity (F, view-independent familiarity (V)� context famil-
iarity (C)); second, the view-independent familiarity (V); third, the
view-independent update (d, the discrepancy between view-inde-
pendent familiarity for that identity and the maximum famil-
iarity); fourth, the context-dependent familiarity (C) and fifth, the
context-dependent prediction error (e, discrepancy between the
predicted and actual familiarity of a face).

In line with our hypotheses, t-tests revealed that activity in the
FFA and in the STS covaried significantly with only one of the

parameters from the computational model. Activity in both the
right (n¼ 15, t(14)¼ 4.405, Po0.0005) and left (n¼ 15,
t(14)¼ 9.661, Po0.0001) FFA was found to vary parametrically
with the view-independent update parameter (d) in the model
(Fig. 3). t-tests between the beta coefficients of this parameter and
each of the other parameters from the model showed a significant
difference between each parameter and the view-independent
update parameter in both the right and left FFA (n¼ 15, Po0.05
FDR). A random-effects (RFX) group analysis supported this
finding, identifying activity bilaterally within the FFA that
covaried with the independent-update parameter from the model
(Fig. 3).

t-tests revealed activity in the right STS that varied parame-
trically with the context-dependent familiarity (C) parameter
(n¼ 15, t(14)¼ 3.447, P¼ 0.002). t-tests between the beta
coefficients of this parameter and each of the other parameters
from the model showed a significant difference between each
parameter and the context-dependent parameter in the right STS
(n¼ 15, Po0.05 FDR). The RFX analysis also identified a portion
of STS in which activity covaried statistically with the
independent update parameter (Po0.05 svc). Importantly, we
found no effects of any of our variables in the parahippocampal
place area (PPA), an area that responds to objects but not faces,
suggesting that our effects were specific to faces in this task
(Fig. 3).

In addition to the ROI analysis, we performed a RFX analysis
that examined activity which covaried with any one of the
parameters within the model, beyond the FFA and STS. t-tests
revealed activity in the posterior cingulate sulcus (PCC), (BA23c0;
MNI coordinates: � 18, � 30, 40; Z¼ 3.40, Po0.05 svc) that
varied with the overall level of familiarity.

In summary, we have shown that activity in the FFA correlates
with the amount that the familiarity of a face is updated every
time it is perceived, while activity in the STS signals the
contextual familiarity of recently perceived faces and the PCC
signals the overarching familiarity of a stimulus.

Discussion
Becoming familiar with the visual properties of another’s facial
features and recognizing their identity regardless of the viewpoint
from which they are observed is a key feature of human face
recognition. Here we used a computational model that was built
around the principles of PC11, which allowed us to examine
behaviourally whether both view-independent and contextual
familiarity influence face recognition. We tested whether the
activity in the STS and the FFA at the time that a face is perceived
covaried with parameters from the computational model.

In line with our predictions, the level of familiarity calculated by
the model significantly predicted participants’ choices and also fit
the behavioural data better than control models that were based
around alternative assumptions. The fMRI results revealed that
activity in both the FFA and the STS both covaried exclusively with
one of the parameters from the model. The STS covaried with the
contextual familiarity of faces on preceding trials, while FFA
activity covaried with the parameter that updated the familiarity of
each facial identity. These results highlight how face recognition is
dependent both upon the view-invariant familiarity of a facial
identity and also the context within which the face is perceived.
Our results are therefore consistent with the view that faces become
familiar and recognized by processing in the FFA and the STS that
conforms to the principles of PC.

There is considerable evidence that the FFA is activated during
the recognition of facial identities24. Lesions to this region can
cause prosopagnosia25, the inability to recognize the identity of
familiar individuals, while leaving the ability to detect the
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presence of a face intact. Numerous studies that have employed
fMRI adaptation paradigms have demonstrated the sensitivity of
the FFA to differences in face identity21,26–30. In such paradigms
the FFA shows a decreased response when one face stimulus is
presented twice in rapid succession, when compared with the
response when two novel stimuli are presented in the same
manner. This adaptation effect is present even when the face is
shifted in the field of view, changed in size or spatial scale. This
suggests that the FFA is engaged when processing the identity of a
face and not by the processing of lower level visual properties. In
this study, we did not use a repetition suppression design, but our
results support the notion that the FFA processes facial identities.
In addition, our results support the findings of neurophysiology
studies that have found a region of the inferior temporal cortex,
which is homologous to the FFA, that contains neurons in which
the spike frequency declines in a non-linear manner over

repeated presentations of the same face31. Our model would
predict such a non-linear decline in activity in the FFA over
repeated presentations of the same face. Furthermore, we have
shown that this signal relates to the updating of the familiarity of
a face and thus the likelihood that the face will be recognised in
the future.

Despite the evidence from repetition suppression studies
indicating that the FFA is sensitive to information about the
identity of a face, it has previously been unclear what functional
property of the FFA drives such repetition suppression effects24.
Our results offer a novel interpretation of adaptation in the FFA.
In our model, the view-independent update signal declines with
each presentation of a stimulus. Each time a face is presented it
has become more familiar and thus less updating needs to be
performed for the face to be recognized in the future.
Accordingly, we predicted and have shown in this study that
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Figure 3 | fMRI results showing activity correlating with parameters from the model. Activity shown in brain areas targeted for ROI analysis. Clusters

shown are taken from t-tests (n¼ 15) on the complimentary random-effects analysis. Activity shown in (a) the right (46, � 56, � 26, Z¼ 2.5,

Po0.05 svc) and left FFA (42, � 66, � 16, Z¼ 2.8, Po0.05 svc) covarying with the parameter that updated the familiarity of the face. Activity shown

in the STS (e) covarying with the contextual familiarity from previous trials (66, � 24, �4, Z¼ 3.24, Po0.05 svc). Activity shown in the PCC

(g) covarying with the overall level of familiarity that drove recognition judgements. Plots of the contrast estimates for each of the five parameters from the

model for the (b) right FFA (c) the left FFA (d) the STS and the (f) PCC from the ROI analysis. Additional plots from the right (h) and left (i) PPA

showing that activity in this area did not covary with any of the parameters from the model. Error bars depict the s.e.m.
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the signal in the FFA should decline each time the same face is
presented. Thus, in a repetition suppression paradigm, when two
stimuli are identical our model predicts a large updating signal
when the first stimulus is presented and a smaller updating signal
when the second, identical face is presented. However, when the
second stimulus is novel and distinct from the first face stimulus,
the updating signal will be high for both faces. Thus, our model
predicts that a greater BOLD signal would be evoked by two
different, unfamiliar facial identities than two presentations of the
same identity, as is found in the FFA in repetition suppression
studies29. The results of our study therefore suggest that facial
identity adaptation effects in the FFA may in fact be a result of
differences in the amount of familiarity updating that occurs
when stimuli are repeated compared with when stimuli are novel.

It is notable that previous studies have found that activity in
the FFA is sometimes dependent upon the viewpoint from which
the face was first perceived32,33. In contrast, our study suggests
that FFA activity is view-independent. How can these two
findings be reconciled? We argue faces are rarely seen from one
static viewpoint. Therefore, while the FFA may contain neurons
that respond in a view-dependent manner, in dynamic
environments, these responses will be combined at the
population level into a response that is view-independent. Thus,
sensitivity to both view-dependent and view-independent
information in the FFA is consistent with our claims that this
region is engaged when updating the familiarity of a face.

We observed that activity in the FFA correlates with the amount
that the familiarity of a face is updated. This would suggest that
activity in the FFA will be higher for faces that are unfamiliar than
familiar, which largely contradicts previous accounts that argued
that FFA activity should be greater for familiar compared with
unfamiliar faces, if it is involved in identity recognition34.
A neuroimaging study using personally unfamiliar facial stimuli,
which then became familiar during a learning session, supported
the notion that FFA processes a familiarity updating signal, with
greater activity evoked by unfamiliar than familiar faces in the
testing session19. The only previous study that investigated changes
in the BOLD response over repeated presentations of faces also
reported a decrease in activity in the FFA over time for the faces
that were repeated across sessions35. However, in that study activity
was measured across blocks of stimuli and across sessions and not
specifically at the time of each face stimulus, as was the case in our
study. In contrast, studies using personally familiar faces and faces
of celebrities, report either greater activity for familiar faces or no
difference between familiar and unfamiliar faces in the FFA at
all34,36,37. We argue that such effects may be result of inherent the
difficulties in comparing the visual familiarity of such stimuli. We
suggest that the FFA is engaged when the visual properties of the
face are updated and not by any form of affective, cognitive or
autobiographical familiarity. Such an account would be consistent
with the mixed findings in studies of face familiarity processing,
where controlling for the visual familiarity of faces is almost
impossible.

Recent studies also highlight how the FFA processes information
in a manner that conforms to the principles of PC5–7,38. In these
studies the FFA was shown to process predictions and prediction
errors for the presence of a novel face stimulus, when face and
house stimuli were intermixed. Thus, in those studies the activity in
the FFA was driven by the detection of faces as opposed to
recognition of faces. In our study, where all stimuli were faces, the
processing was specific to face recognition rather than detection.
This is consistent with the established notion of the FFA having a
dual-role in both recogtion and detection24. Thus, the conjunction
of our results and previous studies investigating PC mechanisms
reveal that both face detection and recognition may be accounted
for by PC processes operating within the FFA. In addition, our

results extend upon previous studies investigating PC by providing
the first empirical support for the notion that perceptual learning
processes in regions, which are specialized for processing particular
categories of stimuli, conform to similar computational principles
as those underpinning attention and stimulus detection8,39,40.

Perhaps the most novel of our findings is that the STS processes
contextual information about stimulus familiarity24. The STS
contains patches of cells that are face-selective in monkeys3,41. In
human neuroimaging repetition suppression studies the posterior
portion of the STS is known to be sensitive to gaze direction and
emotional expressions42, but also shows sensitivity to facial
identities21,28. If the STS processes such a variety of different
types of information about faces, what is its role is face perception?
Our results suggest that an important function of the STS may be
to process predictive information about task-relevant features of
faces. In a PC framework, these predictions are probabilistic and
are therefore updated by every face stimulus. There is evidence to
support the notion that STS flexibly processes contextual
information about faces, with several studies showing that
information about gaze direction and emotional expressions are
only processed in certain circumstances43,44. Importantly, the STS
has been found to show greater activation when contextual
expectations about others’ based on their gaze direction or facial
expression are violated, in a manner that is akin to prediction error
signals in PC45,46. We therefore argue that an important functional
property of face-selective portions of the STS is to process
probabilistic task-relevant information about faces in a manner
that conforms to the principles of PC.

Activity in the PCC covaried with the familiarity of each
stimulus as a function of both the view-independent familiarity
and the contextual familiarity. This suggests that information
about different forms of familiarity converges in the PCC,
resulting in activity that is graded with the likelihood that a
participant will decide that a face is recognized. Recent reviews of
PCC function suggest that its overarching functional property is
to signal the salience of information that guides decisions across a
broad range of different domains, including face perception47.
Single-unit recording studies also support this notion by
identifying neurons in which the firing properties are graded
with the likelihood of a change in choice behaviour48,49. The
same portion of the PCC also contains neurons that respond to
the salience of face stimuli50. The PCC has also been found to
respond more to familiar faces than unfamiliar faces in
neuroimaging studies19,35. These results are therefore consistent
with the view that PCC activity is graded with the trial-by-trial
familiarity of a stimulus when the task is to decide whether the
face has been seen before or not.

In conclusion, the results are consistent with the view that
familiarity can be acquired with faces regardless of the viewpoint
from which they are perceived, but the decision of whether a face
will be recognized is also dependent on how familiar recently
perceived faces have been. The study highlights that an important
functional property of the FFA is to update how familiar a facial
identity is. In contrast, the STS processes task-relevant, contextual
information about the recent history of the familiarity of faces.
These results highlight how the important process of becoming
familiar with a face and recognizing its identity may be
underpinned by the computations predicted by PC.

Methods
Participants. Participants were 16 (a standard sample size for fMRI research)
healthy right-handed participants (aged between 18 and 30; 10 female), screened
for neurological and psychological conditions. One (male) subject failed to show a
learning effect and become familiar with the facial identities during the experiment.
This participant was excluded from the analyses. Subjects were paid d10 for their
participation. Subjects gave written informed consent and the study was approved
by the Royal Holloway University of London Psychology Department Ethics
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Committee and the study conformed to regulations set out in the CUBIC MRI
Rules of Operations (http://www.pc.rhul.ac.uk/sites/cubic/).

Participants took part in an fMRI study that investigated how familiarity is
acquired with the visual features of facial identities. Participants were presented
with trials (Fig. 1) during which they saw a single Facegen computer-generated
facial stimulus (see Supplementary methods for more details) that was presented at
one of three different viewpoints51. The faces could either be presented front on or
at a 30� angle from the left or the right. The participants’ task was to decide
whether they had seen that facial identity, regardless of the viewpoint at which it
was being shown from or had previously been shown from during the experiment.
There were 24 facial identities which the participants were completely unfamiliar
with before the experiment. Nine of these identities were presented only once from
one viewpoint. Fifteen facial identities were presented 12 times during the
experiment, with four repetitions of each identity from each viewpoint. Participants
were therefore required to try and recognize faces from novel viewpoints, even if
they had not seen that face from the viewpoint before.

The order of presentation of the face stimuli was partially pseudorandomized. The
order with which each identity was presented from the different viewpoints was
randomized, such that the different facial identities were not presented in the same
order of viewpoints. However, important elements of the stimulus order were
controlled in order to examine, in line with one of the aims of the experiment, the
contextual effect of the familiarity of previously perceived faces. To that end, it was
important to vary the level of familiarity of faces throughout the experiment. Periodic
changes in familiarity were introduced by breaking the trials up into five blocks and
controlling the stimulus order in the latter four blocks. Another control on the order
of presentations was that novel facial identities were introduced throughout the
experiment, such that participants were not able to perform the task more accurately
during the experiment by increasing the number of ‘yes’ responses (Fig. 1).

Computational modelling. To analyse the behavioural responses of participants
we used a computational modelling approach. Our aim was to examine whether
the behaviour of participants could be accounted for mathematically by a model of
facial familiarity acquisition that is underpinned by the assumptions of predictive
coding. We created one experimental model that tested specific predictions about
the processing of facial familiarity. In addition we developed five control models
that tested alternative possible explanations of participants’ responses on the task.
This approach allowed us to test whether the behaviour of participants on the task
could be accounted for by our experimental model and not by other alternative
explanations of how facial familiarity might be acquired.

Previous behavioural studies have highlighted how facial familiarity can be
acquired partially independently of the view from which the face is first viewed
at52,53. That is, faces can be recognized from one viewpoint, even if they have
previously only been viewed from a different viewpoint. As such, familiarity can be
acquired with a facial identity and transferred to another viewpoint, to reflect an
overarching level of familiarity with a face. We therefore assumed that behaviour
on our task would be a function of familiarity that was acquired regardless of the
viewpoint from which faces were perceived from. However, predictive coding
accounts also highlight the importance of top-down context-dependent
expectations about likely sensory input as modulators of behavioural responses9.
We therefore also assumed that facial recognition will be dependent on the
moderating effects of contextual information. We created a model in which the
familiarity of a facial stimulus was a function of (i) the view-independent
familiarity with the facial identity and (ii) the familiarity of previously viewed faces,
that is, how familiar the faces were on previous trials. Thus, our experimental
model assumed that each choice of whether a face is recognized or not will be
dependent upon the familiarity of that facial identity moderated by how familiar
the recent history of perceived faces.

Predictive coding accounts make predictions about how information will be
processed in the cortex. One suggestion is that information will be processed in
terms of predictions and violations of expectations (prediction errors). For
perceptual learning and stimulus recognition to occur, predictive information must
reflect the familiarity with a stimulus, and prediction errors the discrepancy
between how familiar the stimulus was before it is perceived and how familiar the
stimulus will be if it is perceived in the future8,11. We therefore created a model in
which the view-independent familiarity and the contextual familiarity were
updated by prediction error signals.

In our experimental model, therefore, the overarching familiarity (F) of a
stimulus is a function of the view-independent familiarity (V) multiplied by the
contextual familiarity (C).

FðtÞ¼VðiÞ�CðtÞ ð1Þ
On each trial (t), the level of familiarity (F), and therefore the likelihood of

responding that the face is recognized, is a function of the view-independent
familiarity of the facial identity (i) being perceived, multiplied by the contextual
familiarity. The view-independent familiarity was updated for a facial identity on
each trial where that facial identity was perceived. As such, on future trials where
the same face was perceived, the familiarity with that face has been updated and is
now more likely to be recognized. The view-independent familiarity was assumed
to be updated by a simple delta-learning rule:

Vði;nþ 1Þ¼V i;nð Þ þ ad ð2Þ

where:

d¼l�V i;nð Þ ð3Þ

where V is the view-independent familiarity of an identity (i). n is the number of
presentations of each identity from any viewpoint. d is the updating parameter of the
view-independent familiarity. In (3) it is calculated as the difference between the
maximum familiarity of any facial identity (l) and the view-independent familiarity
of the nth presentation of that identity. It equates to a prediction error signal as
found in predictive coding models, where the discrepancy is calculated between the
probability of the occurrence of a sensory event and the actual sensory event. The
prediction error therefore updates predictions about the likelihood of a sensory event
occurring following an actual sensory event. However, in our model, we calculate the
discrepancy between the current familiarity of an individual’s face and the maximum
familiarity of a facial identity. This discrepancy signal is then added to the current
familiarity of that identity, such that that the familiarity of a facial identity is
increased, increasing the probability that the face will be recognized the next time it is
perceived. To account for individual differences in the rate at which individuals learn
to recognize faces, we multiplied the independent update parameter by a, an
idiosyncratic free parameter which was scaled between zero and 1. This scaled the
rate at which familiarity was acquired with the facial identities. To reflect the fact that
participants made false positive responses, that is, they responded ‘yes’ to facial
identities that had not previously been seen, the initial value of V for all of the
identities was set idiosyncratically for each participant. We defined the initial value of
V as the percentage of false-positive responses on the 24 stimuli that were the first
presentations of each face, multiplied by l, the maximum familiarity parameter. The
initial value of V therefore reflected the baseline level of familiarity as a function of
how familiar faces could become for that participant during the experiment.

It is important to note that the asymptotic value of familiarity is used to calculate
the view-independent familiarity updating signal. We therefore make the assumption
that the subject is calculating the difference between the maximum familiarity of a
face and its actual familiarity, before the maximum level of familiarity with that face
is known. We suggest that this maximum familiarity is developed ontogenetically
and reflects a tuning property of neurons involved in the perceptual learning of facial
identities. As such, we suggest that this asymptotic value is akin to the values
calculated in the Rescorla–Wagner model in reinforcement learning13,54–57 and the
Pearce–Hall12 algorithm in attention-based error learning, which have been shown
to be effective models of other types of learning.

To model contextual effects we multiplied the trial-by-trial view-independent
familiarity by a context-dependent parameter (C). This contextual parameter was
also updated by a delta-learning rule. However, this delta-learning rule was
updated on every trial, regardless of the identity of the face:

Cðtþ 1Þ¼C tð Þ þ se ð4Þ

where:

e¼C tð Þ �V i;tð Þ ð5Þ
In (4) C is the contextual familiarity on trial (t). This is updated such that the

contextual familiarity on the next trial will be a function of the current contextual
familiarity added to the ‘prediction error’ (e) multiplied by an idiosyncratic learning
rate (d). The prediction error is calculated as the difference between the current
contextual familiarity on that trial (C) and the view-independent familiarity of the
current stimulus. The learning rate parameter therefore dictates how sensitive the
participant is to trial-by-trial changes in the familiarity of facial stimuli.

The updating signals in this model are akin to the prediction error signals that
are an important component for how information is updated in PC. We note that
most formulations of PC rely on Bayesian principles14,58, an approach that we have
not employed in this study. There are multiple formulations of PC that use
different Bayesian-based approaches to model surprise signals and perceptual
learning11. Testing each of the alternatives would not be possible within the scope
of one study. Thus, we used a model which tested whether behaviour and activity
in the brain could be explained by the basic principles that are common to all PC
formulations. We were therefore able to test whether the underlying assumptions
of PC can account for face-recognition processes.

Model estimation. To fit the experimental model to the data, the familiarity (F)
needed to be converted to a probability that would reflect the likelihood that the
participant would recognize the facial stimulus and respond ‘yes’. To do this we
used a Luce choice rule, which has previously59,60 been used for fitting models to
two alternative choice tasks in both economic and psychological tasks, to calculate
the probability that the familiarity would lead to a ‘yes’ response:

Pyes tð Þ¼
1

1þðeð�b:F tð ÞÞÞ ð6Þ

To calculate the probability of a ‘no’ response we calculated

Pno tð Þ¼1�PyesðtÞ ð7Þ
The Luce choice rule converts the Familiarity (F) on each trial to a probability,

such that higher values of F reflect an increased probability of participants
recognizing a face. If the participant made a ‘yes’ response, then P was calculated
as in (6). If the participant’s response was ‘no’ then P was calculated as the
inverse of Pyes(t). In (6) b is an idiosyncratic free parameter that reflects the
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stochasticity of the participants choices on the task, and therefore their sensitivity
to the value of F(t).

The model we used in this experiment contained several free parameters
that we estimated separately for each participant. To fit the model to the data we
used a maximum likelihood approach. We varied each parameter within a set range
to identity the set of parameters that optimally explain the choices of each
participant on the task. We varied the view-independent learning rate parameter
(a) between 0 and 1 in steps of 0.01, the context-dependent learning rate (d)
between 0 and 1 in steps of 0.01, the maximum familiarity (l) between 0 and 2 in
steps of 0.01 and we varied the stochasticity parameter (b) between 0.1 and 20 in
steps of 0.1. The output of the Luce choice algorithm is a series of probabilities,
based on the values of each of these parameters and the choices made by the
participant. To select the parameters that best fitted the choice behaviour, a
maximum likelihood approach was used. By using a maximum likelihood
algorithm it was possible to maximize the probabilities of the choices made by the
subjects and estimate the values of each of the parameters that produced the
behaviour.

L¼
X

t

ln PaðtÞ ð8Þ

where the likelihood of each set of parameters (L) is determined by the log of the
probability of the chosen response (Pa) at trial t, according to the model. If the
model perfectly predicts the responses, the probability of every chosen response
would equal 1 and L would be 0. As the probabilities becomeo1 the log-likelihood
L assumes negative values. The best fitting parameters were then selected using:

y
0 ¼ argmax y ðLÞ ð9Þ

This identified the set of parameters for which L was closest to 0, that is,
the best fitting parameter set. Where y is the parameter set and L is the
log-likelihood.

In addition to this main experimental model we also created five control
models. Each of the models assumed that each presentation of a stimulus updates
familiarity with stimuli on future trials within a delta-learning framework.
However, the factors that drove the familiarity in each of the models were distinct
from the experimental model. Two of these models assumed that behavioural
responses would not be dependent on contextual effects but only on properties of
each perceived stimulus (Supplementary methods). Thus, they approximated to
error-learning models of attention, such as the Pearce–Hall formulation12. Each of
the five control models were fitted to the behavioural data using a maximum
likelihood approach, in the same manner that the experimental model was fitted.
This enabled us to compare the fit of each of the models in terms of the log-
evidence using post hoc t-tests (Supplementary methods).

Region of interest analysis. The aim of our analysis was to define regions of
interest (ROIs) for the STS and the FFA and analyse whether activity in these
regions covaried with the parameters from the experimental model. In order to
determine ROIs for each individual participant, we contrasted activity associated
with face blocks with that associated with house blocks in the localizer. Results of
this contrast were thresholded flexibly (from uncorrected Po0.05 to Po0.00005,
cluster-size410 voxels) in order to identify and isolate in each subject clusters of
face-sensitive voxels on the fusiform gyrus, and the STS (see Supplementary Fig. S1
and Supplementary Table S2). In addition, we also defined ROIs in the same
manner in the PPA. The PPA acted as a control region as its activity should not
vary with any of the parameters of our experimental model, if activity in the task is
driven by familiarity with the identity of the face. We extracted ROIs in the PPA
using the same approach as for the FFA and STS. We obtained bilateral fusiform
gyrus and right STS activity in all 15 of the participants. However, we found left
STS activity in only 10 participants and an analysis of activity in this region was
therefore not possible. In each participant we extracted beta estimates for the
parametric modulators in each of the five GLMs in each of the three regions using
Marsbar software. We then performed post hoc t-tests in each region between the
parametric modulators that had the highest mean beta values across participants
and the beta values of each of the other parametric modulators. To correct this
analysis for multiple comparisons we employed a Benjamini–Hochberg false dis-
covery rate (FDR) procedure within each region.

Random-effects analysis. In addition to the hypothesized activity in the FFA and
STS, we also performed a group analysis to identify whether additional regions also
process information in a manner that conforms to the predictions of the compu-
tational model. A random-effects analysis was applied to determine voxels in which
activity varied significantly at the group level. SPM{t} images for each of the five
parametric modulators from all subjects at the first-level were entered into second-
level design matrix. To identity whether activity in any area covaried exclusively
with one of the parameters from the model we performed t-contrasts between each
of the parameters and each of the others. We only report a region as activated if
activity in this region covaried significantly with one of the parameters (see
Supplementary Table S1 for a full list of results at a reduced thereshold) and if that
parameter explained activity in that region significantly better than all of the other
parameters. This approach additionally enabled us to confirm the results in the
FFA and STS at the group level.

A random-effects analysis was employed on the localizer experiment. To correct
for multiple comparisons at the group level for the main experiment, we used a
mask of the t-contrast Face4House (n¼ 15, Po0.001 uncorrected) from the
localizer group analysis. This allowed us to correct for multiple comparisons in the
random-effects analysis in the main experiment, by the number of voxels that
showed a group-level difference between faces and houses in this sample of
participants. It also allowed us to restrict our results spatially such that we only
identified voxels that showed facial specificity at the group level.
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