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Tuning the range and stability of multiple
phenotypic states with coupled positive–negative
feedback loops
Maier S. Avendaño1,2,3, Chad Leidy3 & Juan M. Pedraza1,3

Positive feedback loops can produce multistability, resulting in different phenotypic states.

However, many transcription networks contain counteracting positive and negative feed-

backs. Here we explore the dynamics of an interlinked positive and negative feedback motif

based on the galactose-uptake control system of Saccharomyces cerevisiae modified to make

the strength of each feedback externally controllable. Our results show that although the

positive feedback loop determines the range of bistability and the width of the regions where

intermediate activation is possible, the transition rates between states are mostly sensitive to

the negative feedback strength. Thus, our results suggest that the function of the negative

loop in this motif is to allow separate tuning of the range and transition rates between

phenotypic states. This could enhance fitness by allowing improved matching of the

stochastic switching to the frequency of environmental changes.
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and requests for materials should be addressed to J.M.P. (email: jmpedraza@uniandes.edu.co).

NATURE COMMUNICATIONS | 4:2605 | DOI: 10.1038/ncomms3605 | www.nature.com/naturecommunications 1

& 2013 Macmillan Publishers Limited. All rights reserved.

mailto:jmpedraza@uniandes.edu.co
http://www.nature.com/naturecommunications


G
enetic networks comprise interactions between different
agents, often interconnected through autoregulation
circuits (feedback loops). The dynamic properties of these

networks lead to emergent behaviours such as bistable or multi-
stable outputs, adaptive responses and persistent memory1–3. One
fundamental question in biology is what constraints, imposed by
natural selection, have led to the observed architectures of these
gene regulatory networks? It has been suggested that cells can
exploit the dynamic properties of these networks in their adaptive
responses to changes in the environment and under stress
conditions, potentially enhancing fitness4–14. However, it is not
clear which are the essential circuit features that provide control
over this behaviour. The presence of positive feedbacks has been
identified in several biological systems as a key regulatory motif in
switching between stable states or in the generation of
hysteresis5–8,12. Although it is well known that a single positive
feedback, under appropriate conditions, is sufficient to generate a
bistable switch in gene expression5–8, theoretical studies have
suggested that the switching rates between these stable states
cannot be independently tuned, and are restricted to the
operating range of the positive feedback switch15. This limits
the dynamic range and adaptability of the system.

Many biological networks do not appear as single feedback
loops. Instead, they present an interlinked pair of positive and
negative feedback loops. An opposite positive–negative feedback
motif may seem counterintuitive in that the added effects of the
loops would appear to cancel each other out. However, this
counteracting motif has been shown to be necessary to tune the
dynamic aspects of a cell population. Of particular interest are the
results of Tsai et al.16 on the cell cycle of Xenopus oocytes. In
these cells, a single delayed negative feedback was shown to be

sufficient for providing the oscillations required to guide the cell
cycle, making the presence of a positive feedback in this circuit
apparently unnecessary. Upon further analysis, this positive
feedback was found to provide cells with the ability to change the
frequency of the oscillations independently of the amplitude,
allowing for evolutionary tuning. These results point to the
coupled-loop motif as a mechanism for providing tunability in
multistable systems. Moreover, negative feedback regulation is
not necessary to generate multistability, but it has been suggested
to provide a mechanism for noise regulation3–10,12. In line with
this, recent theoretical studies on toy models have suggested that
a negative feedback may provide the ability to tune the frequency
of switching between stable states15. This could be advantageous
for a cell population needing to adjust to its environment, tuning
its multistability range to the surrounding biochemical
parameters and adjusting its switching rates to match the rates
of environmental changes and the constraints imposed by genetic
noise. Therefore, a properly tuned positive–negative feedback
motif may be sufficient to accomplish the required tuning
necessary for cell population adaptation to environmental
conditions and fluctuations.

An example of a coupled positive and negative feedback motif
is the galactose uptake network of Saccharomyces cerevisiae.
Extensive research has elucidated a detailed map of the molecular
interactions that comprise the feedback network17–22

(Supplementary Fig. S1). This network is a good example of an
autoregulatory genetic circuit, containing an interlinked positive
and negative feedback loop through Gal3p and Gal80p proteins,
respectively (Fig. 1a). In the present work, we illustrate the
regulatory capacity of this interlinked positive–negative feedback
motif experimentally by re-engineering the galactose uptake
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Figure 1 | The GAL system in S. cerevisiae. (a) This system controls the uptake machinery for galactose: extracellular galactose is imported into

the cell promoting the transcriptional activation of the gal genes. Key features include a negative feedback loop (blue line) in which Gal80p inhibits

expression of the gal genes and a positive feedback via Gal3p (green line). (b) Sketch of the interlinked positive and negative feedback loops in the core

galactose uptake system. (c) Sketch of the expected effects of varying the strength of each feedback on the region of bistability and transition rates

(Supplementary Fig. S4). (d) Wild-type protein expression distributions obtained by flow cytometry using the reporter protein YFP under the control of the

gal1 promoter (Pgal1). Blue and red distributions denote cells that were initially grown for 12 h without galactose (but with 2% of glucose (non-induced))

and with 2% of galactose and 0.02% of glucose (fully induced), respectively. After this period, cells were grown for a further 30 h in different

concentrations of galactose as specified.
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system in such a way that the strength of either feedback can be
externally controlled. We investigate how the strength of each
feedback loop inside this motif affects the systems properties,
including the range of bimodality and the transition rates between
phenotypic states, and show that noise is modulated differently by
each loop.

Results
The wild-type strain displays noisy multistability. We used the
galactose uptake network in S. cerevisiae (GAL system) as a model
for a positive–negative feedback motif. The galactose uptake
regulatory network functions as follows (Fig. 1a): when galactose
is absent, Gal80p inhibits the function of Gal4p, which is a
constitutively bound transcriptional activator of the GAL
genes17–22. In the presence of intracellular galactose, the sugar
binds to the protein Gal3p, resulting in its activation. This active
complex Gal3p–Galactose then binds and sequesters the cyto-
plasmatic Gal80p protein, depleting Gal80p from the nucleus19.
Gal4p is then released from the inhibitory action of Gal80p,
activating the expression of the GAL genes18 (Fig. 1a). Thus, the
loop through Gal80p provides a negative feedback, whereas
the loop through Gal3p provides a positive feedback (Fig. 1a).
The GAL network includes other inputs such as gal2 and gal1, but
these do not appear to fundamentally change the behaviour of
the system1. We examine the GAL system by obtaining the
distributions of protein expression levels in a population of cells
using flow cytometry. For high and low concentrations of
galactose, the population shows a narrow distribution around a
high (ON) and low (OFF) expression level, respectively. For
intermediate concentrations, the wild-type system can have a
bimodal or broad distribution. Previous studies1 have shown that
if the negative feedback loop is knocked out, at intermediate
concentrations of galactose the system can show hysteresis
(memory) for long periods, where the distribution will be ON or
OFF depending on its previous history. These two distribution
types provide contrasting advantages for a cell population.
The hysteretic distribution would allow for a population of
cells to persist in an ON state in the presence of fluctuations of a
food source, therefore sparing the metabolic cost of reinitiating
the synthesis of the uptake machinery after a transient
fluctuation. The broad distribution would allow for bet-hedging
and for anticipation of a long-term switching of available food
sources13. The concentrations in which it would be advantageous
for a cell to be in any of those states will depend on biochemical
details, such as the metabolic cost of producing the enzymes and
the amount of energy that can be obtained from the sugar. We
will refer to the range of concentration where a cell exhibits
hysteresis or a bimodal or broad distribution as the range of
bistability.

Cells within a bimodal distribution do not stay at a particular
level of expression; even if the distribution is at a steady state,
cells will be transitioning between high- and low-expression
levels due to the inherent stochasticity in gene expression23.
This effect complicates analytical modelling: for parameters
where a deterministic model15 shows hysteresis, a Monte-Carlo
simulation24 can show bimodality. Furthermore, the transition
rates determine the type of distribution: slow transitions result in
memory and fast transitions result in a broad distribution. It has
been shown13 that the switching rate must match the rate of
changes in the environment for the cell to have a selective
advantage, and that the rate can be changed by knocking out the
negative feedback loop. The dependence of the range of bistability
and the switching rates on the feedback loops can be tested on the
stochastic simulations of the basic model15, which suggest that
the range of bistability depends primarily on the strength of the

positive feedback loop, whereas the transition rates between the
two stable states within the broad region seem markedly sensitive
only to the strength of the negative feedback, as depicted
qualitatively in Fig. 1c.

To test this experimentally, we measured the distribution of
expression for a wild-type circuit and two versions where the
strength of the feedbacks could be externally tuned, for different
concentrations of galactose in populations that had been
previously forced to have low expression (OFF history) or high
expression (ON history). This was done by initially placing the
wild-type strain in either the ON or OFF conditions by growing
the cells for 12 h in media with 2% galactose or 2% glucose (an
alternative carbon source), respectively (Supplementary Fig. S2).
Subsequently, cells from these preparation media are transferred
into varying concentrations of galactose and allowed to grow for
30 h. This incubation time ensures that the population distribu-
tions have reached a steady state and are no longer changing
quickly. Throughout the experiments, cells were grown at low
densities to ensure that galactose depletion is negligible1 (see
Methods section) and glucose is used as a background carbon
source. As the GAL genes can be repressed by glucose17, we
maintained a low-enough concentration of this sugar to ensure
that the system does not show significant variations as the
galactose concentration is changed (Supplementary Fig. S3 and
see Methods section).

The resulting histograms of the wild-type GAL expression
levels (measured by flow cytometry) after exposure to a series of
galactose concentrations are shown in Fig. 1d. The histograms are
colour coded to indicate that the system initiated in an ON (red)
or OFF (blue) state. After 30 h, at low (o0.01%) and high
(40.04%) galactose concentrations, the protein expression
distributions approach the same unique ON or OFF distributions,
respectively, indicating monostability. At a galactose concentra-
tion of 0.04%, protein levels present a broad distribution in gene
expression that ranges between the ON and OFF states but show
no memory, whereas at 0.01% the system is mostly OFF for both
initial states but shows a slight bimodality (and, therefore, some
memory) for the initially ON population.

The feedback strength determines the cell’s phenotype. To
change the strength of the feedbacks, two haploid strains were
constructed in which the gal3 or gal80 promoter regions of the
galactose circuit were re-engineered using a dual system in which
the reverse tetracycline controlled transactivator and a tetra-
cycline-inactivable tTA-Ssn6 repressor coexist in the same cell25.
As in the wild-type strain, the network activity in single cells was
monitored by flow cytometry through the expression of yeast
fluorescent protein (YFP) driven by the gal1 promoter. The
implementation of this dual system reduces basal expression of
the Ptet promoter in the absence of doxycycline, allowing us to
achieve a tighter regulation of gene expression (Supplementary
Fig. S5)25. With these modifications, it is possible to modulate the
strength of each feedback motif (defined as autosensitivity) by
changing the concentration of doxycycline while maintaining a
multiloop architecture (see Supplementary Note 1). In Fig. 2c,d,
the dynamic behaviour of each rewired circuit is mapped over a
broad range of galactose and doxycycline concentrations. In these
maps, the colour codes reflect the distribution phenotypes shown
in Fig. 2b (see Supplementary Fig. S6 and Supplementary Note 2).
We observe that when the negative feedback strength is varied
over a broad range of galactose/doxycycline concentrations, the
system displays monostable ON and OFF regions (green and
blue, Fig. 2c), separating an ON/OFF transition regime displaying
a broad distribution of phenotypes (orange, Fig. 2c). The positive-
feedback strength map (Fig. 2d) also displays monostable ON and
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OFF regions, and a ‘broad’ distribution region, but also a region
of hysteresis or epigenetic ‘memory’, where cells that are first
grown at a high galactose concentration maintain their pheno-
typic ON state when transferred to intermediate concentrations
and cells that are first grown at a low galactose concentration
maintain their phenotypic OFF state when transferred to inter-
mediate concentrations. These results clearly show that feedback
strength determines the phenotypic behaviour of the cell popu-
lations, modulating the range of different stable states. Variations
in feedback strength allow the system to access, first, to regions of
high cell variability in the case of the negative feedback mod-
ulation and, second, to regions of epigenetic memory in the case
of the positive feedback modulation. It is noteworthy that in both
cases, the wild-type is poised at the edge of the region where the
OFF state disappears.

Transition rates respond to negative feedback strength. The
protein distribution is expected to be ‘broad’ when there is a high
level of noise, and the system would then be governed by high
transition rates between what would be stable states in the

deterministic model. In the presence of changes in external
conditions, such as a sudden change in galactose concentration,
this phenotype would be characterized by fast equilibration rates
into a new state. On the other hand, the persistent memory
phenotype would be characterized by having low equilibration
rates. To test this prediction experimentally, we monitored the
rate of relaxation from a monostable distribution state (either ON
or OFF) into either a broad distribution state (Fig. 3a) or a
hysteretic distribution state (Fig. 3b) for the strain with the per-
turbed positive feedback. As expected, the equilibration rates are
faster when the final state is a broad distribution than when the
end state is a hysteretic distribution (Fig. 3a,b). This also means
that equilibration rates in the bimodal region depend on the
strength of the positive feedback, as predicted by Pfeuty and
Kaneko15. However, as the wild-type system does not operate in
this region, but in one where the transitions for different galactose
levels go from OFF to ‘broad’ to ON (Fig. 2c,d), we assessed how
the positive and negative feedback strengths influenced the
dynamic behaviour in this region. For this, we measured the
equilibration rates from the ON and OFF states to different final
states within the broad region. This corresponds to tuning each of
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Figure 2 | Accessing different expression phenotypes through the regulation of the feedback strengths. (a) To test the effects of independent

modulation of the positive and negative feedbacks, two different strains were constructed, where (i) the negative feedback strength is controlled externally

leaving the positive feedback unaltered, and (ii) the positive feedback strength is controlled externally leaving the negative feedback unaltered. The circuit

was modified to express the gal80 or gal3 genes from a tetracycline-inducible promoter (Ptet), and to reclose the loops the expression of reverse

tetracycline controlled transactivator (rtTA) protein was placed under the control of the promoter gal80 or gal3. In addition, to reduce basal expression of

the Ptet promoter in absence of doxycycline, we inserted in both circuits the tetR-Ssn6 repressor system (Supplementary Fig. S5). The activity

of the pathway was read out using the reporter protein YFP under the control of the gal1 promoter. (b) YFP fluorescence distributions for different galactose

concentrations and different feedback loop strengths. These distributions are grouped as ON (Green), OFF (Blue), memory (Yellow) or broad (Orange;

Supplementary Fig. S6 and Supplementary Note 2). ‘Broad’ here refers to wide distributions with averages at intermediate values of expression between the

ON and OFF states. The distribution phenotypes are mapped as a function of galactose external concentration and feedback strength for (c) negative

feedback and (d) positive feedback. The dashed line represents the approximate range of expression equivalent to wild type in each system as identified

by flow cytometry (Fig. 1d) and mRNA FISH.
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the feedback strengths through changes in doxycycline con-
centration while maintaining the galactose concentration con-
stant so that changes in the dynamic behaviour induced by
variations in galactose are excluded. The transition into the
intermediate state is measured by plotting the fraction of ON cells
as a function of time. This is then modelled as a two-state system
evolving towards their equilibrium. Transition rates are obtained
by fitting the data with the function

FONðtÞ¼
rON

rOFF þ rON
þ FONð0Þ�

rON
rOFF þ rON

� �
exp�ðrOFF þ rONÞt

ð1Þ

and minimizing the w2-cost function (Fig. 3). For the doxycycline
concentrations evaluated, we observe that increasing the strength
of the negative feedback loop decreases the switching rates
independently of the galactose concentration (Fig. 3c). In
contrast, increasing the positive feedback strength does not have
a significant effect on the transition rates (Fig. 3d). Therefore,
although the positive feedback with ultrasensitivity is sufficient
for generating multistability, it does not appear to modulate the
transition rates between different phenotypic states in the broad
area. In contrast, the negative feedback presents a suitable motif
that allows the system to regulate these transitions. This is
consistent with the expected results sketched in Fig. 1c, which

show that the transition rates respond to changes in the negative
feedback strength but not to changes in the positive feedback
strength.

Feedback loops regulate effects of different noise sources. From
a deterministic view, positive and negative feedbacks would be
expected to partially cancel each other out as the relative strength
of the two feedback loops would determine the height of the
equivalent potential barrier that separates stable states. If equili-
bration rates depended only on the height of these equivalent
potential barriers1, the equilibration rates would be equally
sensitive to both feedback strengths. From a stochastic point of
view, not only the potential barriers but also the amount of
fluctuations are influenced by the feedbacks. Previous theoretical
work suggests that the main source of noise is the variability in
the mRNA copy number related to promoter fluctuations23,26.
This previous work showed that the mRNA copy number noise
would, in principle, be amplified by the positive feedback and
dampened by the negative feedback. However, fluctuations in the
number of gal3 or gal80 mRNAs can come both from the
intrinsically random nature of gene expression (intrinsic
fluctuations) and from the transmitted fluctuations from
the regulators of expression and variations in global factors
(extrinsic fluctuations)2,23,27–30, making the prediction of mRNA
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concentrations. The transition into the intermediate state is measured by plotting the fraction of ON cells as a function of time. Transition rates are obtained

by fitting the data as described in the main text (dashed lines). As expected, transition rates are higher for the broad phenotype (a) compared
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only sensitive to the negative feedback strength. Results are expressed as mean (þ s.e.m.) of at least three independent experiments.
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copy-number noise non-trivial. To investigate this further, we
determined the relative contributions of each of these two noise
sources as a function of feedback strength. We counted
the number of both endogenous gal3 and gal80 mRNA
molecules in individual cells that have been fixed at a given
feedback strength using mRNA fluorescence in situ hybridization
(FISH) (Fig. 4)27,31. As the extrinsic noise affects both genes
simultaneously, correlated variation in mRNA numbers indicates
that the primary noise source is extrinsic, whereas uncorrelated
variations indicate an intrinsic origin for mRNA fluctuations32.
We observe that in the strain with tunable negative feedback the
numbers of mRNA molecules of the two genes are mostly
uncorrelated, indicating the prevalence of intrinsic noise. In
contrast, in the strain with tunable positive feedback the
correlation between genes is high, except for low-feedback
strengths (Fig. 4d,e). Although this in itself does not elucidate
the mechanism for the difference in the sensitivity of the tran-
sition rates to the feedback strengths, it does indicate that the
different modulation of the noise by each loop might have a role.

In summary, our results show that modulation of the positive
and negative feedback in this coupled motif determines the
phenotypic behaviour of the cell populations, modulating both
the range of external conditions where different expression states
are possible and the stability of such states. We suggest that
although only the positive feedback is required for generating
multistability in response to induction, it is not sufficient for
independent regulation of the transition rates between different
phenotypic states. Within the biologically relevant regime for this

strain, this fine-tuning is only possible through the presence of
the negative feedback.

Discussion
One of the basic functions of genetic networks is to activate
certain genes in response to an external stimulus. The fitness
conferred by such a circuit depends on how well its response
matches with the optimal response defined by the biochemical
parameters. For a metabolic switch, this means turning the circuit
ON, OFF, or having a certain distribution of activation levels at a
given external input. The presence of a single positive feedback is
sufficient to achieve this. However, this level of flexibility may not
be sufficient to optimize the system. A recent study has shown
that cells that tune interphenotype switching rates to the
frequency of environmental fluctuations13 present a fitness
advantage. In the GAL system, this implies that cells not only
have to adjust the circuit to be able to switch at a specific
concentration of galactose but also have to match their switching
rates to how often the external galactose concentration changes.
These would be two constraints that need to be modulated
independently. We show that the presence of the negative
feedback allows separate tuning of the switching rates, possibly by
modulating the intrinsic fluctuations of the system. This would
provide the evolution process with two knobs to play with,
allowing for separately optimizing the switching threshold to the
biochemical parameters and the switching rate to the level of
fluctuations in the environment based on the interlinked feedback
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points denote cells that were initially grown for 12 h in 0% galactose and 2% glucose, and in 2% galactose and 0.02% glucose, respectively. After

this period, cells were grown for a further 30 h in the specified doxycycline concentrations. Results are expressed as mean (þ s.e.m.) of at least three

independent experiments.
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motif. The frequent presence of interlinked positive and negative
feedback loops in natural biological networks suggests that this
type of design possesses some performance advantages over single
positive feedback loops, and the present work demonstrates that
this coupled loop design provides the ability to tune both the
range of conditions where different phenotypic states are possible
and the switching rates between these states.

Methods
Strain background and construction. A list of strains with a complete description
is provided in the Supplementary Information. All strains were derived from the
haploid strain of S. cerevisiae W303 (MATa, his3::HIS3/his3 and ade2/ade2::ADE2-
Pgal1-YFP) referred to as the ‘wild type’ in our study. The native Pgal1, Pgal3 and
Pgal80 promoters, as well as the gal3 and gal80 genes, were amplified from the wild-
type strain by PCR using Pfx DNA polymerase (Invitrogen). The Pgal1, Pgal3 and
Pgal80 promoter sequences correspond to 669, 830 and 632 bp regions upstream of
the start codon of the respective genes. These sequences include all the known
binding sites of transcription factors for the respective genes1. Promoter–protein
constructs were generated using standard PCR and enzyme restrictions techniques,
and cloned into S. cerevisiae integration vectors pRS402 and pRS306 (EURO-
SCARF). Correct disruptions of the strains genes were done with PCR-generated
kanMX molecules (PUG6 vector) flanked by 50 bp of the yeast homologous DNA
at either side. Wild-type strain was transformed with the resulting constructs by
using the LiAc yeast transformation procedure33. Construct integration into the
chromosome was verified in all cases by PCR.

To attenuate leakiness in the expression of the target genes by the Pteto2
promoter in absence of doxycycline, a dual system in which the tetO-binding
activator and a tetO-binding repressor (both of them regulated by tetracycline in
opposite ways) coexist in the same cell was used. This implementation permits to
achieve a tighter regulation of gene expression (Supplementary Fig. S5)25.

Flow cytometry. For the history period, cells were grown overnight at 30 �C in
yeast nitrogen base media with the appropriate amino-acid supplement (complete
supplement mixture) and 0.02% glucose as a background carbon source. Media
used for fully induced history experiments (ON) were supplemented with 2%
galactose, whereas media for non-induced experiments (OFF) contained 2% glu-
cose as the sole carbon source. In addition to lock the cells from the strain MSY019
into the OFF state, 0.1 mgml� 1 of doxycycline was added to the media. The same
amount of doxycycline was added to the media to lock cells from the strain
MSY020 into the ON state. The distributions in steady state for this history period
are show in the Supplementary Fig. S2. After this history period, cells were spun
down, washed and resuspended in yeast nitrogen base media with the appropriate
amino-acid supplement (CSM), 0.02% glucose and various concentrations of
galactose and doxycycline. For this induction period, cells were diluted to an OD600

value so that after 30 h of growth the galactose and glucose concentration in the
medium would not change by more than 10% (final OD600 0.05). Cells were grown
at 30 �C. After the induction period of 30 h, the expression distributions were
determined by flow cytometer (FACScan; Becton Dickinson). To determine that
nutrients in the media are not being depleted after the induction period, it is
possible to calculate the depletion of sugars during exponential growth over time
according to the following equation34:

SO � SðtÞ ¼ r NðtÞ�Noð Þ
m

ð2Þ

In which r is the uptake rate per A600 nm, measured in units of mMh� 1

A600 nm
� 1. N(t)�N(0) is the change in A600 nm of the cells measured using the

spectrophotometer (Hitachi U-1800) and m is the growth rate.
For glucose, we have the glucose uptake rate for S. cerevisiae34 is 1.2mMh� 1

A600 nm
� 1. The A600 nm after the induction period was 0.05 and at the beginning

was 10� 7. The growth rate determined for our strains in glucose is 0.37 h� 1.
Therefore, we have that the glucose depletion after the induction period follows:

So� SðtÞ¼ 1:2�0:05
0:37

¼ 0:16mM � 0:0032% : ð3Þ

If the initial concentration of glucose is 0.02%, according to the previous result
after 30 h the amount that is available is 0.017%. Therefore, just 16% of the initial
amount is consumed. The same analysis can be done for galactose by using an
uptake rate1 of 0.084mMh� 1 A600 nm

� 1 and the growth rate determined for our
strains in galactose, which is 0.3 h� 1. In this case, not even 10% of the initial
amount is consumed, as reported previously1.

Data analysis. Cells were analysed by flow cytometry based on scattered laser light
and fluorescence from a focused 488-nm argon ion laser. The data for each event
consisted of the forward light scatter (FSC), perpendicular light scatter (SSC), pulse
width of the forward scattered light and the integrated fluorescence to quantify the
YFP concentration. Data from a single run of the flow cytometer were stored in a Flow
Cytometry Standard format file incorporating 15,000 events in a specific gate. Initial
visualization of the flow cytometry data was performed using MFI software and then

analysed using Matlab (Mathworks, Natick, MA). For each data point, we recorded
the number of events and computed the average and s.d. of the fluorescence intensity.
To select events with homogeneous cell size and avoid fluorescence variation coming
from cell size variation, we selected events within a gate of forward light scatter (FSC)
based on the mean FSC±0.1 s.d. of the FSC of the control strain. Mutant and wild-
type data were gated with the same FLS window size to avoid introducing bias.

RNA FISH experiment. For the FISH experiments, cells were grown as described
in the flow cytometry section. After induction period, yeast cultures were fixed with
formaldehyde for 40min at room temperature with gentle rocking throughout.
Zymolyase digestions were performed at 30 �C in 0.5ml buffer B containing
2mgml� 1 Zymolase 100T (US Biological) for 15min while rotating tubes.
Hybridizations with DNA probes were performed in 10% formamide hybridization
buffer. gal80-specific probes were coupled to Alexa-594 (Invitrogen) and gal3-
specific probes were coupled to Cy5 (GE Amersham). To protect fluorophores
from oxidation during imaging, cells were suspended in GLOX buffer and imaged
on Lab-Tek II chambered coverglass (Thermo Fisher Scientific, Billerica, MA)
previously incubated with ConA at 0.1 ngml� 1 (Sigma Aldrich, St Louis, MO).

Probes for in situ hybridization. The gal3 and gal80 mRNA were each labelled
with a unique set of up to 48 DNA oligonucleotides, each with a length of 20 nt.
The 30-end of each probe was modified with an amine group. The DNA probes
have been coupled to Alexa fluor 594 or Cy5. After coupling the DNA probes to the
fluorophore, the probes were ethanol precipitated and were purified on an HPLC
column to isolate oligonucleotides displaying the highest degree of coupling of the
fluorophore to the amine groups.

Fluorescence microscopy image acquisition and analysis. Images were collected
using a Nikon TE2000 inverted fluorescence microscope with 1,003 oil-immersion
objective, appropriate filters (Alexa594, Cy5 and DAPI (40 ,6-diamidino-2-pheny-
lindole)) and a Princeton Instruments camera with MetaMorph software (Mole-
cular Devices, Downington, PA). Custom filter sets were designed to distinguish
Alexa594 and Cy5 signal. Differential interference contrast (DIC), DAPI, Alexa594
and Cy5 images were collected with 0.2-mm z-slices. Analysis was done as described
previously35. In general, DIC and DAPI images were used to identify individual
cells. Alexa594 and Cy5 image stacks were used to detect RNA transcripts. For
image processing, a DIC image was chosen in which a clear cell boundary could be
observed. This image was converted into a binary image using automated
thresholding. The maximum projection of a DAPI image stack was generated and
converted into a binary image using a fixed pixel intensity threshold. The binary
DIC image was merged with the binary DAPI image. DAPI-stained nuclei were
used in running a marker-controlled watershed algorithm over the merged DIC/
DAPI image. Cell boundaries of individual cells were obtained using an edge-
detection algorithm. Connected regions measuring larger than the expected range
of sizes for an individual cell were rejected. The number of RNA transcripts in each
cell was counted using a programme that operates as follows: to enhance
particulate signals, the programme runs a median filter followed by a Laplacian
filter on each optical slice. A threshold was then selected to detect individual dots in
each plane. The particle count was robust over a range of selected thresholds.
Images that demarcated cell boundaries were merged with each plane of Alexa594
or Cy5 image stacks. This processing enabled the programme to count the total
number of isolated signals in three dimensions within each cell.

Simulations. Model predictions were generated by Monte-Carlo simulation by
implementation of a modified Gillespie’s stochastic simulation algorithm24 in
Matlab (MathWorks).
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