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Model-based identification of drug targets that
revert disrupted metabolism and its application
to ageing
Keren Yizhak1, Orshay Gabay2, Haim Cohen2 & Eytan Ruppin1,3

The growing availability of ‘omics’ data and high-quality in silico genome-scale metabolic

models (GSMMs) provide a golden opportunity for the systematic identification of new

metabolic drug targets. Extant GSMM-based methods aim at identifying drug targets that

would kill the target cell, focusing on antibiotics or cancer treatments. However, normal

human metabolism is altered in many diseases and the therapeutic goal is fundamentally

different—to retrieve the healthy state. Here we present a generic metabolic transformation

algorithm (MTA) addressing this issue. First, the prediction accuracy of MTA is compre-

hensively validated using data sets of known perturbations. Second, two predicted yeast

lifespan-extending genes, GRE3 and ADH2, are experimentally validated, together with their

associated hormetic effect. Third, we show that MTA predicts new drug targets for human

ageing that are enriched with orthologs of known lifespan-extending genes and with genes

downregulated following caloric restriction mimetic treatments. MTA offers a promising new

approach for the identification of drug targets in metabolically related disorders.
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T
he traditional paradigm for drug discovery faces growing
difficulties in meeting the need for new medicines that can
cure, prevent or slow the progression of disease. Evidently,

the discovery of new and better drug targets is a key in
transforming industry productivity and in bringing innovative
new medicines to patients. In particular, systems biology is
suggested as a promising approach for aiding the drug discovery
process1. The growing availability of genome-wide high-
throughput molecular screens, together with high-quality in
silico models of cellular metabolism, provides a golden
opportunity for the rational and systematic identification of
new metabolic drug targets. Here we present a novel metabolic
transformation algorithm (MTA) for identifying drug targets in
genome-scale metabolic networks. As opposed to existing
methods that search for drug targets that would kill the target
cell2,3, MTA aims to identify targets that would act to alter the
metabolism of the cell, in a manner that would retrieve it back
from a given disease state to a healthier state. MTA utilizes a
GSMM and gene expression measurements of a given source
(disease) and a target (healthy) metabolic state. To guide its
prediction, MTA analyses the differences in gene expression
between the two states and determines the desirable global change
in the network. On the basis of that signature, MTA then searches
for the genetic or environmental perturbations that best enable a
transformation from the source to the target state.

The MTA algorithm is based on GSMM, an increasingly widely
used computational framework for studying metabolism on a
genome-scale. Given a species’ GSMM and pertaining contextual
information such as the growth media and ‘omics’ data, one can
harness a constraint-based modeling (CBM) approach to impose a
set of context-specific constraints on the space of possible
metabolic behaviours, and obtain a fairly accurate prediction of
numerous metabolic phenotypes, including growth rates, nutrient
uptake rates, by-product secretion and gene essentiality (see ref. 4).
GSMMs have been used for a variety of applications5–10 including
drug discovery2 and metabolic engineering tasks11. Over the last 6
years, GSMM has been successfully used for modelling human
metabolism as well, both in health and disease3,12–16. The
numerous arising applications of GSMMs for identifying drug
targets, both in pathogens and in human disease, have been
recently comprehensively reviewed in refs 2,17,18.

Several GSMM methods for predicting the phenotypic effects
of gene perturbations have been developed and successfully used
in microorganisms. To predict these effects, the said approaches
rely on a predefined cellular objective function, such as the
maximization of growth rate or the minimal amount of flux
changes with respect to the source metabolic state19,20. Here we
address a related, yet a more challenging goal: as MTA’s aim is to
find perturbations that would alter the metabolism of diseased
cells, many of which are non-proliferating, its predictions cannot
be guided by a predefined objective function of such cells that is
both unknown for most non-proliferating tissues/cells, and may
vary from one tissue to another. Instead, MTA exploits the
measured gene expression of the desired target state and aims to
identify the perturbations that will most probably bring the
network from a given source state to a state that is as close as
possible to this desired target state. By considering this additional
information on the target state MTA goes beyond current drug
target prediction GSMM methods, suggesting a fresh new
approach for identifying novel metabolic drug targets.

A classical biological process in which perturbations are known
to at least partially transform a source state into a target one is
ageing. ageing is typically accompanied by genome-wide changes
in gene expression where lowered expression of metabolic and
biosynthetic genes has a key role21. Interestingly, it has been
shown that caloric restriction (CR), a dietary intervention that

reliably extends lifespan, opposes the development of many of
these age-associated gene expression changes22. Although CR is
of limited utility therapeutically, these findings have strongly
motivated the search for agents that work analogously to CR by
counteracting metabolic alterations in ageing. These interventions
include the insulin-like growth factor 1 (ref. 23), the sirtuin
proteins24,25, resveratrol26 and the mammalian target of
rapamycin27. Accordingly, ageing data sets serve as a promising
test bed for MTA in identifying perturbations, both genetic and
environmental, that can potentially transform an aged metabolic
state towards the desired younger one, and thus work to extend
the organism’s lifespan.

In the following, we first introduce MTA and validate its
predictive ability across numerous published perturbation
experiments in different species, where the underlying perturba-
tion is known but hidden from the algorithm. Second, we apply
MTA to predict lifespan-extending genes in yeast, a key model of
cellular ageing, experimentally validating two predicted metabolic
genes whose knockout leads to a marked increase in yeast
lifespan. Following a model-based hypothesis, we further show
experimentally that the knockout of these two predicted target
genes results with higher levels of reactive oxygen species (ROS)
production, suggesting a hormetic effect that leads to lifespan
extension. Finally, MTA is applied to predict metabolic drug
targets that most efficiently transform the metabolic state of
ageing human muscle tissue back closer to its young state, and its
predictions are reassuringly enriched with known human
orthologs of known lifespan-extending genes. Although it has
been developed and studied here in the context of ageing, it is
evident that MTA has a much wider scope of potential
applications, aimed at identifying perturbations that can revert
the disease state back closer to a healthy one in a variety of
metabolically related disorders.

Results
The MTA. Our goal is to develop a computational approach that
will enable a systematic search for all reactions/genes whose
perturbation can induce a transformation of the metabolic state
from a given source state (for example, diseased) to a desired
target state (for example, a healthy one), as much as possible. The
MTA, a generic approach designed to this end, receives as input a
GSMM of a certain species, together with gene expression levels
measured under source and target states. The algorithm then
proceeds in four steps: (1) a flux description of the source
metabolic state is obtained by utilizing a published CBM method
termed integrative metabolic analysis tool (iMAT)14, which
integrates the gene expression levels measured in the source
state to predict a most likely distribution of metabolic fluxes (see
Methods). (2) two sets of reactions are identified: (a) those
significantly differing in their gene expression levels between the
source and target states (termed changed reactions) and (b) those
reactions whose gene expression levels are not significantly
altered between states (termed unchanged reactions). Ideally,
MTA seeks a perturbation that will successfully shift all the fluxes
of the changed reactions in the right direction while keeping the
fluxes of the unchanged reactions as close as possible to the
source state. (3) Next, to find the best ‘transforming’ knockout
reactions, all the reactions in the network are individually
perturbed at the source state one at a time (for instance, by
forcing their flux to zero), and the potential of the network to
obtain the desired shift to the target state under each perturbation
is examined. This step is performed using a new mixed integer
quadratic programming (MIQP) algorithm that maximizes the
number of changes in the changed class while minimizing the
changes in the unchanged class (identified in step (2)). (4) A
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transformation score (TS) is assigned to each perturbation
simulated in step (3), reflecting the extent by which it may
transform the source state to the target flux state. The
perturbations are then ranked according to their scores (see
Fig. 1 for an overview of the computational approach).

Validating MTA through data sets of known perturbations. To
examine the performance of MTA, we first applied it to predict
the effects of gene knockouts in Escherichia coli, mouse and
human data sets (Supplementary Tables S1 and S3). These data
sets contain gene expression data measured before and after a
specific metabolic gene knockout, providing a test bed for MTA.
That is, given the organism’s metabolic model and the pertaining
wild-type and knockout gene expression measurements, MTA’s

goal is to correctly identify the gene knockout steering this
specific metabolic transformation from the wild-type into the
knockout state, which is known but ‘hidden’ from the algorithm.
Of note, although the prime task of MTA is to identify pertur-
bations transforming a diseased state back to a healthy one, it is
formulated in a completely generic manner that enables one to
identify transforming perturbations between any given source
and target states. As depicted in Fig. 2a, the true underlying
knockouts are ranked very highly, and within the top 10% of
MTA’s predictions (Bernoulli’s test, P-value¼ 1e� 15,
Supplementary Tables S1,S3 and S4). To further test MTA’s
utility for other types of perturbations, we applied it to predict
environmental perturbations in E. coli and yeast as well
(Supplementary Tables S1,S2). Namely, given a pair of gene
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Figure 1 | A schematic overview of MTA. MTA aims to find perturbations that are most likely to result with a successful transformation from

a given source metabolic state to a desired target state. MTA is described above at the reactions’ level, where a perturbation refers to shutting down the

flux in the pertaining reaction, but can also be performed on the gene level using the gene-protein-reaction mapping embedded in each GSMM.
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expression samples measured under two different carbon sources,
we examined its ability to correctly predict the specific carbon
source used in the new growth media (Methods). As depicted in
Fig. 2b, this analysis yields a high predictive performance as well
(Bernoulli’s test, P-valueo2.2e� 16, Supplementary Tables S1,S2
and S4). To further study the nature of our algorithm, we
examined the alternative top-ranked reactions suggested by MTA
in various experiments. Indeed, in many cases when the under-
lying reaction is not ranked at the top of the list, this is because
there are several other reactions whose knockout has identical
functional effects in the model and are hence as likely to be
identified as the specific reaction perturbed (see Supplementary
Fig. S1). For comparison, applying existing knockout prediction
CBM algorithm such as the widely used minimization of
metabolic adjustment (MOMA) method20 results with markedly
inferior performance (Methods and Supplementary Tables S1–S3).
Further, it should be emphasized that in most of the experiments
used here, the underlying perturbation could not have been

gleaned from the gene expression signatures themselves
(Supplementary Table S5).

Predicting lifespan-extending metabolic targets in yeast. The
budding yeast Saccharomyces cerevisiae is a widely used model of
cellular ageing. Although it is a single-celled eukaryote, increasing
evidence show that longevity pathways in yeast are conserved in
other multicellular eukaryotes28. To further test the predictive
power of MTA, we applied it to analyse gene expression data of
young and ageing yeast from an assay examining their replicative
lifespan (RLS)29, and from an assay examining their chronological
lifespan (CLS)30. For each of these data sets separately, we
predicted a set of reactions whose individual knockout can
transform the aged metabolic state towards that of the young.
Remarkably, this set was found to be significantly enriched
with genes whose knockout is known to extend the yeast’s
lifespan (termed lifespan-extending genes), collected from the
Sacchromyces Genome Database (SGD) and from the
literature28,31–33 (Permutation test, empirical P-valueo0.03, both
for RLS and CLS, see Supplementary Data 1). After reviewing the
list of MTA’s top predictions (for example, HXK2/YGL253W,
TGL3/YMR313C and FCY2/YER056C, see Supplementary Data 1)
and excluding genes that were shown to be involved in CLS based
on the list compiled above, we chose seven novel gene targets for
further experimentation. Genes were chosen based on their
high ranking in the prediction list, representing distinct metabolic
pathways, and existing in a single isoform (Supplementary
Table S6). For yeast CLS measurements, the cells were grown to
stationary phase in liquid media and the percentage of viable cells
was measured periodically by determining the fraction of viable
cells capable of forming a colony when plated onto rich media. Out
of these, two gene knockouts, gre3D and adh2D, were found to
significantly extend yeast’s median lifespan, with gre3D extending
median lifespan by B100% (Wilcoxon’s test, P-value¼ 8.22e–5
and 1.65e–4 for gre3D and adh2D, respectively, Fig. 3a, Methods
and Supplementary Fig. S2). Although GRE3 was previously found
to be downregulated in a sir2D strain, it is further validated here as
having a causative role as lifespan-extending gene34. Overall, this
result constitutes a 10-fold increase over the expected frequency, as
only 3.5% of the yeast genes are expected to extend CLS by random
(Bernoulli’s test, P-value¼ 0.02, Methods)33. Of note, the ranking
obtained by MOMA or the gene expression alone to the above
genes is again markedly inferior (Supplementary Table S6).

An important added value of our computational framework is
its ability to go beyond predicting the relevant target and search
for a mechanism that best explains the observed phenotype.
Analysing the rewiring of fluxes in the network following the
knockout of GRE3, we find a significant increase in flux rates
through the pentose phosphate pathway. Although higher levels
of NADP/NADPH are produced in this pathway, this increase
was accompanied by a reduction in flux through the reactions
that detoxify ROS by glutathione and thioredoxin (Fig. 3b). A
similar analysis for adh2D showed an increase in the maximal
flux through the tricarboxylic acid cycle (Fig. 3c). We hence
hypothesized that an increase in ROS production may accompany
lifespan extension in these strains. To validate this prediction, we
measured the intracellular levels of two common ROS, hydrogen
peroxide (H2O2) and superoxide (O2

� ), using flow cytometry and
appropriate probes (see Methods). Indeed, in comparison with
wild-type yeast cells, a mild but significant increase in H2O2 and
O2

� concentrations was observed during the course of chron-
ological ageing in both adh2D and gre3D (T-test, P-valueo0.05,
Fig. 4). Of note, this finding is in accordance with the hormesis
theory of ageing, suggesting that exposure to mild stress results in
a positive effect on lifespan35. However, here we demonstrate
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Figure 2 | Bar plots summarizing MTA’s perturbation validation analysis.

(a) The left panel describes the results obtained for gene knockouts data

sets, where bars 1–11 correspond to data measured in E. coli, bars 12–13

correspond to mouse and 14–15 correspond to human cells. The horizontal

bars represent the computed ranking of the actual knockout that has been

performed in the experiment (normalized here to a value in the range [0 1])

amongst all other simulated knockouts. In all cases, the correct knockout is

ranked within the top 10% predictions (dashed line, Bernoulli’s test,

P-value¼ 1e� 15 with P¼0.1). (b) The right panel presents the results

obtained under environmental perturbations (the switching of carbon

sources in the growth media, simulated by inhibiting the corresponding

transport reactions), where bars 1–29 describe the results for E. coli and

bars 30–32 for yeast. In 26 of the 32 experiments examined, the correct

carbon source that has been used in the experiment is ranked within the top

10% predictions (Bernoulli’s test, P-valueo2.2e� 16 with P¼0.1). A

detailed listing of the experiments analysed and of the predictions made by

MTA is provided in Supplementary Tables S1–S3.
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only an association between elevated ROS levels and lifespan
extension, and the putative causative role that elevated ROS may
have in these strains’ lifespan extension requires further study.

Predicting metabolic targets counteracting muscle ageing. To
validate MTA in the context of human metabolism as well, we
applied it to analyse gene expression data taken from four dif-
ferent data sets of human muscle tissue in old and young male
and female subjects36–39 (Supplementary Fig. S3). As the sets of
differentially expressed genes differ significantly between these

data sets (Supplementary Tables S7–S9), our validation is focused
on the novel predictions of lifespan-extending gene knockouts in
humans appearing in the top 10% of MTA’s predictions in at least
two of the data sets (termed common knockout predictions,
Supplementary Data 2). Top predicted reactions can reverse a
significant portion of the ageing-related changes in all data sets
(between 40 and 70% of the observed changes). Encouragingly,
most of the predicted knockouts do not reduce the estimated
maximal production of key currency metabolites that are gen-
erally conceived as essential to normal tissue functioning, such as
ATP, NADP and NADPH (Methods and Supplementary Data 3).
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Figure 3 | Extension of yeast CLS by predicted genes. (a) Median CLS (in days) for the wild-type (WT), adh2D and gre3D strains. A significant increase in

the median lifespan is observed for gre3D and adh2D strains (Wilcoxon’s test, P-value¼ 8.22e� 5 and P-value¼ 1.65e�4, respectively). Error bars

represent the s.d. (n¼ 3). Each of the platings was done in triplicate and three distinct colonies of each strain were tested. (b) Guided by changes in gene

expression associated with a decrease in the nucleotide salvage pathway and purine and pyrimidine biosynthesis, MTA correctly identifies GRE3 as a

lifespan-extending gene. A stoichiometric analysis shows that this inhibition reduces the flux through glycolysis. The elevated glucose levels are diverted to

the pentose phosphate pathway and consequently increase the flux through nucleotide synthesis. At the same time, a reduction in the maximal flux

through the reactions that detoxify ROS via glutathione and thioredoxin is observed (not shown in the figure). (c) Following the knockout of ADH2, a

reduction in the metabolic flux through fermentation and an increase in flux through the TCA cycle is observed, as reviewed in ref. 66. Remarkably, the

expression level of GRE3 and ADH2 is not significantly altered between the two states (old versus young), demonstrating the value of the MTA analysis.

GLC, glucose; G6P, glucose-6-phosphate; F6P, fructose-6-phosphate; FDP, fructose-1,6-bisphosphate; G3P, glyceraldehyde-3-phosphate; DHAP,

dihydroxyacetone-phosphate; 1,3-DPG, 1,3-bisphosphoglycerate; 3PG, 3-phosphoglycerate; 2PG, 2-phosphoglycerate; PEP, phosphoenolpyruvate; PYR,

pyruvate; GL6P, 6-phosphogluconolactone; 6PG, 6-phosphogluconate; Ru5P, ribulose-5-phosphate; R5P, ribose-5-phosphate; X5P, xylulose-5-phophate;

S7P, sedohptulose-7-phosphate; E4P, erythrose-4-phosphate; PRPP, 5-phospho-D-ribose-a-1-pyrophosphate; ACCOA, acetyl-CoA; CIT, citrate; ICIT,
isocitrate; a–kg, a-ketoglutarate; sdhlam, S-succinyldihydrolipoamide; SUCCOA, succinyl-CoA; SUCC, succinate FUM, fumarate, MAL, malate; OAA,

oxaloacetate; AC, acetate; ACALD, acetaldehyde; ETOH, ethanol; TCA, tricarboxylic acid. **Po1e-3
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Of note, as CBM analysis does not allow the calculation of
metabolites’ concentration, these values serve as only a rough
approximation for the effect the predicted knockout may have on
these metabolites’ production. Performing a cross-validation
analysis amongst the individual samples composing each data set,
the knockout predictions remain highly robust (Supplementary
Table S10). Reassuringly, the intersection between MTA’s
predictions across the different data sets is mostly significant,
thus suggesting a common metabolism-altering signature. Indeed,
this intersection vanishes when the data are randomized
(Supplementary Tables S11,S12).

As a first validation test, we examined whether our common
knockout predictions set is enriched with genes whose expression
is significantly reduced (t-test, P-valueo0.05) following CR
mimetic treatments. To this end, we analysed gene expression
data from muscle tissue of mice treated with resveratrol,
rapamycin and those overexpressing the transcriptional
co-activator PGC1-a (refs 26,40). As shown in Fig. 5a, a highly
significant enrichment for all treatments was found (Hypergeo-
metric test, P-valueo9.99e–5). Further, we find that MTA’s
common predictions set is enriched with human orthologs of
known lifespan-extending genes in yeast and Caenorhabditis
elegans, collated from the SGD database and from the
literature28,31–33,41 (Supplementary Data 4, Permutation test,
empirical P-valueo0.02). Finally, a recently published study has
examined the correlation between gene expression measured in
mice livers and lifespan extension across different diet regi-
mens42. To further validate MTA’s performance in the context of
mammals ageing, we applied it to two additional data sets

describing gene expression levels of old and young liver mice26,43.
We found that genes that are negatively correlated with lifespan
(and thus, whose knockout will actually contribute to lifespan
extension) indeed have significantly higher TSs than those
genes that are positively correlated with lifespan (Wilcoxon’s
test, P-value¼ 0.003 for Sutton et al.43, and P-value¼ 0.01 for
Pearson et al.26), further testifying for MTA’s significant
predictive power.

Several pathways are enriched within the set of common
knockout predictions (Fig. 5b), including the metabolism of
eicosanoids. This pathway is known to be controlled by dietary
fat and insulin and has widespread effects on many alterations
occurring in ageing44. Further, resveratrol is thought to exert anti-
inflammatory effects through the inhibition of two key eicosa-
noids enzymes, COX-1 and 5-lipoxygenase44 (see Supplementary
Note 1, Supplementary Methods and Supplementary Fig. S4 for a
detailed stoichiometric explanation underlying the eicosanoids
metabolism prediction). MTA’s predictions also include the
inosine monophosphate biosynthesis pathway whose inhibition
was previously found to extend the CLS of yeast via the allosteric
regulation of phosphofructokinase31 (see Supplementary Note 1
and Supplementary Methods).

Predicting the effects of environmental perturbations. To
further validate MTA’s ability in predicting environmental
perturbations, we applied it to predict the effects of nutrients’
dietary elimination on transforming the metabolic state of ageing
muscle tissue (Methods). As described above, environmental
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perturbation is simulated by shutting down the nutrient’s
transport reaction. Investigating the effects of combined
knockouts in a transport reaction and in one of the top single
(non-transport) knockouts reported in the previous section, we
searched for synergistic combinations whose knockout TS is
higher than the sum of scores obtained for each reaction alone.
Highly ranked transport perturbations included the transport of
methionine and tryptophan, whose deficiency in diet was shown
to extend lifespan45, and of sucrose, whose dietary elimination
was found to significantly affect the health and lifespan of elderly
people46 (Supplementary Data 5). To examine the hypothesis that
it is not the reduction of calories that mediates the extension of
lifespan but the restriction of particular nutrient groups in the
diet47, we clustered the transport reactions to the three major
nutrient groups (amino acids, fatty acids and carbohydrates). In
accordance with ref. 47, we find that the dietary elimination of
amino acids is predicted by MTA to be the most beneficial and
that of carbohydrates is the least so (Hypergeometric test,
P-valueo0.004, Supplementary Fig. S5).

Discussion
Going beyond extant GSMM perturbation prediction methods
that aim to identify a perturbation that could kill a target cell, we
present a new approach for identifying drug targets that revert the
metabolism of a diseased cell towards a healthier state. The
predictive value of MTA is comprehensively demonstrated here
via multiple existing perturbation data sets and by the identifica-
tion of two predicted lifespan-extending genes in yeast. Notably,
these genes could not be predicted by neither gene expression
analysis alone nor by the commonly used prediction methods.
Providing mechanistic explanations to their workings, we further
show that in accordance with the model’s predictions, the
knockout of the two lifespan-extending genes results in a
significant elevation in ROS levels, potentially suggesting a
hormetic mechanism, as previously shown by Masquita et al.48

for H2O2. Of note, knockout of ADH2 was previously found to
extend yeast CLS by driving metabolism away from acetic-acid
production49, similar to the mechanism suggested by our flux
analysis (Fig. 3c).

A key prediction arising in the mammalian muscle tissue
analysis involves the eicosanoids pathway, a suggested target
of resveratrol. Indeed, a recent study by Timmers et al.50

found that a 30-day supplementation of resveratrol results in a
decrease in pathways linked to inflammation and an increase in
the expression of mitochondrial oxidative phosphorylation. A
stoichiometric analysis of aged human model (see
Supplementary Fig. S4) complements these observations by
providing a network level view of how the inhibition
of the eicosanoids pathway works directly at the metabolic level
to counteract ageing-related alterations. Further, a
recently published paper by Park et al.51 has reported that
resveratrol inhibits the metabolic gene PDE4. Interestingly, in
three muscle data sets where the eicosanoids pathways came up
as a predicted target by MTA36,37,52, the knockout of PDE4 is
also highly ranked as a lifespan-extending target (within the top
3, 4 and 13%).

Nevertheless, some limitations of MTA should be pointed out.
First, although several CBM-based methods for inferring flux
rates using gene expression data have been developed9,10,14, the
correlation between these measurements is known to be limited53.
Hence, gene expression levels serve only as cues for the likelihood
that an enzyme supports the metabolic flux of its associated
reaction. Nonetheless, as GSMMs encompass stoichiometric and
thermodynamic information as well, these types of methods have
shown to have a significant added value versus the raw gene

expression in predicting metabolically related phenotypes.
Second, metabolic models consist of metabolic enzymes alone
(that is, regulatory and signalling molecules are outside the
models’ scope), and its predictions are hence limited to the
metabolic realm alone. Once more comprehensive models
would be developed, this analysis could be easily extended to
include non-metabolic genes as well. In addition, the human
model is not specific to any tissue- or cell-type and hence
lacks a predefined objective function. However, as previously
shown14, the integration of gene expression data taken from a
specific type of tissue allows one to overcome this hurdle and
infer the most likely distribution of fluxes in a given tissue and
state. Moreover, CBM analysis relies on the steady-state
assumption and hence metabolite concentrations and enzyme
activity levels cannot be calculated. Importantly, to calculate these
measurements, detailed kinetic data are needed, information that
is currently lacking on a genome-scale level. Finally, the
fundamental challenge of identifying drug side effects is only
partially addressed in this study by measuring the effect the
predicted knockout may have on the production of key energy
metabolites. Once a specific target has been successfully validated
experimentally, its toxicity, selectivity and off-targets should be
further examined.

MTA is a generic approach that holds promise for many future
applications. First, when a GSMM of the worm C. elegans
will appear, the MTA analysis could be applied to study metabolic
aspects of ageing in this model organism as well, complementing
the accounts provided here for yeast and human models. In
addition, MTA can be readily extended and applied to other types
of perturbations, including partial or double knockouts. These
types of analyses were left out of the scope of this paper because
of the lack of sufficient validation that can support our findings.
With the growing availability of gene expression data sets in a
wide spectrum of metabolic-related disorders and the upcoming
release of new and more refined models of human meta-
bolism, MTA offers a systematic approach for identifying novel
metabolic targets on a genome-scale. As such, we believe that
the application of MTA can point to novel drug targets in a
host of disorders where metabolism has an important role,
including obesity, diabetes, neurodegenerative mitochondrial
disorders and cancer. Importantly, the predicted drug targets
may have lesser side effects than current drugs, as they do not
only aim to remedy a disease-related disruption on a local level
but rather aim to globally retrieve the network state back to a
healthy one.

Methods
A CBM of metabolism. A metabolic network consisting of m metabolites and n
reactions can be represented by a stoichiometric matrix S, where the entry Sij
represents the stoichiometric coefficient of metabolite i in reaction j (ref. 54). A
CBM imposes mass balance, directionality and flux capacity constraints on the
space of possible fluxes in the metabolic network’s reactions through a set of linear
equations

S � v ¼ 0 ð1Þ

vmin � v � vmax ð2Þ

Where v stands for the flux vector for all of the reactions in the model (that is, the
flux distribution). The exchange of metabolites with the environment is represented
as a set of exchange (transport) reactions, enabling a predefined set of metabolites
to be either taken up or secreted from the growth media. The steady-state
assumption represented in equation (1) constrains the production rate of each
metabolite to be equal to its consumption rate. Enzymatic directionality and flux
capacity constraints define lower and upper bounds on the fluxes and are
embedded in equation (2). In the following, flux vectors satisfying these conditions
will be referred to as feasible steady-state flux distributions. Gene knockouts are
simulated by constraining the flux through the corresponding metabolic reaction to
zero. Similarly, environmental perturbations are simulated by constraining the flux
through the associated exchange reaction to zero.
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For each of the data set analysed here, we simulated the same media that was
used in the experiment (that is, glucose minimal media for E. coli, YPD medium
and synthetic complete for yeast, and RPMI and DMEM media for mouse and
human cell lines). In the human muscle ageing data sets in which the media is
unknown, a rich media in which all the uptakes are available was simulated. In
addition, for modelling E. coli’s metabolism we have used the iAF1260 model55, for
yeast we have used the iMM904 model56 and for modelling mouse human
metabolism we have used Recon1 (ref. 12).

The MTA. Steps 1 and 2: Given a metabolic CBM model and gene expression levels
of the source and target metabolic states, the following preprocessing steps are
performed: (1) determining the baseline flux distribution at the source state (vref).
A flux distribution describing the source metabolic state based on its gene
expression levels is obtained using iMAT (ref. 14). In brief, iMAT accepts as input a
set of highly and lowly expressed genes based on gene expression levels. Next, it
looks for a consistent enzyme activity solution where a maximal number of
reactions that are considered highly expressed are indeed active and a maximal
number of reactions that are considered lowly expressed are inactive. As our
modelling technique takes into account other constrains such as thermodynamic
and steady-state constrains, the solutions obtained by iMAT aims to capture
modifications that go beyond the explicit gene expression information to capture
post-transcriptional regulation effects. iMAT’s solution may not be unique as a
space of alternative optimal solutions (in terms of its objective function) may exist.
Therefore, we sample 2,000 different flux distributions that are all consistent with
the reactions’ state of activity or inactivity defined in one of iMAT’s optimal
solutions. The mean flux distribution obtained over the 2,000 samples then serves
as an approximation of the source metabolic state and is denoted by vref.
(2) Analysing the source and target gene expression data to determine changed and
unchanged genes and reactions. Applying the Student’s t-test to the source and
target gene expression measurements given as input, we define genes that can be
categorized into three sets: (a) genes whose expression did not change significantly;
(b) genes whose expression is reduced in the source state compared with the target
state (and therefore their flux activity should be elevated to transform the source
back to the target metabolic state); and (c) genes whose expression is elevated in the
source state compared with the target state (and therefore their flux activity should
be reduced accordingly). Next, a detailed Boolean gene-to-reaction mapping
(already embedded in the metabolic network model) is employed to map the above
three sets of genes to determine the ‘changed’ state of their corresponding reactions
in the model. Specifically, a reaction is considered to be elevated/reduced in two
cases: (a) if it is catalysed by a complex of enzymes (an ‘and’ logical relation) and all
of the genes encoding them were categorized as elevated or reduced, respectively, in
the previous step; and (b) if it is catalysed by isoenzymes (an ‘or’ logical relation)
and at least one of them was categorized as elevated or reduced, respectively. If a
subset is categorized as elevated and another subset as reduced, the reaction is
considered unchanged. In addition, in any other cases not specifically described
here, the reaction is considered unchanged. Finally, a subset of the reactions in the
metabolic network is considered reversible and can therefore carry both a positive
and a negative flux rate. We, therefore, further categorize such reversible reactions
that should be elevated or reduced to those whose flux should change in the
forward or backward direction. Namely, reactions that should change in the
forward direction are those that carry a positive flux in their reference state
(according to vref obtained in the first step) and were categorized as ‘elevated’ in the
previous step, and those that carry a negative flux according to their reference state
and were categorized as ‘reduced’ in the previous step. Reactions whose flux should
change in the backward direction are determined in a complementary manner.
Altogether, we obtain three different sets of reactions, those that did not change
significantly (denoted as RS) and those that did change significantly and should thus
change in the forward or backward direction (denoted as RF and RB, respectively).

Steps 3 and 4: As the desired TS (described below in step 4) is nonlinear, it could
not have been used directly as the objective function. Hence, we chose to take a
two-step heuristic approach: in step 3, we first minimize an objective function,
which serves as conceptual proxy to what we are after (maximize the changes
in the ‘changed’ reactions while keeping the flux on the ‘unchanged’ ones
unchanged). Subsequently, in step 4, we rank the solutions obtained in step 3 by
the (nonlinear) TS that, in practice, produces a more fined and accurate ranking
of the perturbations’ predictions than the original objective. Below, we first describe
the MIQP procedure taken in step 3, followed by a description of the TS applied
in step 4.

The MIQP formulation. For each employed genetic or environmental perturba-
tion vj, we formulated the following MIQP problem to find a steady-state flux
distribution satisfying stoichiometric and thermodynamic constraints that (1) aims
to keep the flux through reaction in RS as similar as possible to their value
embedded in vref and (2) maximizes the number of reactions in RF and RB whose
flux is elevated or reduced significantly in the desired direction, with respect to the
flux in vref:

min
v;y

ð1� aÞ
X
iERS

vrefi � vi
� �2 þ a

2

X
iERF

yi þ
a
2

X
iERB

yi

 !
ð3Þ

s.t

S � v ¼ 0 ð1Þ

vmin � v � vmax ð2Þ

vj ¼ 0 ð4Þ

vi � yFi vrefi þ ei
� �

� yiv
min
i � 0; iERF ð5Þ

yFi þ yi ¼ 1; iERF ð6Þ

vi � yBi vrefi � ei
� �

� yiv
max
i � 0; iERB ð7Þ

yBi þ yi ¼ 1; iERB ð8Þ

yi; y
F
i ; y

B
i 2 f0; 1g ð9Þ

The mass balance and thermodynamic (directionality) constraints are enforced in
equations (1) and (2), respectively. The employed perturbation is enforced through
equation (4). For each significantly changed reaction, the Boolean variables yFi ; y

B
i ,yi

represent whether the flux through the corresponding reaction is changed sig-
nificantly (in either direction) or not. Specifically, a reaction that is required to
change in the forward direction to transform from the source to the target meta-
bolic state satisfies this demand if its flux is elevated by more than an e with respect
to the flux embedded in vref (equations (5) and (6)). Similarly, a reaction that is
required to change in the backward direction to perform a transformation between
the two states satisfies this demand if its flux is reduced by more than an e with
respect to the flux in vref (equations (7) and (8)). The e value represents a sig-
nificant flux change and can either be uniform across all changed reaction or
reaction specific (see Methods and Supplementary Tables S1–S3). To compre-
hensively capture the transformation from one state to the other, the optimization
function also aims at minimizing the change in flux rate with respect to vref for
reactions found in RS.

Importantly, as flux rates may span several orders of magnitude and integer
variables span only values of [0,1], the MIQP formulation contains an additional
weighting parameter a in front of each term in the multiobjective function. The
results presented in the main text are for the uniform choice (a¼ 0.66) but were
found to be highly robust to a values in the range of 0.1–0.9 (Supplementary Fig. S6
and Supplementary Tables S13–S21). Overall, the optimization problem minimizes
the change in flux rate through the reactions that should remain unchanged while
maximizing the number of reactions whose corresponding flux should differ
significantly to transform from the source to the target state. The commercial
CPLEX solver was used for solving MIQP problems on a Pentium-4 machine
running Linux.

The TS. Relying on the optimization value obtained by MTA to rank the trans-
formations induced by different perturbations is suboptimal, as the integer-based
scoring of the changed reactions is coarse grained and does not distinguish between
solutions achieving large flux alterations and those obtaining flux changes barely
crossing the e threshold. Therefore, we chose to quantify the success of a trans-
formation by a scoring function based on the resulting flux distributions rather
than on the optimization objective values themselves. First, we denote the resulting
flux distribution obtained in a given MIQP solution (for a given reaction knockout)
as vres. Second, reactions found in RF and RB are classified into two groups Rsuccess
and Runsuccess, denoting whether they achieved a change in flux rate in the required
direction (forward or backward) or not. The following scoring function is then
used to assess the global change achieved by the employed perturbation:P

iERsuccess
abs vrefi � vresi

� �� �
�
P

iERunsuccess
abs vrefi � vresi

� �� �P
iERS

absðvrefi � vresi Þ ð10Þ

The numerator of this function is the sum over the absolute change in flux rate for
all reactions in Rsuccess minus a similar sum for reactions in Runsuccess. The
denominator is then the corresponding sum over reactions in RS (the reactions that
should stay untransformed). Following perturbations achieving the highest scores
under this definition are the ones most likely to perform a successful transfor-
mation by both maximizing the change in flux rate for significantly changed
reactions and minimizing the corresponding change in flux of unchanged reac-
tions. Using an alternative scoring function based on the Euclidean distance instead
of absolute values yielded similar results.

Although we believe that the TS score (equation (10)) is the right one to pursue
from a biological point of view, optimizing it directly is a very difficult
mathematical task. To accomplish that, one would need to develop a novel
optimization algorithm for solving a mixed nonlinear programming problem,
whose objective function is non-smooth and non-differentiable, requiring non-
smooth optimization tools. Attempting such a solution directly would greatly
complicate the problem, as one would need to add many variables and constraints.
Further, the specific form of this ratio is actually dependent on the solution itself
(as it evaluates Rsuccess and Runsuccess separately) making the entire task infeasible. In
light of these evident difficulties, we have chosen to take a two-step approach in
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this study that is suboptimal yet tractable. Although the wild-type solution always
achieves maximal values in terms of the original proxy objective function used in
step 3 (by definition), it does not necessarily achieve high TSs (step 4). This is
because the wild-type solution is the least constrained, and hence most of the
solutions found in step 3 can be satisfied by achieving only a minimal epsilon
change; those are obviously non-optimal from a biological standpoint as they do
not really come close to the desired objective, and hence their TS score (in step 4) is
suboptimal in many of the cases, correctly ruling them out as biologically viable
solutions.

Selection of thresholds in the MTA procedure. As flux values vary significantly
between different metabolic states, the specific choice of e is determined in
accordance with the data set in use, such that in each case only a statistically
significant change is considered as a success. The MTA procedure involves the
determination of two thresholds. The first is associated with the selection of the
differentially expressed genes and is based on a t-test analysis. Here we consider
statistically significant thresholds that are P-valueo0.05. Within this group, the top
100–200 most differentially expressed reactions are defined as the set of ‘changed’
reactions. As demonstrated in the validation part of this study, this number of
‘changed’ reactions is sufficient for MTA to identify the correct perturbations;
moreover, it allows us to obtain a tractable running time. Our results were found to
be robust to different values within this range. The second threshold used is the e
parameter embedded in MTA’s formulation, denoting significant flux changes. As
described above, The MTA procedure starts from estimating a baseline flux state
distribution in the model using the iMAT analysis. This initial flux distribution is
obtained using 2000 iMAT-based samples and its mean is denoted as vref. To
determine the e value that best fits the initial distribution of fluxes and the specific
set of reaction that should be changed, we implemented two different approaches:
(a) using one threshold for all reactions: in this case, we apply a one-sided T-test for
each changed reaction searching for an e value that represents a significant change
in flux rate with respect to the values in vref. Specifically, e is chosen such that for at
least 70% of the reactions that should be changed (those found in RF and RB), the
values vrefi þ e

� �
and vrefi � e

� �
, respectively, are significantly different (Po0.05)

from the values constituting vrefi (that is, the 2,000 values we sampled for each
reaction in the network). The final e chosen is the maximal one under which this
percentage of reactions achieve a significant change; (b) use a specific threshold for
each reaction: the same process as described in (a) is implemented with the dif-
ference of setting an e representing a significant change (P-valueo0.05) for each
reaction separately.

Defining the set of simulated gene knockouts. The metabolic models used in
this study comprises a few thousands of reactions12,55,56. Notably, a subset of the
reactions in each model (20–30%) is defined as dead end (that is, cannot carry
metabolic flux because of the incompleteness of the model), and is therefore
removed from the set of allowed knockouts. Similarly, essential reactions (knockout
for which the growth was reduced by 480% of the maximal biomass) are excluded
from the analysis in cases where biomass production is relevant. In addition, to
further narrow down the number of simulated knockouts, we search for partially
coupled reactions in the model57, whose deletion results with a similar outcome in
terms of flux distribution. Finally, in the validation analyses, the set of simulated
knockouts is composed of a member from each partially coupled set (including
singleton sets). We refer to each reaction in a coupled set separately when
performing enrichment analyses.

Using MOMA for identifying transforming perturbations. Similar to the pro-
cedure described above for obtaining the vref description of the source metabolic
state, to test MOMA’s predictions we produced an additional flux description
vector, vres, based on the expression level of the target metabolic state. Then,
MOMA’s objective function (that is, minimizing the Euclidean distance to a given
wild-type flux distribution) following a perturbation is applied while using the vref

vector as the wild-type vector. Finally, the Euclidean distance between the obtained
post-perturbation flux distribution and vres is evaluated. This distance ranks per-
turbations such that those that result with a smaller distance are considered the
better transforming perturbations.

Estimating the success rates of the yeast CLS experiment. To estimate the
success rate of the experimental procedure, we have used the information presented
in Smith et al.49 Specifically, this study describes the percentage of lifespan-
extending genes found within a random group of genes as estimated via a screen-
based experiment. The authors acknowledge that this type of experiment suffer
from a high frequency of false positives and hence another (screen-based)
experiment is next conducted to verify the results found in the first round. It is then
that the authors report on a fraction of 3.5% lifespan-extending genes that can be
found by random. Importantly, the experiments done in our study are small scale
and do not have a high frequency of false positive. Therefore, we found that the
3.5% is the most appropriate number to assess the success of our results. As this
fraction refers to the yeast genes in general, we additionally tried to estimate this
fraction for metabolic lifespan-extending genes. Accordingly, we have analysed the
SGD database and found that out of 104 CLS extending genes, 25 are metabolic

ones that appear in the yeast metabolic model (24.04%). In addition, the fraction of
metabolic genes (as found in the yeast metabolic model) out of the 6,000 yeast
genes is 905/6,000 (15.08%). We therefore estimate that about 3.6% are metabolic
lifespan-extending genes. A similar fraction to that has been reported by ref. 49.

Computing drug selectivity. For each reaction found in the common knockout
prediction set (see Supplementary Data 3), we examine the maximal production of
ATP, NADP or NADPH (central energy metabolites). Our goal is to identify those
predicted knockouts that reduce the production of these metabolites with respect to
their wild-type production rates and mark them as non-selective drug targets. The
analysis is performed in the following manner: (1) iMAT is applied using the
‘source’ gene expression data. (2) the maximal similarity between the expression
and flux activity found by iMAT (that is, the number of satisfied integers) is added
as an additional constraint to the optimization problem. (3) Then, under this
constraint, the maximal production of the relevant metabolites is calculated in this
wild-type baseline state. (4) Finally, for each predicted knockout, the maximal
production of these energy metabolites is calculated again when the corresponding
knockout reaction is additionally constrained to carry a zero flux. Notably, even
when using lower similarity scores (for example, 80–90% of the maximal similarity
score obtained by iMAT), our results remain essentially unchanged.

Simulating environmental perturbations. The metabolic model contains a set of
reactions that allow the organism to take and secrete metabolites from and into the
media. To simulate environmental perturbation and identify synergistic pairs, we
focused on the top 10% predictions obtained by MTA in the four muscle tissue data
sets analysed here. For each of these reactions, we examined the effect of its
inhibition together with the inhibition of one media component. We then searched
for those combinations that achieve a TS greater than the one achieved for the each
of the reaction knockout alone. Focusing again on the top 10% of these pairs, we
searched for those media metabolites that appear in at least two data sets.

To investigate the hypothesis that it is not the reduction of calories that
mediates the extension of lifespan, but the restriction of particular nutrient groups
in the diet47,58, we clustered the transport reactions to the three major nutrient
groups (amino acids, fatty acids and carbohydrates). We then produced a list
indicating for each media metabolite, in how many of the four data sets it appeared
in a synergistic pair. Finally, we calculated hypergeometric enrichment for each of
the major nutrient groups within each of the groups found in the list described
above (the groups are those media metabolites that appear in 4/3/2/1 data sets).

Yeast strains. All strains used in this study were BY4741 (MATa, his3D1, leu2D0,
met15D0 and ura3D0). The deletion mutants were obtained from the yeast ORF
knockout collection59.

CLS assays. CLS measurements were performed as described in refs 60,61, with
minor modifications. In short, strains were diluted from overnight cultures to
OD600¼ 0.1 in 10ml fresh synthetic complete medium and incubated at 30 �C with
270 r.p.m. shaking till cultures reached stationary phase. After reaching stationary
phase, aliquots from each culture were plated on YPD medium plates (1% yeast
extract, 2% bacto peptone, 2% D-glucose and 2% agar) and colony forming unit was
counted every 3 days. Each of the platings was done in triplicate and three distinct
colonies of each strain were tested.

ROS detection. ROS detection was performed at several time points during
the course of CLS. The days indication refers to the number of day passed
since reaching stationary phase. O2

� detection was carried out using dihy-
droethidium62,63. One micolitre of cell culture was centrifuged and resuspended in
1ml PBS buffer plus 0.1% glycerol (4 �C). Dihydroethidium was added to final
concentration of 5 mM and incubated at 30 �C for 30min with shaking. Cells were
centrifuged again and washed once with ice-cold PBS. For intracellular H2O2

measurement 20 ,70-dichlorofluorescein diacetate64,65 was used. One microlitre of
cell culture was moved to eppendorf tube, H2O2 was added to final concentration
of 1mM and tubes were incubated at 30 �C for 15min with shaking. Cells were
centrifuged, washed once and resuspended in ice-cold PBS. 20,70-dichlorofluoresce
diacetate was added to final concentration of 10 mM and incubated at 28 �C for 1 h
with shaking. Cells were centrifuged again and washed with ice-cold PBS. Probes
florescence was measured by flow cytometry using Beckman Coulter Gallios Flow
Cytometer.
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