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Griffiths phases and the stretching of criticality
in brain networks
Paolo Moretti1 & Miguel A. Muñoz1

Hallmarks of criticality, such as power-laws and scale invariance, have been empirically found

in cortical-network dynamics and it has been conjectured that operating at criticality entails

functional advantages, such as optimal computational capabilities, memory and large dyna-

mical ranges. As critical behaviour requires a high degree of fine tuning to emerge, some type

of self-tuning mechanism needs to be invoked. Here we show that, taking into account the

complex hierarchical-modular architecture of cortical networks, the singular critical point is

replaced by an extended critical-like region that corresponds—in the jargon of statistical

mechanics—to a Griffiths phase. Using computational and analytical approaches, we find

Griffiths phases in synthetic hierarchical networks and also in empirical brain networks such

as the human connectome and that of Caenorhabditis elegans. Stretched critical regions,

stemming from structural disorder, yield enhanced functionality in a generic way, facilitating

the task of self-organizing, adaptive and evolutionary mechanisms selecting for criticality.
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E
mpirical evidence that living systems can operate near
critical points is flowering in contexts ranging from gene
expression patterns1, to optimal cell growth2, bacterial

clustering3 or flocks of birds4. In the context of neuroscience,
synchronization patterns have been shown to exhibit broadband
criticality5, critical avalanches of spontaneous neural activity have
been consistently found both in vitro6–8 and in vivo9, and results
from large-scale brain models based on the human connectome
show that only at criticality the brain structure is able to support
the dynamics observed in functional magnetic resonance imaging
(fMRI) recordings10. All this evidence suggests that criticality—
with its concomitant power-laws and scale invariance–might have
a relevant role in intact–brain dynamics8,11. At variance with
inanimate matter—for which the emergence of generic or self-
organized criticality in sandpile models, type-II superconductors
or solar flares is relatively well understood12–14—criticality in
living systems can be conjectured to be the result of evolutionary
or adaptive processes, which for reasons to be understood select
for it.

The criticality hypothesis8,11,15 states that biological systems
can perform the complex computations that they require to
survive only by operating at criticality (the edge-of-chaos), that is,
at the borderline between an active or chaotic phase in which
noise propagates unboundedly—thereby corrupting all informa-
tion processing or storage—and a quiescent or ordered phase in
which perturbations readily fade away, hindering the ability to
react and adapt16,17. Critical dynamics provides a delicate trade-
off between these two impractical tendencies, and it has been
argued to imply optimal transmission and storage of
information7,8,18, optimal computational capabilities19, large
network stability17, maximal variety of memory repertoires20

and maximal sensitivity to stimuli21.
Such a delicate balance occurs just at a singular or critical

point, requiring a precise fine tuning. However, a very recent
fMRI analysis of the human brain at its resting state reveals that
the brain spends most of the time wandering around a broad
region near a critical point, rather than just sitting at it22. This
suggests that the region where cortical networks operate is not
just a critical point, but a whole extended region around it.

Here inspired by this empirical observation as well as by some
recent findings in network theory and neuroscience23–25, we
scrutinize the dynamics of simple models of neural activity
propagation when the structural architecture of brain networks is
explicitly taken into account. Using a combination of analytical
and computational tools, we show that the intrinsically
disordered (hierarchical and modular) organization of brain
networks dramatically influences the dynamics by inducing the
emergence—in the jargon of Statistical Mechanics—of a Griffiths
phase (GP)23,26–28. This phase, which stems from the presence of
disorder (structural heterogeneity here), is characterized by
generic power-laws extending over broad regions in parameter
space. Furthermore, functional advantages usually ascribed to
criticality, such as a huge sensitivity to stimuli, are reported to
emerge generically all along the GP. Remarkably, not only do we
find GPs in stylized models of brain architecture, but also in
real neural networks such as those of the Caenorhabditis elegans
(C. elegans) and the human connectome.

Our conclusion is that, as a consequence of the intrinsically
disordered architecture of brain networks, critical-like regions are
extended from a singular point to a broad or stretched region,
much as evidenced in recent fMRI experiments. The existence of
GPs facilitates the task of self-organizing, adaptive or evolutive
mechanisms seeking for critical-like attributes, with all their
alleged functional advantages. We claim that the intrinsic
structural heterogeneity of cortical networks calls for a change
of paradigm from the critical/edge-of-chaos to a new one, relying

on extended critical-like Griffiths regions. Our work also raises a
series of questions worthy of future pursuit. For instance, is there
any connection between GPs and the empirically reported generic
power-law decay of short-time memories? Do our results extend
to other hierarchical architectures such as those encountered in
metabolic or technological networks?

Results
Hierarchical network architectures. The cortex network has
been the focus of attention in neuroanatomy for a long time, but
only recently the development of high-throughput methods
has allowed the unveiling of its intricate architecture or
connectome29,30. Brain networks have been found to be
structured in moduli—each modulus being characterized by
having a much denser connectivity within it than with elements
in other moduli—organized in a hierarchical fashion across many
scales31–33. Moduli exist at each hierarchical level: cortical
columns arise at the lowest level, cortical areas at intermediate
ones and brain regions emerge at the systems level, forming a sort
of fractal-like nested structure31–34.

To be able to perform systematic analyses, we have designed
synthetic hierarchical and modular networks (HMN) with s
hierarchical levels, N nodes/neurons and L links/synapses, whose
structure can be tuned to mimic that of real networks. We employ
two different HMN models based on a bottom–top approach; in
the first, local fully connected moduli are constructed and then
recursively grouped by establishing new inter-moduli links
between them in either a stochastic way with a level-dependent
probability p as sketched in Fig. 1 (HMN-1) section or in a
deterministic way with a level-dependent number of connections
(HMN-2). For further details see the Methods section. Similarly,
top–down models can also be designed35.

A way to encode key network structural information is the
topological dimension, D, that measures how the number of
neighbours of any given node grows when moving 1, 2, 3,..., r
steps away from it: NrBrD for large values of r. Networks with the
small-world property36 have local neighbourhoods quickly
covering the whole network, that is, Nr grows exponentially
with r, formally corresponding to D-N. Instead, large-worlds
have a finite topological dimension, while D¼ 0 describes
fragmented networks (see Fig. 1). Our synthetic HMN models
span all the spectrum of D-values as illustrated in Fig. 1.

Strictly speaking, the HMN networks that we will consider in
the following are finite dimensional only for p¼ 1/4, in which
case the number of inter-moduli connection is stable across
hierarchical levels (see Methods). For p41/4 (resp. po1/4),
networks become more and more densely (resp. sparsely)
connected as the hierarchy depth (that is, the network size) is
increased. Deviations from p¼ 1/4 create fractal-like networks up
to certain scale, being good approximations for finite-dimensional
networks in finite size. In some works (for example, Gallos
et al.37), the Hausdorff (fractal) dimension Df is computed for
complex networks. We have verified numerically that DfED in all
cases for HMNs.

Architecture-induced GPs. Disorder is well-known to radically
affect the behaviour of phase transitions (see studies by Vojta28

and references therein). In disordered systems, there exist local
regions characterized by parameter values that differ significantly
from their corresponding system averages. Such rare-regions can,
for instance, induce the system to be locally ordered, even if
globally it is in the disordered phase. In this way, in propagation-
dynamic models, activity can transitorily linger for long
times within rare active regions, even if the system is in its
quiescent phase. In the particular case in which broadly different
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rare-regions exist—with broadly distinct sizes and time-scales—
the overall system behaviour, determined by the convolution of
their corresponding highly heterogeneous contributions, becomes
anomalously slow (see below). In contrast with standard critical
points, systems with rare-region effects have an intermediate
broad phase separating order from disorder: a GP with generic
power-law behaviour and other anomalous properties (see studies
by Vojta28 and below).

Remarkably, it has been very recently shown that structural
heterogeneity can have, in networked systems, a role analogous to
that of standard quenched disorder in physical systems23. In
particular, simple dynamical models of activity propagation
exhibit GPs when running upon networks with a finite
topological dimension D. On the other hand, in small-world
networks (with D¼N) local neighbourhoods are too large—
quickly covering the whole network—as to be compatible with the
very concept of rare (isolated) regions23. Therefore, it has been
conjectured that a finite topological dimension D is an excellent
indicator of eventual rare-region effects and GPs.

Anomalous propagation dynamics in HMNs. To model the
propagation of neuronal activity, we consider highly simplified
dynamical models running upon HMNs. More realistic models of
neural dynamics with additional relevant layers of information
could be considered, but we do not expect them to significantly
affect our conclusions. Our approach here consists in modelling

activity propagation in a minimal way; in some of the cases that
we study, the network nodes are not neurons but coarse neural
regions, for which effective models of activity propagation are
expected to provide a sound description of large-scale properties.
Every node (or neuron) is endowed with a binary state variable s,
representing either activity (s¼ 1) or quiescence (s¼ 0). Each
active neuron is spontaneously deactivated at some rate m (m¼ 1
here), while it propagates its activity to other directly connected
neurons at rate l. We have considered two different dynamics: in
the first one, (Model A) a synapsis between an active and a
quiescent node is randomly selected at each time and proved for
activation, while in the other variant (Model B) a neuron is
selected and all its neighbours are proved for activation. Details of
the computational implementation of the two models, known in
statistical physics as the contact process and the SIS model
respectively, can be found in Methods.

In general, depending on the value of l, these models can be
either in an active phase—for which the density r of active nodes
reaches a steady-state value rs40 in the large system size and
large-time limit—or in the inactive phase in which r falls
ineluctably in the quiescent configuration (rs¼ 0). Separating
these two regimes, at some value, lc, there is a standard critical
point where the system exhibits power-law behaviour for
quantities of interest, such as the time decay of a homogeneous
initial activity density, r(t)Bt� y, or the size distribution of
avalanches triggered by an initially localized perturbation,
P(S)BS� t. Here y and t are critical indices or exponents.
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Figure 1 | Hierarchical-modular networks. (a) Sketch of the bottom–top approach (HMN-1 model): initially, nodes are grouped into fully connected

modules of size M0 (blue squares); then nodes in different modules are clustered recursively into sets of b higher level blocks (for example, in pairs, b¼ 2)

linking their respective nodes with hierarchical level-dependent wiring probabilities (HMN-1): pl¼apl with 0opo1 and a a constant. At level l, each

of the existing N/2l pairs is connected on average by nl¼4l(M0/2)
2�apl links. The resulting networks are always connected; with total number of

N¼M0� bs nodes, and average connectivity k ¼ ðM0 � 1Þþ aðM0=2Þ
Ps

i¼1ð2pÞ
i. (b) Graph representation of a HMN-1 with N¼ 211 nodes, organized across

s¼ 10 hierarchical levels (M0¼ 2, p¼ 1/4, and a¼4). (c) Adjacency matrix of the connection-density (as in b) averaged over several network realizations

(greener for larger densities). (d,e) Topological dimension, D, as defined by NrBrD (see main text) as a function of parameters. (d) As p is increased

D (the slope of the straight lines in the double logarithmic plot) grows and eventually becomes infinite; for smaller values of p (not shown) it becomes flat,

and D-0. (e) Keeping p¼ 1/4, the topological dimension D is finite and continuously varying as function of a, (values summarized in the inset).

(f) Summary of structural properties: networks are disconnected (vanishing topological dimension, D) and small-world (D¼N) for small and large values

of p, respectively, while around p¼ 1/4 networks have a finite D (as well as a finite connectivity and a finite density of connections in the large-N limit,

that is, networks are scalable).
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This standard critical-point scenario (see Fig. 2a,b) holds for
regular lattices, Erdös-Renyi networks and many other types of
networks. On the other hand, computer simulations of the
different dynamical models running upon our complex HMN
topologies with finite D reveal a radically different behaviour (see
Fig. 2c–f and Methods). The power-law decay of the average
density r(t)—specific to the critical point in pure systems—
extends to a broad range of l values. The existence of a broad
interval with power-law decaying activity is supported by finite
size scaling analyses reported in Methods. Likewise, as shown in
Fig. 2f, avalanches of activity generated from a localized seed have
power-law distributed sizes, with continuously varying exponents,
in the same broad region. These features are fingerprints of a GP
and have been confirmed to be robust against increasing system
size (up to N¼ 220), using different types of HMN (HMN-1 with
different values of a and p, HMN-2 models, all with finite D) and
dynamical models (see Methods).

How do Griffith phases work? For illustration purposes, let us
consider a simplified example. Consider Model A (the contact
process) on a generic network, with a node-dependent quenched
spreading rate l(x), characterized—without loss of generality—by
a bimodal distribution of l with average value �l. Suppose, the two
possible values of l are one above and one below the critical point
of the pure model, lc. In this way, at each location the system has
an intrinsic preference to be either in the active or in the quiescent
phase. Under these circumstances, typically, lco�lc, so that, for
values of �l in between lc and �lc the disordered system is in its
quiescent phase. However, there are always spatial locations
characterized by significantly over-average values of (actually,
local values of l(x)4lc). In these regions, initial activity can linger
for very long periods, especially if they happen to be large. Still, as
such rare-regions have a finite size, they ineluctably end up falling
into the inactive state. Considering a rare active region of size z,
it decays to the quiescent state after a typical time t(z), which
grows exponentially with cluster size, that is, tCt0 exp[A(l)z]
(Arrhenius law), where t0 and A(l) do not depend on z. On the
other hand, the distribution of z-values is also exponential (very

large regions are exponentially rare). Therefore, the overall activity
density, r(t), decays as the following convolution integral

rðtÞ �
Z

dzPðzÞzexp � t=ðt0eAðlÞzÞ
h i

; ð1Þ

which evaluated in saddle-point approximation leads to r(t)Bt� y,
with y(�l) varying continuously with the disorder average value, �l.
Such generic power-laws signal the emergence of GPs. This is just
an explanatory example of a general phenomenon, thoroughly
studied in classical, quantum and non-equilibrium disordered
systems28. In HMNs, the quenched disorder is encoded in the
intrinsic disorder of the hierarchical contact pattern.

Diverging response in HMNs. One of the main alleged advan-
tages of operating at criticality is the strong enhancement of the
system’s ability to distinctly react to highly diverse stimuli. In
the statistical mechanics jargon, this stems from the divergence of
the susceptibility at criticality38. How do systems with broad GPs
respond to stimuli? To answer this question we measure the
following two different quantities (see Methods):

First, the dynamic susceptibility gauges the overall response to
a continuous localized stimulus and is defined as S(l)¼N[rf(l)–
rs(l)], where rs(l) is the stationary density in the absence of
stimuli and rf(l) is the steady-state density reached when one
single node is constrained to remain active. As shown in Fig. 3, S
becomes extremely large in the GP and, more importantly, it
grows as a power-law of system size, S(lElc,N)BNZ, implying
that there is an extended extended region (the whole GP) where
the system exhibits a divergent response (with l-dependent
continuously varying exponents).

Second, the dynamic range, D, introduced in this context in the
studies by Kinouchi and Copelli21 measures the range of
perturbation intensities/frequencies for which the system reacts
in distinct ways, being thus able to discriminate among them. We
have computed D(l) in the HMN-2 model (see Fig. 3), which
clearly illustrates the presence of a broad region with huge
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(c) Schematic phase diagram for a system exhibiting a broad region of power-law scaling. The stationary density of activity, rs, is depicted as a function of

the spreading rate l. (d,e) Steady-state density of active sites for Model A and Model B dynamics, respectively, on HMN-1 networks (with N¼ 214 nodes,

and parameters s¼ 13, p¼ 1/4, a¼ 1). Data for increasing values of the spreading rate l, from bottom to top. (f) Avalanche-size distributions for

Model A on a HMN-2 network (N¼ 214, s¼ 13, p¼ 1/4, a¼ 1; GP for such networks is observed for 2.60rlr2.79); avalanche sizes are power-law

distributed over a wide-range l values reflecting the existence of a GP. These conclusions have been confirmed in finite-size scaling analyses, and can be

generalized for other combinations of network architectures and dynamical models.
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dynamic ranges (rather than the standard situation for which
large responses are sharply peaked at criticality).

Therefore, if critical-like dynamics is important to access a
broad dynamic range and to enhance system’s sensitivity, then it
becomes much more convenient to operate with hierarchical-
modular systems, where criticality—with extremely large
responses and huge sensitivity—becomes a region rather than a
singular point.

GPs in real networks. Analyses of different nature have revealed
that organisms from the primitive C. elegans32,33,39,40 (for which a
full detailed map of its about 300 neurons has been constructed)
to cats, macaque monkeys or humans (for which large-scale
connectivity maps are known29) have a hierarchically organized
neural network. Such structure is also shared by functional brain
networks (for example, from fMRI data)29,30,37,41,42. Do simple
dynamical models of activity propagation (such as those in
previous sections) running upon real neural networks exhibit GPs?

We have considered the human connectome network, obtained
by Sporns and collaborators29,30 using diffusion imaging
techniques. It consists of a highly coarse-grained mapping (as
opposed for instance to the detailed map of C. elegans) of
anatomical connections in the human brain, comprising N¼ 998
brain areas and the fibre tract densities between them, with a
hierarchical organization32,33 (see Methods).

Given that this network comprises only Nt1,000 nodes, the
maximum size of possible rare-regions and the associated power-
laws are necessarily cutoff at small sizes and short times.
Nevertheless, as illustrated in Fig. 4, simulations of the dynamical
models above (Model B in this case) show a significant deviation
from the typical standard critical-point scenario. Instead,

avalanches are clearly distributed as power-laws, with moderate
finite-size effects, in a broad range of l-values (see Fig. 4).
Actually, truncated power-laws of the form P(S)BS� te� S/x—
with l-dependent values of t—provide highly reliable fits of the
size distributions, P(S), according to the Kolmogorov–Smirnoff
criterion (see Methods), supporting the picture of a broad critical-
like region. This strongly suggests that if it were feasible to run
dynamical models upon the actual human brain network (with
about 1012 neurons and 1015 synapses) a GP would appear in a
robust way, and would extend over much larger range of size and
time scales. Similar results, even if affected by more severe size
effects, are obtained for the C. elegans detailed neural network
consisting of Nt300 neurons (see Fig. 4, upper inset).

Spectral fingerprints of GPs in HMNs. To further confirm the
existence of GPs (beyond direct computational simulations),
here we present some analytical results. An important tool in the
analysis of network dynamics is provided by spectral graph
theory, in which the network structure is encoded in some
matrix and linear algebra techniques are exploited43. For instance,
the dynamics of simple models (for example, Model B) is
often governed by the largest (or principal) eigenvalue, Lmax, of
the adjacency matrix, Aij (with 1’s as entries for existing
connections and 0’s elsewhere), which straightforwardly appears
in a standard linear stability analysis (as detailed in the Methods
section). It is easy to show that (with very mild assumptions)
the critical point—signalling the limit of linear stability of per-
turbations on the quiescent state—is given by lcLmax¼ 1.
Remarkably, it has been recently shown that this general
result may not hold for certain networks, for which the largest
eigenvalue has an associated localized eigenvector (for example,
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with only a few non-vanishing components; this pheno-
menon closely resembles Anderson localization in physics44). In
such a case, linear instabilities for l slightly larger than 1/Lmax

lead to localized activity around only few nodes (where the
corresponding eigenvector is localized), not pervading the
network and not leading to a true active state. This implies that
the critical point is shifted to a larger value of l. Instead, these
regions of localized activity resemble very much rare-regions in
GPs: activity lingers around them until eventually a large
fluctuation kills them.

Inspired by this novel idea, we performed a spectral analysis of
our HMNs (for example, HMN-2 nets with a¼ 1, see Fig. 5), with
the result that—for finite D networks—not only the largest
eigenvalue Lmax corresponds to a localized eigenvector, but a
whole range of eigenvalues below Lmax (even hundreds of them)
share this feature, as can be quantitatively confirmed (see Fig. 5c,
d and Methods). In particular, the principal eigenvector is heavily
peaked around a cluster of neighbouring nodes. We have
conjectured and verified numerically that the clusters where the
largest eigenvalues are localized correspond to the rare-regions,
with above-average connectivity and where localized activity
lingers for long time. Also, we numerically found lcE0.4141/
LmaxE0.33 confirming the prediction above. The interval
between these two values defines the GP (see Methods).

In addition, we also considered large network ensembles and
computed the probability distribution of eigenvalues. We found

that the distribution of the eigenvalues corresponding to localized
eigenvectors results in an exponential tail of the continuum
spectrum, where an infinite dimensional graph would exhibit a
spectral gap instead (see Methods). This translates into an
exponential tail of the cumulative distribution f(L) of Laplacian
eigenvalues (or integrated density of states) at the lower spectral
edge, a so-called Lifshitz tail—which in equilibrium systems is
related to the Griffiths singularity45. We have found Lifshitz tails
with their characteristic form

fðLÞ � 1
ðLmax �LÞa

� �
ð2Þ

(where a is a real parameter, see Fig. 5e). Interestingly, Lifshitz
tails are also rigorously predicted on Erdös Rényi networks below
the percolation threshold, where rare-region effects and GPs are
an obvious consequence of the network disconnectedness46.
Therefore, the presence of both (i) localized eigenvectors and (ii)
Lifshitz tails confirms the existence of GPs in networks with
complex heterogeneous architectures.

The fingerprints of extended criticality in the human
connectome are a result of its hierarchical network structure,
and the localization properties that characterize it. Figure 6
supports this view highlighting the localization of the principal
eigenvector. In particular, we show that the principal eigenvector
of the full adjacency matrix and that of the unweighted (that is,
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spectral edge of (a). The values of the five largest eigenvalues for five randomly chosen networks from (a) are represented. No proper spectral gap is

observed. (c) Localization of the five eigenvectors corresponding to the largest eigenvalues. The principal eigenvector f(Lmax) is plotted in red. Being our

HMNs connected, in agreement with the Perron–Frobenius theorem60, the components of f(Lmax) (even the vanishing ones) are all strictly positive,

although this cannot be appreciated in linear scale. The next eigenvectors are plotted in magenta, orange, green and blue. (d) Dependence of the IPR on the

system size and the number of block-block connections in HMN-2 networks. (e) Lower spectral edge of the cumulative distribution of Laplacian

eigenvalues of HMN-2 networks as in (a). Numerical data (points) are compared with an exponential Lifshitz tail with exponent aE1.00. The Laplacian

matrix is defined as Lij ¼
P
k

Aik �Aij.
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with 1’s as entries in correspondence to every non-zero weight)
version of it display very similar peak structures (that is, their
rare-regions are very similar). This last observation supports our
choice to run simple unweighted dynamics on top of the
connectome network. Connection weights will certainly con-
tribute to a fully realistic description of the brain function, but
they are not necessary in order to achieve broad criticality, which
primarily arises from structural disorder.

Discussion
A few pioneering studies have recently explored the role of
hierarchical-modular networks (HMN) on different aspects of
neural dynamics. Rubinov et al.24 argued that HMNs have a
crucial role in fostering the existence of critical dynamics. Similar
observations have been also made for spreading dynamics35,47,48

and for self-organization models25, but so far these remain
empirical findings lacking a satisfactory explanation.

Aimed at shedding light on these issues, here we have made the
conjecture that owing to the intrinsically heterogeneous (that is,
disordered) architecture of brain HMNs and their large-world
nature (which implies finite topological dimensions D), GPs are
expected to emerge. These are characterized by broad regions in
parameter space exhibiting critical-like features and, thus, not
requiring of a too-precise fine tuning. To confirm this claim, we
use a combination of computational tools and analytical
arguments. In particular, we have constructed different synthetic
HMNs covering a broad range of architectures (with either large-
or small-world properties). For large-worlds (that is, finite
topological dimension D), we find (i) generic anomalous slow
relaxation and power-law distributed avalanches (with continu-
ously varying exponents) in a broad region comprised between
the active and the inactive phase; (ii) the system’s response to
stimuli (as measured by the dynamic susceptibility and the
dynamic range) is anomalously large: it diverges with system size
through the whole GP. At a theoretical level, graph-spectral
analyses reveal the presence of localized eigenvectors and Lifshitz
tails, which are the spectral counterparts of rare-regions and GPs.
All these evidences confirm the existence of GPs in synthetic
HMNs, including a spectral graph theory viewpoint, thereby
going beyond previous results in generic complex networks23.

More remarkably, we have also provided evidence that GPs
appear in actual real networks such as those of the human
connectome and C. elegans, even if owing to the limited available
network-sizes the associated power-laws are necessarily cutoff.
Still, the best fits to data are provided by continuously varying
power-laws, truncated by finite-size effects.

It is noteworthy that disorder needs to be present at very
different scales for GPs to emerge (otherwise rare-regions cannot
be arbitrarily large); this is why a hierarchy of levels is required.
Plain modular networks—without the broad distribution of
cluster sizes, characteristic of hierarchical structures—are not
able to support GPs. We emphasize that GPs in HMNs are
induced merely by the existence of structural disorder: no
additional form of neuronal or synaptic heterogeneity has been
considered here; adding further heterogeneity would only
enhance rare-region effects and hence GPs. For instance, we
have also found GPs for the human connectome, when taking
into account the relative weight of structural connections. It
should also be noticed that all networks in our study are
undirected in the sense that links are symmetrical, although
synapses in cortical networks are not. Again, this does not
jeopardize our conclusions: directness in the connections only
strengthens isolation and hence rare-region effects and GPs.

The existence of a GP with its concomitant generic power-law
scaling—not requiring a delicate parameter fine tuning—provides
a more robust and solid basis to justify the ubiquitous presence of
scale-free behaviour in neural data, from EEG or MEG records to
neural avalanches. More in particular, it might give us the key to
understanding why broad regions around criticality are observed
in fMRI experiments of the brain resting state22.

As we have shown, the system’s response is extremely large
(and diverges upon increasing the network size) in a broad region
of parameter space. This strongly facilitates the task of
mechanisms selecting for the alleged virtues of scale-invariance
and strongly suggests that a new paradigm is needed: a theory of
self-organization/evolution/adaptation to the broad region separ-
ating order from chaos. In particular, GPs combined with
standard mechanisms for self-organization49–51 are expected to
account for the empirically found dispersion around criticality22.
This also invites the question of whether intrinsically disordered
HMNs do indeed generically optimize transmission and storage
of information, improve computational capabilities19 or
significantly enhance large network stability17, without the need
to invoke precise criticality.

Usually, brain networks are claimed to be small worlds; instead
we have shown that large-world architectures are essential for
GPs to emerge. A solution to this conundrum was provided by
Gallos et al.37, who found that (functional) brain networks consist
of a myriad of densely connected local moduli, which altogether
form a large world structure and, therefore, are far from being
small-world; however, incorporating weak ties into the network
converts it into a small-world preserving an underlying backbone
of well-defined moduli. To this end, it is essential that networks
have a finite Hausdorff or fractal dimension (see Fig. 1 and Gallos
et al.37), confirming that finite dimensionality is a crucial feature.
In this way, cortical networks achieve an optimal balance between
local specialized processing and global integration through their
hierarchical organization. On the other hand, weak links are not
expected to significantly affect the existence of GPs. Therefore,
from this perspective, (i) achieving such an optimal balance and
(ii) operating with critical-like properties can be seen as the two
sides of the same coin. This stresses the need to develop new
models for the co-evolution of structure and function in neural
networks.

It is noteworthy that a mechanism for robust working memory
without synaptic plasticity has been put forward very recently52.
It heavily relies on the existence of heterogeneous local clusters of
densely inter-connected neurons, where activity (memories)
reverberates. Not surprisingly, this leads to power-law
distributed fade-away times, which have been claimed to be the
correlate of power-law forgetting53. This is an eloquent
illustration of GPs at work.
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Figure 6 | Localization properties of the human connectome network.
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adjacency matrix. As the peak structure is roughly preserved, localization

properties are expected to be alike in the two representations. In both cases

regions of localized activity are evident.
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Given that disorder is an intrinsic and unavoidable feature of
neural systems and that neural-network architectures are
hierarchical, GPs are expected to have a relevant role in many
dynamical aspects and, hence, they should become a relevant
concept in Neuroscience as well as in other fields such as systems
biology, where HMNs have a key role54. We hope that our work
contributes to this purpose, fostering further research.

Methods
Synthetic hierarchical networks. HMN-1: At each hierarchical level l¼ 1,2,ys,
pairs of blocks are selected, each block of size 2i� 1M0. All possible 4i� 1M0

2

undirected eventual connections between the two blocks are evaluated, and
established with probability apl, avoiding repetitions. With our choice of para-
meters, we stay away from regions of the parameter space for which the average
number of connections between blocks nl is less than one, as this would lead
inevitably to disconnected networks (as rare-region effects would be a trivial
consequence of disconnectedness, we work exclusively on connected networks, that
is, networks with no isolated components). As links are established stochastically,
there is always a chance that, after spanning all possible connections between two
blocks, no link is actually assigned. In such a case, the process is repeated until, at
the end of it, at least one link is established. This procedure enforces the con-
nectedness of the network and its hierarchical structure, introducing a cutoff for
the minimum number of block-block connections at 1. Observe also that for
M0¼ 2 and p¼ 1/4, a is the target average number of block-block connections and
1þ a the target average degree. However, by applying the above procedure to
enforce connectedness, both the number of connections and the degree are
eventually slightly larger than these expected, unconstrained, values.

For the HMN-2, the number of connections between blocks at every level is
a priori set to a constant value a. Undirected connections are assigned choosing
random pairs of nodes from the two blocks under examination, avoiding
repetitions. Choosing aZ1 ensures that the network is hierarchical and connected.
This method is also stochastic in assigning connections, although the number of
them (as well as the degree of the network) is fixed deterministically. In both cases,
the resulting networks exhibit a degree distribution characterized by a fast
exponential tail, as shown in Supplementary Fig. S1.

Empirical brain networks. Data of the adjacency matrix of C. elegans are publicly
available (see for example, Kaiser32). Different analyses have confirmed that this
network has a hierarchical-modular structure (see for example refs 33,39,40,55,56).
In particular, in (ref. 56) a new measure is defined to quantify the degree of
hierarchy in complex networks. The C. elegans neural networks is found to be six
times more hierarchical than the average of similar randomized networks.
Connectivity data for the human connectome network have been recently obtained
experimentally29,30. In this case too, the network is hierarchical22,33,42.
Supplementary Figure S2 shows a graphical representation of its adjacency matrix,
highlighting its hierarchical organization.

Dynamical models. In both cases (Model A and Model B), neurons are identified
with nodes of the network and are endowed with a binary state-variable s¼ 0.1.
The state of the system is sequentially updated as follows. A list of active sites is
kept. Model A: At each step, an active node is selected and becomes inactive s¼ 0
with probability m/(lþ m), while with complementary probability l/(lþ m), it
activates one randomly chosen nearest neighbour provided it was inactive. Model
B: At each step, an active node is selected and becomes inactive s¼ 0 with
probability m/(lþ m), while with complementary probability l/(lþ m), it checks all
of its nearest neighbours, activating each of them with probability 0olo1
provided it was inactive, then it deactivates. Both Model A and B have well-known
counterparts in computational epidemiology, where they correspond to the contact
process and the susceptible-infective-susceptible model respectively (see for
instance57). The value of similar minimalistic dynamic rules in Neuroscience was
proven before, for example, in (ref. 58). Results for real networks are obtained by
running Model B dynamics on the unweighted version of the network. We have
verified that the introduction of weights does not alter the qualitative picture
obtained.

Dynamical protocols. We employ four different dynamical protocols: (i) decay of
a homogeneous state: all nodes are initially active and the system is let evolve,
monitoring the density of active sites r(t) as a function of time. (ii) Spreading from
a localized initial seed: an individual node is activated in an otherwise quiescent
network. It produces an avalanche of activity, lasting until the system eventually
falls back to the quiescent state; the survival probability Ps(t) is measured. The
avalanche size S is defined as the number of activation events that occur for the
duration of the avalanche itself. The process is iterated and the avalanche size
distribution P(S) is monitored. (iii) Identical to (ii), except that the seed is kept
active throughout the simulation (continuous stimulus). (iv) Identical to (ii), except
that the seed node is subsequently reactivated with probability pstimulus¼
1–exp(� rDt) for t40 (Poissonian stimulus of rate r).

Measures of response. The standard method to estimate responses consisting in
measuring the variance of activity in the steady-state would not provide a measure
of susceptibility in the Griffiths region, where a steady-state is trivial (quiescent).
We define the dynamic susceptibility as S(l)¼N[rf(l)–rs(l)], where rf(l) is the
steady-state reached when a single node is constrained to be active throughout the
simulation and rs(l) the steady-state for protocol (i), that is, in the absence of
constraints. In the inactive state, rs(l)¼ 0 while rf(l) is finite but small (of the
order of 1/N) as the active node continuously fosters activity in its surroundings. In
the active state, rs(l) and rf(l) are both large and again differ by a little amount
(given by the fixed node and its induced activity) that vanishes for larger system
sizes. Only in the parameter region where the response of the system is high, the
little perturbation introduced by the constrained node produces a diverging
response. This is found to occur throughout the Griffiths region (see Fig. 3, main
text), confirming the claim of an anomalous response over an extended range of the
parameter l.

An alternative measure of response is provided by the dynamic range D,
introduced by Kinouchi and Copelli21. We determine D(l) for various values of l
in the Griffiths and active phases, as follows: (i) a seed node is chosen and initially
activated, but not constrained to be active; (ii) the dynamical model (A, B, y) is
run; (iii) if the dynamics selects the seed node, and it is found inactive, it is
reactivated with probability pstimulus; (iv) the steady-state density r is recorded (due
to the intermittent reactivation, a steady-state depending on pstimulus is always
reached, unless pstimulus is infinitesimal); (v) upon varying pstimulus, the steady-state
density r varies continuously within a finite window. We identify the values r0.1
and r0.9, corresponding to the 10 and 90% values within such window, and call p0.1
and p0.9 the values of pstimulus leading to those values respectively; and (vi) the
dynamic range is calculated as D¼ 10log10(p0.9/p0.1).

Notice that in the active phase r0.1 reaches a finite steady-state at exponentially
large times in the limit l-lþc. This makes the study of large systems very lengthy
in that parameter region.

Extended regions of enhanced response are found also by running our simple
dynamic protocols on the connectome network. A way to visualize the broadening
of the critical region is presented in Supplementary Fig. S3, where the density of
active sites given a fixed active seed rf is plotted as a function of l. The critical
region broadens if compared with the case of a regular (disorder-free) lattice of the
same size.

Finite-size scaling. In the standard critical point scenario—assuming the system
sits exactly at the critical point but it runs upon a finite system (of linear size L)—
the average density (order parameter) starting from an initially active configura-
tions decays as t� y� exp(� t/t(L)), where the cutoff time scales with system size,
as t(L)n p Lz (z the dynamic critical exponent), allowing us to perform collapse
plots for different system sizes. Instead, in GPs, the cutoff time does not have an
algebraic dependence on L; it is the largest cluster, which is cutoff by Ld, and the
corresponding escape/decay time from it grows like t(L) p exp(cLd). Therefore,
even for relatively small system sizes, such a cutoff is not observable in (reasonable)
computer simulations: order-parameter-decay plots should exhibit power-law
asymptotes without any apparent cutoff. On the other hand, the power-law
exponent—which can be estimated from a saddle-point approximation, dominated
by the largest rare region—is severely affected by finite size effects. Therefore,
summing up, although in standard critical points finite size effects maintain the
critical exponent but visibly affect the exponential cutoffs, in GPs, apparent critical
exponents are affected by finite-size corrections while exponential cutoffs are not
observable. Unless otherwise specified, simulations on HMNs are for systems of
size N¼ 214¼ 16,384. Supplementary Fig. S4 shows that upon increasing the
system size (and the number of hierarchical levels accordingly), the picture of
generic power-law decay of activity remains valid in the whole GP. One can
observe that for each value of l, the effective exponent tends to an asymptotic
value, which is expected to hold in the large-network-size limit.

Avalanches in the human connectome. Unlike avalanches on synthetic HMNs,
typically run on several (107–108) network realizations, avalanche statistics on the
human connectome network is the result of a large number of avalanches (4109)
on the unique network available. Such limitation explains the emergence of strong
cutoffs in the avalanche-size distributions (see Fig. 4). In the main text, we propose
to fit avalanche size distributions with truncated power-laws, reflecting the
superposition of generic power-law behaviour and finite-size effects. In order to
assess the validity of our hypothesis, we resort to the Kolmogorov–-Smirnov
method, by which the best fit is provided by the fitting function g(S), which
minimizes the estimator

DKS ¼ max j GðSÞ� FðSÞ j; ð3Þ
where G(S) is the cumulative distribution associated with g(S) and F(S) is the
cumulative distribution of empirical data (simulation results, in our case).

In case of limited amount of empirical data, the use of diverse fitting techniques
(least squares, maximum likelihood and so on) is advised, in order to avoid biases.
However, given the abundance of data in our case, a non-linear least-squares fit
provides a reliable estimate of parameters (note that a truncated power-law cannot
be fit linearly by standards methods). We recall that the least-squares method is
essentially a minimization problem: given a set of empirical data points
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(xi,yi)i¼ 1,yn and a fitting function g(x,y,b) depending on a set of parameters b, the
fit is provided by the set of parameters that minimizes the functionPn

i¼1 yi � gðxi; bÞ½ �2. In the case of a linear regression, such minimization can be
performed exactly. In the case of a non-linear fit, instead, the minimization has to
be performed numerically.

For every value of l (every curve in Fig. 4), we proceed as follows: (i) we provide
a least-squares fit for the avalanche-size distribution, based upon the truncated
power-law hypothesis and calculate the corresponding Kolmogorov–Smirnov DKS;
(ii) we repeat the above procedure for alternative candidate distributions (non-
truncated power law and exponential); (iii) we compare the results for the DKS

indicators and choose the hypothesis with the smallest DKS as the best fit. In
Supplementary Fig. S5 we provide an example of this procedure, as obtained from
our data for l¼ 0.017. In this case, as in every other case examined, the truncated
power law provides the best fit among the ones tested, both by the KS criterion and
upon visual inspection. Notice that also the power-law hypothesis appears plausible
to some extent, whereas the exponential hypothesis deviates significantly from the
data; however, one chooses the minimum avalanche size Smin to fit. Special
attention has been devoted to the choice of the lower bound Smin, as advised in
(ref. 59). Such a choice is usually made by visual inspection for large systems, where
it is easy to estimate visually the point in which power-law behaviour takes over. In
small systems, instead, a more quantitative procedure is required. For every fit
described above (points (i) and (ii)), we have chosen the best estimate for the Smin

upon preliminarily applying a KS procedure to different candidate values of S
(following59). We found that in each case, the KS estimator displayed a minimum
for values of SE6, for the truncated power-law and power law hypotheses.

Spectral analysis. Let us call qi(t) the probability that the node i is active at time t.
The density of active sites can be written as r(t)¼/qi(t)S, averaged over the
whole network. In the case of Model B dynamics, the probabilities qi(t) obey the
evolution equation

_qiðtÞ ¼ � qiðtÞþ l½1� qiðtÞ�
XN
i¼1

AijqjðtÞ; ð4Þ

where A denotes the adjacency matrix and l the spreading rate. Calling L a generic
eigenvalue of A, its corresponding eigenvector f(L) obeys Af(L)¼Lf(L). Working
on undirected networks, all eigenvalues L are real and any state of the system can
be decomposed as a linear combination of eigenvectors, as in

qi ¼
X
L

cðLÞfiðLÞ: ð5Þ

More importantly, if the network is connected (all our HMNs are), the maximum
eigenvalue of A, Lmax, is positive and unique (Perron–Frobenius theorem, see for
example, Gantmacher60). As a consequence, it is commonly assumed that the
critical dynamics of Equation (4) at l¼ lc is dominated by the leading eigenvalue
Lmax and that, at the threshold lc,

qi � cðLmaxÞfiðLmaxÞ: ð6Þ
Then one can impose the steady-state condition _qi(t)¼ 0 and, under the funda-
mental assumption of equation (6), derive the well-known result44

lc ¼ 1=Lmax: ð7Þ
This result relies on the implicit assumption that the principal eigenvalue is
significantly larger than the following one. The existence of such spectral gap’,
separating Lmax from the continuum spectrum of A, is a quite common feature in
complex networks, being a measure of their small-world property. However, the
picture of cortical networks as hierarchical structures distributed across several
levels suggests that such systems may exhibit very different properties. We will
prove this in the following and show how the above picture changes in HMNs.

Figure 5a shows the average eigenvalue spectrum of the adjacency matrix A for
HMNs. A detailed analysis of the peak structure is beyond the scope of this work.
Notice the absence of isolated eigenvalues at the higher spectral edge (see also
Fig. 5b). The principal eigenvalue Lmax is not clearly separated from the others.
The spectral gap, characterizing small-world networks, here is replaced by an
exponential tail of eigenvalues. All such eigenvalues share a common feature: their
corresponding eigenvectors are localized, as shown in Fig. 5c. All components are
close to zero, except for a few of them in each network, corresponding to a rare
region of adjacent nodes. We claim that such rare region are responsible for the
emergence of the GP over a finite range of the spreading rate l.

Localization in networks can be measured through the inverse participation
ratio, defined as

IPRðLÞ ¼
XN
i¼1

f 4i ðLÞ: ð8Þ

If eigenvectors are correctly normalized, IPR(L) is a finite constant of the order of
O(1) if L is localized, while IPRðLÞ � 1=

ffiffiffiffi
N

p
otherwise. Such localization

estimator is usually calculated for the principal eigenvalue Lmax of a network.
Indeed Fig. 5d shows that IPR is finite and insensitive to changes in systems sizes.
On the other hand, upon increasing the density of inter-module connections, IPR
rapidly decreases, suggesting that small-world effects enhance delocalization.

Having introduced a criterion to identify localized eigenvectors, we found that a
whole range of eigenvalues below Lmax correspond to localized eigenvectors. The
structure of equation (4) and its solutions suggest that although a spreading rate of
the order of l¼ 1/Lmax allows the system to access the localized behaviour dictated
by the eigenvector f(Lmax), lager values of l grant access to the next eigenvalues
and eigenvectors that are less and less localized. This ultimately establishes a strong
connection between eigenvalue localization and rare-region effects.
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without conservation: are neuronal avalanches generically critical? J. Stat.
Mech.. P02015 (2010).

52. Johnson, S., Marro, J. & Torres, J. J. Robust short-term memory without
synaptic learning. PLoS One 8, e50276 (2013).

53. Wixted, J. T. & Ebbesen, E. B. Genuine power curves in forgetting: a
quantitative analysis of individual subject forgetting functions. Mem. Cogn. 25,
731–739 (1997).

54. Treviño, III S., Sun, Y., Cooper, T. F. & Bassler, K. Robust detection of
hierarchical communities from Escherichia Coli gene expression data. PLoS
Comput. Biol. 8, e1002391 (2012).

55. Reese, T. M., Brzoska, A., Yott, D. T. & Kelleher, D. J. Analyzing self-similar and
fractal properties of the C. Elegans neural network. PLoS One 7, e40483 (2012).

56. Mones, E., Vicsek, L. & Vicsek, T. Hierarchy measure for complex networks.
PLoS One 7, e33799 (2012).

57. Pastor-Satorras, R. & Vespignani, A. Epidemic spreading in scale-free networks.
Phys. Rev. Lett. 86, 3200–3203 (2001).

58. Grinstein, G. & Linsker, R. Synchronous neural activity in scale-free network
models versus random network models. Proc. Natl Acad. Sci. USA 102,
9948–9953 (2005).

59. Clauset, A., Shalizi, C. R. & Newman, M. E. J. Power-law distributions in
empirical data. SIAM Rev. 51, 661–703 (2009).

60. Gantmacher, F. The Theory of Matrices Vol. 2 (AMS Chelsea Pub, 2000).

Acknowledgements
We acknowledge financial support from Junta de Andalucia, Grant P09-FQM-4682.
We thank Olaf Sporns for kindly giving us access to the human connectome data.

Author contributions
P.M. and M.A.M. designed the analyses, discussed the results and wrote the manuscript.
P.M. wrote the codes and performed the simulations.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/
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