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Group performance is maximized by hierarchical
competence distribution
Anna Zafeiris1 & Tamás Vicsek1,2

Groups of people or even robots often face problems they need to solve together. Examples

include collectively searching for resources, choosing when and where to invest time and

effort, and many more. Although a hierarchical ordering of the relevance of the group

members’ inputs during collective decision making is abundant, a quantitative demonstration

of its origin and advantages using a generic approach has not been described yet. Here we

introduce a family of models based on the most general features of group decision making,

and show that the optimal distribution of competences is a highly skewed function with a

structured fat tail. Our results are obtained by optimizing the groups’ compositions through

identifying the best-performing distributions for both the competences and for the members’

flexibilities/pliancies. Potential applications include choosing the best composition for a group

intended to solve a given task.
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of HAS, Pázmány Péter sétány 1A, Budapest H-1117, Hungary. Correspondence and requests for materials should be addressed to T.V.
(email: vicsek@hal.elte.hu).

NATURE COMMUNICATIONS | 4:2484 | DOI: 10.1038/ncomms3484 |www.nature.com/naturecommunications 1

& 2013 Macmillan Publishers Limited. All rights reserved.

mailto:vicsek@hal.elte.hu
http://www.nature.com/naturecommunications


G
roup life involves a continuous series of collective
decision-making events related to a large selection of
tasks1–3, such as searching for food4, navigating towards a

distant target5–8 or deciding when and where to go7,9. The
members of a group typically contribute to finding the best
solution with varying degrees of input, because of the engineered
or naturally occurring differences in their capabilities of possessing
information1,10–16. Recent theoretical interest focused on two
possible mechanisms of group decision making13,17–19 based on
the influence of the members originating from, for example, their
level of dominance, physiological state or pertinent information
and/or navigational competence7. In the ‘democratic’ or
egalitarian version the members contribute to the final decision
to about the same degree20, whereas in a ‘despotic’ situation one or
a few individuals have the role of leaders and determine the final
outcome of the decision process21,22. It has been observed
experimentally that the latter kind of influence allocation may
increase the efficiency of a group6,22. Up to very recently5 when
addressing the role of leadership in animal groups quantitatively,
the simplest case has been considered, with one or more
‘informed’ individuals (for example, pre-trained fish or birds),
whereas the rest of the members had the role of followers. Because
of the sensitivity and the effectiveness of group decision
making, this simple ‘two-level hierarchy’ has already led to
interesting findings both using modelling17 and experimental22

approaches. All these works were aimed at finding/interpreting
the evolutionary stable (optimal) solution based on individual
selection.

At the same time, recent experimental observations involving
some sophisticated animal groups, such as pigeons or primates,
point towards the possibility of significantly more complex
internal organization principles5,23,24. In socially highly organized
groups beyond a given size (dozens or so) the roles related to
leadership do not seem to be simply binary, but several levels of
hierarchy can be identified. This is how groups of apes,
organizations, or even a group of pigeons behave. Although in
prior works two-level hierarchies (with two, well-distinguished
kinds of group members: the leaders and followers) have been
considered, here we demonstrate that a multiple-level hierarchy is
likely to be more optimal in some cases. We explain this result
with the spreading (mixing) of the information between the
individuals, which is much more efficient in a system of multi-
level hierarchical interactions than in a two-level (or ‘bimodal’)
interaction.

Motivated by the above fundamental considerations, we have
decided to address the problem of identifying the optimal
distribution of the competence and pliancy values of the
individuals within groups (exceeding the size of a few dozen)
that are faced with a problem different from just staying together.
The members do not have the knowledge of the competence of
the others, they do not distinguish each other and they interact
according to an underlying network. To reveal these optimal
distributions, we measure the ‘quality’ of the solution provided by
the group and correlate it with the competence levels of the
members. In our interpretation, competence corresponds to the
level of the ability of an agent to facilitate the solving of a
problem, and pliancy refers to the willingness of an individual to
follow others (mostly neighbours). In our case, optimal
performance is associated with finding the best solution (that is,
gaining the largest amount of benefit) using the smallest amount
of cost. Competence appears as a cost, because it requires
learning, experience or knowledge requiring investments.

Recently, there has been a growing interest in models with
similar assumptions, focusing on the optimal strategies and
characteristics adopted by self-interested individuals. These
related fields include the topic of target seeking, coordination

and the so-called ‘producer-scrounge’ game. We shall overview
these results in the Discussion section.

To relate our work aimed at a more abstract set of problem-
solving situations than the one associated with the particular (and
much studied, interesting) topic of target seeking5,6,8,21,22,25, we
have carried out numerical experiments on the latter problem as
well. However, we would like to stress here as well that the prime
intention of our study has been to indentify the optimal
competence and pliancy distributions over a wider range of
problems and communication networks. In other words, target
seeking is only a special case in our study, whereas the main goal
is to determine the existence and nature of a general/universal
competence versus pliancy distribution, which would ensure
optimal or near-optimal problem-solving behaviour in various
kinds of groups.

In the present paper, we study order hierarchy (hierarchy from
now on) being equivalent to an ordering induced by the values of
a variable (in our case competence) defined on some set
of elements. We are aiming at determining the best distribution
of competences in a group under the condition that the total
resources used (sum of competences) for achieving a given goal
should be as small as possible. Here we introduce a family of
models based on the most general features of group decision
making to show that—from an approach based on first principles
only—the optimal distribution of competences is a highly skewed
function with a structured fat tail. Thus, the amount of resources
(information, cost, knowledge) needed for finding a good solution
by, for example, a group of people or robots is minimized when
the group’s competence levels are hierarchically ordered. We
show that such a distribution leads to performances considerably
exceeding those obtained for other common distributions. Our
finding emerges from the interaction dynamics within the
collective. It is highly robust, being nearly independent of the
number of group members, the kinds of problems to be solved
and the structure of the underlying network of interactions. A
counterintuitive, but reproducible feature of our findings is a
hump in the tail of the distribution function. These results were
obtained by optimizing the group behaviour of our models by
identifying the best-performing distributions for both the
competences and for the members’ flexibilities/pliancies (will-
ingness to comply with other group members)26.

Results
The generic group decision-making models we study. Next we
need to summarize the basic features of the way a group
approaches its best answer during a collective decision-making
process. We consider decisions, which emerge from the instan-
taneous estimates of the group members, concerning the best
choice to proceed or, alternatively, about the final solution. One
of our main observations/statements is that most of the tasks to
be completed by collective decision making can be reduced to this
‘estimation’ paradigm. We consider the following general situa-
tion: finding the best solution happens in rounds of interactions
during which each individual makes an estimation of the best
solution based on its competence (ranging from small to very
good), and from the behaviours of its neighbours (neighbours
being represented by nodes of various networks), the actual
choice of the members also depends on their varying flexibilities
(pliancies, that is, the level to which they are willing to adopt the
choices of their neighbours), a collective ‘guess’ about the true
solution is made.

The performance of a group is measured after each run/trial.
The best distribution of a group is approached by varying the
distribution of competences and pliancies making use of a genetic
algorithm (GA)26. The process of problem solving is stopped after
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some simple criteria are satisfied, for example, the guesses
converge, a given number of time steps is reached or the guess
achieved a predefined accuracy. The optimal distribution is then
associated with the average distribution of the competence and
pliancy values appearing in the 500 best-performing (most
optimal) groups.

Thus, we define several (four) group performance maximiza-
tion models (GPMMs). In these models, each group has to solve a
model-dependent problem (for the flowcharts see Supplementary
Figs S1–S5). Because of the simplicity of our GPMMs, many real-
life tasks can be mapped on each of them. The quality of the
groups’ performance, Pe, is quantifiable and characterized by a
parameter with values in the [0, 1] interval. Higher values
correspond to better performance. The contribution of the ith
group member to finding the best solution depends on its
competence level Coi. Coi also takes values from the [0, 1]
interval. Each model consists of iterative steps. The behaviour
Bei(tþ 1) of agent (member) i at time step tþ 1, depends both on
its own estimation f(Coi) regarding the correct solution, and on
the (observable) average behaviour of its neighbours j(ER) in the
previous step t, oBetj4jER:

Beðtþ 1Þ
i ¼ ð1� liÞf ðCoiÞ � lioBetj4jER; ð1Þ

" denotes ‘behaviour-dependent summation’, where ‘behaviour’
refers to various actions, such as estimating a value, casting a vote
or turning into a direction and so on. The set of weight
parameters li takes values on the [0, 1] interval and defines the
pliancy distribution. Some kind of noise, explicitly or implicitly,
was incorporated into all models (for details of the models, see
Supplementary Figs S1–S5).

Models with predefined static communication networks. We
first focus on models in which the interactions are defined by static
networks. To elicit the possible effects of the communication
structure, we have studied these models using several network types,
such as Small-world (SW), hierarchical27, Erd+os–Rényi and a real-
life social network describing the friendship relations in a school28.
Rather counterintuitively29—our findings are quite independent of
the type of the networks used, as we demonstrate displaying the
results for all graph types.

To see how the nature of a problem affects the optimal
competence distribution, we have calculated the performances for
the following GPMMs: the voting GPMM, which was designed to
be as simple as possible, the Sequence-guessing (SG) GPMM,
designed to be still simple, but widely applicable, and finally, the
Direction-finding (DF) GPMM, corresponding to a less abstract
situation.

In our voting GPMM—having some analogy with the widely
used Ising model—the group has to find the correct answer
choosing from two options (yes/no, � 1/1 and so on). This
minimal model consists of two steps only (see Supplementary
Fig. S2). In the first one, all agents make a guess being correct in
proportion of their competences. Once this is done, the actors
count the guesses of their neighbours and based on this they cast
a vote. This second step is realized according to equation (1).
Figure 1 shows the optimal competence distribution for all li¼ 1,
that is, when the choices of the neighbours determine the vote of
an individual. This distribution ensures the highest rate of voting
correctly, and thus, the highest group performance as well.

The second GPMM was designed to solve the most general
problem we could think of in our context, that is, the estimation
of a series of numbers. We argue that most of the simple tasks can
be mapped onto this problem, including estimating a direction, or
finding a location (given by direction and distance) or even
estimating the distribution of incomes from various sources, this
is why similar problems have been widely studied by economists
as well30. In our model, a sequence of real numbers (between 0
and 1) had to be estimated iteratively (Supplementary Fig. S4). In
each step, each actor modified its actual guess for each element of
the number sequence. This modification depended on two
circumstances: its own estimation and the corresponding average
guesses of its neighbours. Equation (1) describes this process if
f(Co) is interpreted as a ‘value-guessing function’ returning more
precise results for higher Co (competence) input values and ‘Be’ is
interpreted as the act of adopting a value. The length of the
number sequence corresponding to the results displayed in Fig. 2
was 10, but again the number of numbers to be guessed did not
have a significant effect on the outcome.

Finally, the third GPMM was designed to address a less
abstract situation in which the group had to find out a predefined
direction (Supplementary Fig. S3). If the f(Co) function returns a
direction estimation and Be is a direction (vector of unit length),
then equation (1) describes the process.

The optimal competence distributions for all three models
and all four network types are summarized in Fig. 2 and
Supplementary Figs S6 and S7. We have obtained these results by
using a GA26 in which the fitness function F was defined as

F ¼ Pe�KoCo4; ð2Þ

where K is a parameter reflecting the ‘cost of learning’ and
oCo4 is the average competence level of the group. As the
figures demonstrate, the competence values form a hierarchically
ordered distribution in all cases, with progressively fewer
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Figure 1 | The Voting GPMM. (a) The ‘Friendship graph’, a real-world social network reflecting the amity relations in a high school among 204

students28. (b) An enlarged portion of the network showing the influential relations from the viewpoint of the node coloured yellow. (c) The optimal

competence distribution for the Voting GPMM: a highly skewed function with a fat tail.
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members having high competence values except a specific
deviation from this rule.

Here we investigate problems being abstract to a different
degree. In the case of the less abstract ones (like the flocking
game), the ‘optimal solution’ maximally satisfies a combination of
several ‘intuitively favourable’ conditions, such as (a) the average
speed with which the target is reached, (b) the ratio of the flock
that does not get lost and (c) level of cohesion of the group
(information being able to spread over the whole flock. In the case
of those models where the problems themselves are more abstract
mappings of real-life problems (such as the SG model), the
formulation of the ‘optimal solution’ becomes inevitably more
abstract as well. However, in such cases the improvement rate of
the average estimation of the group is the quantity we optimize, as
it is a good measure of the efficiency with which the group
approaches the true solution.

Our calculations show that in the case of the DF GPMM and
SG GPMM, the fat tails are structured, having a smooth ‘hump’.
To show the extent to which the optimal distributions improve
the group performance, we have calculated Pe for a few known
distributions of competences as well. Figure 3f shows the results
for the real-life social network, ‘Friendship’, and for the most
realistic GPMM, the DF GPMM. The average competence level
is identical in all cases. We conclude that the simultaneous choice
of both the competence and the pliancy distributions
are essential, and the optimal choice results in a strong
improvement of the efficiency. Another observation is that—
somewhat counterintuitively—the particular structure of the
underlying network of interactions does not have a relevant
effect on our basic finding.

Importantly, the results depicted on Fig. 2 are achieved by
letting the pliancy values—denoted by l in equation (1)—evolve
simultaneously and independently from the competence values.
Figure 3 reveals the relation between the competence and the
pliancy values within an optimized group. The first conspicuous
result is that—in analogy with the competence values—the
pliancy values also form a highly skewed distribution. However,
in this case, actors with high pliancy values form the majority
(Fig. 3e). Figure 3a depicts how the average pliancy value (marked
with thin pink solid line) steadily grows from generation to
generation.

Regarding the relationship between the competence and
pliancy values, Fig. 3b,c grants a deep insight concerning their
connection, and sheds light onto the origin of the ‘hump’ as well.
The location of a point in Fig. 3b is determined by the given
agent’s competence (x axis) and pliancy (y axis) values. Two kinds
of actors appear in Fig. 3b,c: one kind clusters in the top left
corner, corresponding to small competence and high pliancy
values (these actors have ‘sheep mentality’, and significantly
outnumber the rest of the agents), whereas the other kind has
considerably higher competence values mostly coupled with small
pliancy characteristics. The hump—observable in most of the
competence histograms—is due to the second kind of agents.

Relation to the target seeking problem. To relate our findings to
the much explored topic of target seeking, we have conducted
simulations in which a group of agents, moving on a two-
dimensional surface, had to reach a predefined target in the
shortest possible way.
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Figure 2 | The optimal competence distributions for the three models and four kinds of networks. These optimal distributions are hierarchically

ordered, highly skewed functions often with a structured tail. The size of the ‘Friendship’ network is N¼ 204, whereas the other graphs contain N¼ 200

nodes, and K was set to 2. We have studied networks with various sizes, ranging from N¼ 10 to 200 finding no significant change in the shape

of the distributions. In the last column (belonging to the SG GPMM), we have marked the error bars for the Friendship and SWnetworks (the error bars for

the rest of the plots fall into the same range).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3484

4 NATURE COMMUNICATIONS | 4:2484 | DOI: 10.1038/ncomms3484 |www.nature.com/naturecommunications

& 2013 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Here the interaction among the group members change
dynamically according to the actual distance among them: only
those agents can exchange information with one another that are
closer than a predefined distance called range of interaction, ROI
(Fig. 4 and Supplementary Fig. S5). This distance is often
associated with the range of vision among the individuals.

The pliancy values are set to be antagonistic to the competence
values, according to: li¼ (1�Coi)þ x for all agents. x is random
noise taking values uniformly in the (� 0.1, 0.1) interval. As it
can be seen on Fig. 4, we find two groups as well (the one
comprising the highly competent but ‘anti-social’ individuals, and
the other containing the ignorant but pliant members25,31), but in
a much more smoothly distributed way.

Continuous versus bimodal competence distributions. We
believe that the reason behind the high group performance
associated with a more continuous competence distribution
(more continuous than that in the bimodal case) is due to a
phenomenon that we call ‘information spreading or mixing’,
which can be summarized as: multi-level hierarchical interactions
make the spreading (mixing) of the information between the
individuals much more efficient than in a ‘two-level’ system.

This interpretation is based on the following assumptions: the
individuals do not have knowledge of the level of competence of
the others, the pliancy values change oppositely with the
competence values (which is the general assumption in two-level
systems) and, finally, not all of the members interact with all of
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Figure 3 | Detailed results for the DF GPMM on the Friendship graph. K¼ 2. (a) The first 2,500 generations of the optimization algorithm,

(b) competence-pliancy values depicted on a unit square. Each dot represents an agent. (c) The same as b, but here the axis z depicts the density of points.

The uninformed individuals (low competence, high pliancy) strongly outnumber the ones who are competent. (d) Optimal competence distribution.

(e) Optimal pliancy distribution. (f) Comparison of the group efficiencies Pe after 20 steps of iteration for the one we find and a selection of commonly

assumed distributions. From left to right: optimized/continuous, two-valued (allowed competence values were 0.1 and 0.9), uniform, Gaussian and

constant. To demonstrate the effect of the distribution of the competence values more clearly, the pliancy values were set to be antagonistic for all the five
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Figure 4 | The flocking GPMM. The distribution of the competence values is a highly skewed function in this case too, with a structured tale.
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the other members, but according to an underlying network
(which is again a natural assumption for groups beyond a given
size). Given these observations, the bimodal competence distri-
bution can often result in permanently or temporarily segregated
groups maintaining different ‘opinions’ or estimates of the true
solution.

The reason behind this possibility of segregation is that
uninformed individuals have a strong tendency to follow the
others (as they have large pliancy values). Subgroups of the whole
group thus can easily agree on a wrong estimate and they will
maintain that until a better estimate ‘diffuses’ to them from other
groups having highly competent individuals. In the case of the
homing flock model, the segregation of groups can take place for
a very long time, as in that case the network of interactions is
such that groups moving in different directions lose contact
completely. Fig. 5 illustrates this effect.

Discussion
One of the possible collective decision-making situations, the
target seeking (or migration) problem has recently been
addressed in detail. In this case, the aim of the members is to
reach the target in the shortest possible way. The competence
level of each unit refers to the accuracy of the knowledge

regarding the position of the target. These competence levels have
been reported to be distributed strongly unevenly by several
experimental5,12 and theoretical17 studies. Furthermore, members
have different tendencies to follow others, which are typically
assumed to be directly related to their competence levels7,25.

In this context, the optimal strategies adopted by migrating
animals have been studied in a model in which individuals moved
in a direction determined by the balance of two factors: their
preferred direction (which depended on their ‘gradient detection
ability’) and the direction of the other group members25. Both
abilities (gradient detection and sociality) came at a cost. A
strategy, adopted by an individual, was considered to be optimal if
the corresponding fitness—defined by the migratory benefits
minus the costs—was maximal. Two well-defined, coexisting
strategies have been found, resulting in a collective migration
expressing the characteristics of a fission–fusion process: an
individual either invested in acquiring information about the best
migratory direction (these individuals were much less prone to
follow others) or, alternatively, adopted a socially facilitated
motion, that is, exploited the ones who invested in ‘learning’.
The appearance of a specialized group of leaders within a
migrating flock has also been found by analytically solving the
Kuramoto-type situation (everyone interacts with everyone) of
the target-seeking problem31. These studies, as well as the ones
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reviewed hereafter, assume individual selection, that is, all the
costs and benefits are associated with the individuals and with
them alone.

The problem of coordination32 (in which the members of a
group, although they prefer to stay and act together, differ in their
preferred course of action) is in close connection with the more
general question of the origin and emergence of dominance
hierarchies, which has attracted a lot of attention for a long
time33–35, and for which various models had been proposed36–38.
However, although related, the issue of dominance hierarchy is
also different from our question of interest, because individuals,
when facing a given problem, do not necessarily copy the
behaviour of the dominant ones, but they tend to copy the acts of
the most competent group members5. This follows from the fact
that dominant individuals are not necessarily the most competent
ones regarding all possible abilities simultaneously.

Among the related topics, we should mention the problem
known as the ‘producer–scrounger’ game as well39–41. Here the
producers search for food (explore the environment on their own
cost), whereas scroungers, not willing to pay the cost of exploring,
just take the food the producers have found. The trait that sets the
two problems apart is that in the ‘producer–scrounger’ game, the
scroungers (who are the ‘followers’ in the target-seeking problem)
do not merely follow the producers (‘leaders’), but also take away
benefits from them.

There are several novel features of the above results. Our
simulations indicate the robustness of the one-sided nature of the
optimal distribution of competences and pliancies in groups
solving a variety of problems. Although this is not against
intuition, our study is the first one which provides this result from
a quantitative analysis. Another important new point is that we
have optimized the performances of the groups as a whole but
gained information about the properties of their members. Our
work provides a framework for treating a wide selection of
phenomena including several recent observations, for example, it
is related to the problem of a few well-informed individuals being
able to lead a group of individuals efficiently1,2,12,21, the
observation made by company managers that a group of skilled
workers do not perform better than a group of workers with
diverse abilities10,42 and the results of models optimizing the
strategies of individuals performing a specific task as part of a
collective. Our finding emerges from the interaction dynamics
within the collective.

The results we present are not in contradiction with the findings
of studies assuming individual selection, but rather complement
them (see Supplementary Note 1 and Supplementary Fig. S8). The
main feature of the competence distribution we obtained is highly
robust, being nearly independent of the number of group
members, the kinds of problems to be solved and the structure
of the underlying network of interactions. Knowing the optimal
distribution of competences in model systems provides a deeper
insight into determining the best-performing distribution of a
group even if in many applied situations, the actual tasks and
conditions finally lead to decisions only remotely resembling the
theoretically best choice.

Methods
Group performance maximization models. All four GPMMs were coded in
Matlab. Except for the flocking GPMM, the agents interacted along the edges
of a graph. The results shown were obtained for four basic network types: (i) a real-
world network reflecting the friendship relations in certain American high
schools28, referred to as ‘Frnd’, (ii) a hierarchical network referred to as ‘Hier’,
with a hierarchy parameter hHier¼ 0.8, (iii) Erd+os–Rényi graph with edge-
probability parameter pER¼ 0.015 and (iv) SW graph with 15% of the edges being
randomized. The node and edge numbers were: NFrnd¼ 204, EFrnd¼ 1,012,
NHier¼ 200, EHier¼ 777, NER¼ 200, EERB¼ 310, NSW¼ 200 and ESWB¼ 400,
respectively.

The specific networks considered. The Friendship network, referred to as ‘Frnd’
is real-world network describing the friendship relations of adolescents in grades
7–12, collected by ‘The National Longitudinal Study of Adolescent Health (Add
Health)’ in the United States during the 1994–95 school year28. In this study,
80 high schools and 52 middle schools were selected with unequal probability to
ensure the sample to be representative with respect to region of country, urbanicity,
school size, school type and ethnicity. Out of this data set, we selected community
number 8 because of its size: it contains 205 nodes (representing the friendship
relations of 205 students). Students did not necessarily name each other as friend
symmetrically, so the resulting graph is directed. One of the nodes were not
connected to the rest of the graph (nobody claimed that he/she is a friend of her/
him, and vice versa, this student said she/he has no friends). This vertex was not
considered, so the GPMMs run on a network containing N¼ 204 nodes. (Fig. 1a
shows the undirected version of this graph).

The SW networks have been generated by us in the following way: First, we
connected each node to their first and second neighbours, then we randomly selected
pSW ratio of the edges; finally, the selected links were deleted and each original start
node was connected to another randomly selected end node. In our case, the
parameters were N¼ 200 and pSW¼ 0.15, and the resulting graph is undirected.

To generate an Erd+os–Rényi network, we considered all the possible vertex pairs
and created an edge between them with the probability pER¼ 0.015. Note that the
percolation threshold for an Erd+os–Rényi graph is pERpercol¼ 1/N, that is, for
N¼ 200, pERpercol¼ 1/200¼ 0.005, which is one-third of the parameter we have
chosen, pER¼ 0.015. Accordingly, our graph had a high chance to consist of one
giant component, but to make sure that the created network is connected a
subroutine determined all the occurrent components and disconnected nodes, and
connected them to the giant component. The resulting network is undirected.

The hierarchical network was generated according to the method described in
ref. 27. This process starts from a tree-structure and then adds further edges
randomly, according to a predefined hierarchy parameter. We used a graph
characterized by the parameter pHier¼ 0.8.

As mentioned above, the structure of the network did not have a fundamental effect
either on the distribution of the competence values within the optimized groups (see
Supplementary Fig. S6 and Fig. 2) nor on the group performance Pe. By varying the
type of the network and keeping all other parameters unchanged, the difference between
the Pe values is less than 5% (in the sense that PeMax�PeMin (E0.69� 0.65)r0.05,
which is 5% of the [0, 1] interval from where Pe can take values. This remains true in
spite of the fact that there are big differences between the edge numbers of the various
graphs that we used. In case of the hierarchical and friendship networks, these numbers
are given as the graphs themselves are given. But by varying the Erd+os–Rényi and SW
networks in a way that EEREESWE800 and executing the experiment again, we get
that the above mentioned difference, PeMax�PeMin is 1%, that is, even smaller. These
test were made by using the SG GPMM.

Optimization method and the related definitions. All optimizations were carried
out using a GA26. More precisely, we have used a standard GA with the distinction
of using real numbers instead of a binary string of 0s and 1s, defining a phenotype.
Each phenotype consisted of an array of 2N elements (taking values from the
[0, 1] closed interval), where N was the size of the group we aimed to optimize
(NE200, see above). The first N values defined the competence level of the group
members; the second N numbers determined their pliancy values. The fitness
function was defined as F¼ Pe-KoCoi4 in all the four models; however, the
concrete definition of the group performance Pe differed from model to model. In
the above equation, K is a parameter describing the ‘cost of learning’ (typically 1 or
2) and oCoi4 is the average competence level within the group. The actual
definition of the Pe functions was much more dependent on the given models, but as
a rule all of them returned a value between 0 and 1, with higher values indicating
better group performances. The fitness functions (and within the fitness functions
the group performances Pe) used by the GA for optimizing the various GPMMs were
designed to be as diverse as possible to avoid artificial similarity by designing them in
a way that they would measure different aspects of collective problem solving.

Accordingly, in the ‘voting model’ it measured a proportion of the group (the
ratio voting correctly), whereas in the ‘DF model’ it was related to the improvement
of the average direction estimation (expressed in radians but divided by p to scale it
into the [0, 1] interval). Somewhat similarly, in the ‘SG model’ Pe reflected the
improvement of the estimations too, but this time expressed as the ratio of the
original estimation error. And finally, in the ‘flocking model’, Pe was a complex
function depending on three factors: (i) how fast the group could reach the target,
(ii) whether the flock stayed ‘connected’ or some of the members had to navigating
alone and (iii) how many units got lost. By formula,

PeVoting ¼ Ncorrect=N; ð3Þ

where N was the total number of units, and Ncorrect denoted the units voting
correctly.

PeDirection Finding ¼ ðAverageDirection Errort¼0�AverageDirection Errort¼tMaxÞ=p; ð4Þ

where the average direction errors are interpreted in radian,

PeSequence Guessing ¼ ðInitial Group Error�Final Group ErrorÞ=Initial Group Error;
ð5Þ
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where Group Errors denote the average estimation error of the group, and finally
PeFlocking is the most complex one, including a factor describing how straightly/
quickly the group reached the target: D/osi4T, another one expressing the level by
which the flock was navigating together (in contrast with all the units searching for
the target alone): (1-osiout/si4T) and a third factor depending on the number of
lost units: (1-NLost/N).

PeFlocking ¼ D=osi4T ð1-osouti =si4T Þð1-NLost=NÞ; ð6Þ
where D is the distance between the starting point and the target, si is the
number of steps needed by unit i to reach the target, siout is the number of steps in
which unit i was ‘alone’ (in the sense that its range of interaction was empty), NLost

is the number of lost units, N is the number of all units (that is, the flock size),
oy4 is averaging over all the units and finally oy4T is averaging over those
elements who reached the target.

For the SG, Voting, DF and the Flocking models, the applied generation
numbers (GN) and population sizes (PS) were GNSG¼ 3,000, PSSG¼ 700,
GNVoting¼ 7,000, PSVoting¼ 600, GNDF¼ 2,500, PSDF¼ 500, GNFlocking¼ 1,100,
PSFlocking¼ 500, respectively, ensuring the proper saturation. For the above defined
parameters, the required processor times (tProc) for the various GPMMs differed
considerably: tProcVotingB160min, tProcSG B27 h, tProcDF B50 days and finally tProcFlockingB45
days. The type of the network did not affect these values considerably.

Here we would like to note that optimizing a problem by using a GA that is
related with groups has no ab ovo relation to group selection at all (in terms of the
evolutionary theory of life). Although the wording is similar, and some of the
technical assumptions are analogous to what is used in evolutionary theory, our
approach is not related to, or involves ‘group selection’.

The detailed descriptions of the four GPMMs are presented in the
Supplementary Figs S1–S5 and in Supplementary Note 2. Supplementary Figs S1–
S5 show the corresponding flowcharts and fitness functions, and a detailed list of
the commonalities and differences among the GPMMs is presented in
Supplementary Note 2.
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