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Non-Darwinian dynamics in therapy-induced
cancer drug resistance
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The development of drug resistance, the prime cause of failure in cancer therapy, is

commonly explained by the selection of resistant mutant cancer cells. However, dynamic

non-genetic heterogeneity of clonal cell populations continuously produces metastable

phenotypic variants (persisters), some of which represent stem-like states that confer

resistance. Even without genetic mutations, Darwinian selection can expand these resistant

variants, which would explain the invariably rapid emergence of stem-like resistant cells.

Here, by using quantitative measurements and modelling, we show that appearance of

multidrug resistance in HL60 leukemic cells following treatment with vincristine is not

explained by Darwinian selection but by Lamarckian induction. Single-cell longitudinal

monitoring confirms the induction of multidrug resistance in individual cells. Associated

transcriptome changes indicate a lasting stress response consistent with a drug-induced

switch between high-dimensional cancer attractors. Resistance induction correlates with

Wnt pathway upregulation and is suppressed by b-catenin knockdown, revealing a new

opportunity for early therapeutic intervention against the development of drug resistance.
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T
he development of resistance to chemotherapy and target-
selective drugs is the prime cause of therapy failure1.
Mechanisms implicated range from the canonical

‘acquisition’ of a resistant cell phenotype to whole-tumour level
changes involving non-neoplastic stroma2,3. Cell-level resistance
is still considered the major cause of loss of drug sensitivity,
because it can readily be reproduced in cell cultures and explained
by the nature of associated molecular changes, such as the
expression of detoxification proteins4, structural alteration of the
drug target protein5 or activation of alternative growth and
survival pathways6–8. One of the best characterized molecular
mechanisms of cellular resistance is the expression of ABC-
transporter family proteins, such as multidrug resistance protein
1 (MDR1), which pumps a variety of drugs out of the cell9,
thereby conferring the MDR phenotype.

But how are these molecular changes acquired? Current
paradigm holds that treatment selects for cancer cells carrying
a random genetic mutation that pre-exists before treatment
and happens to confer a survival advantage in the presence
of the drug, resulting in the ‘emergence’ of drug-resistant
clones10,11. Point mutations in drug target proteins that alter
the drug docking site5 or genomic rearrangements in the MDR1
regulatory region12,13 that cause high expression of the MDR1
protein support the theory of a somatic evolution of cancer cells
that follows the Darwinian scheme of mutation and selection.
However, the increasing realization that cancer cells exhibit a rich
intraclonal dynamics manifest as ‘non-genetic heterogeneity’
complicates the picture14. Such phenotype heterogeneity in the
absence of genetic variation is the combined consequence of
multistability in gene expression dynamics (the coexistence of
multiple stable steady states, or ‘attractors’, in gene regulatory
networks15–17) and of gene expression noise18. Thus, one genome
can produce multiple enduring (stable) or transient (metastable)
phenotypic states. This departure from the simple one-to-one
mapping between genotype and phenotype necessitates a re-
examination of the standard scheme of somatic evolution driven
by random genetic mutations19,20.

Non-genetic cell state dynamics that is manifest in the
behaviour of tumour cells has recently received renewed interest
and is best understood in terms of stochastic multi-attractor
dynamics: tumour cells within a clonal population spontaneously
switch between several (meta)stable attractor states, which
represent different developmental states, including mesenchymal,
epithelial, as well as cancer stem-cell-like states21–26. Cells in the
latter state are naturally endowed with increased xeno-
biotics resistance22,27. In an unperturbed cell population,
multistability is manifested as a broad quasi-continuous or as a
multimodal distribution of a phenotypic marker across the entire
population15. Switching between attractor states can occur in
two ways: in a spontaneous and stochastic manner2 because of
noise-induced attractor state transition28,29, and in a directed
way following a perturbation by external signals that alter
gene expression. Both have consequences for resistance
development30.

First, stochastic non-genetic phenotype switching can act as a
source of random variability—the substrate for Darwinian
selection31,32; cells that by chance occupy states that are more
resilient to cytotoxic stress, including therapy-induced cyto-
toxicity, can be transiently selected for during treatment. As these
cell states are non-genetically inherited over many cell
generations, they can, in principle, promote evolution according
to the Darwinian scheme—in the absence of mutations29,33.
The transient selection of cells in the resistant state allows
a subpopulation of temporarily ‘fitter’ cells to expand, thereby
increasing the probability for adaptive genetic mutations.
Such ‘mutationless preselection’ could accelerate classical

Darwinian evolution of drug resistance31–33 as observed for
antibiotic resistance in microorganisms (‘persisters’)34–36.

Second, induction of attractor state switching by external
signals opens the possibility for a Lamarckian scheme of
evolution37; a perturbation by cytotoxic agents may ‘instruct’
the cell to enter an attractor state that confers the stem-like, more
stress-resistant phenotype—perhaps recapitulating a generic,
physiological stress-response—which can be passed on to
subsequent cell generations. The non-genetic inheritance of an
acquired adaptive trait at the cellular, not organismal level does
not violate the neo-Darwinian dogma37–39. In fact, chemotherapy
and irradiation appear to ‘cause’ the emergence of resistant, stem-
like or mesenchymal cancer cells26,40–48.

Promoter analyses have shown that chemotherapy leads to
changes in DNA methylation and histone modification in the
MDR1 gene locus49. Such findings are compatible with both
schemes, Darwinian selection and Lamarckian instruction.
However, a distinction is rarely explicitly articulated. Although
clinicians often take the apparent ‘induction’ of resistance
markers following treatment for granted, even viewing it as a
form of ‘active’ adaptation because of their rapid and nearly
inevitable occurrence, biological orthodoxy assumes by default a
Darwinian selection11,21. The rapid appearance of stemness
markers or MDR1 expression following treatment has typically
been assessed at the level of tumour tissues or whole-cell
populations43. Thus, it remains open to what extent the increase
of MDR1 expression after treatment is the result of very rapid
selection of cells already residing in a state with an active MDR1
locus (Darwinian scheme) or of cell-autonomous gene induction
in individual cells (Lamarckian scheme).

To understand the elementary dynamics of resistance devel-
opment, here we determine the relative contribution of these two
(non-genetic) schemes of emergence of the MDR phenotype
in HL60 acute myeloid leukemia cells, which have long served
as a model for MDR1-dependent drug resistance50. We show by
quantitative measurement and modelling that appearance of
MDR1-positive cells 1–2 days after treatment with vincristine
(VINC) is predominantly mediated by cell-individual induction
of MDR1 expression and not by the selection of MDR1-
expressing cells. We confirm this by single-cell longitudinal
monitoring. Drug-induced resistance and MDR1 expression
correlated with upregulation of Wnt-signalling pathway and
could be suppressed by knockdown of b-catenin. Following
transient low-dose chemotherapy, surviving cells exhibited a
persistent transcriptome change indicative of a lasting stress-
response state, consistent with switching between high-dimen-
sional cancer attractors51. Acknowledging that resistance can be
promoted by a non-genetic Lamarckian mechanism opens a new
window for pharmacological interference with resistance.

Results
Spontaneous non-genetic drug-resistant state in tumour cells.
We observed that within a clonally derived population of cultured
leukemia cells (HL60 cell line), a small subpopulation (B1–2%)
of cells consistently expresses high levels of MDR1 (MDR1High)
on its cell surface and exhibits the MDR phenotype as measured
by the fluorescent dye efflux assay (effluxHigh) in the absence of
drugs (Fig. 1a). The MDR1Low and MDR1High subpopulations
also differed greatly in their sensitivity to killing by the chemo-
therapeutic agent VINC52 (Fig. 1b). Both subpopulations
correspond to metastable epigenetic states15,53 (Supplementary
Fig. S1), because they both re-established the initial population
distribution after isolation by fluorescence-activated cell sorting
(FACS; Fig. 1a). The MDR1Low cells accomplished the re-
population of the original distribution within o1 day, whereas
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the MDR1High cells took B18 days to do so (Supplementary Fig.
S2). Similar relaxation dynamics was observed when the func-
tional MDR phenotype was measured using the efflux of fluor-
escent dyes.

When cells were treated with low-dose VINC (10 nM), within
48 h the MDR1High subpopulation increased from o2% to
425% in a dose-dependent manner (Supplementary Fig. S3).
Appearance of effluxHigh (MDR) cells was even more rapid and
pronounced, typically reaching 30–40% within 24–48 h (Fig. 2a).
A similar MDR response could be induced with another drug,
doxorubicin (Supplementary Fig. S4). This rapid response, in line
with prior biochemical analyses54, raises the question whether
this population shift was driven by a cell-individual induction of

the MDR phenotype or by (non-genetic) selection of the pre-
existing ‘epigenetic’ MDR1High cells in the stationary populations
because of their survival advantage in the presence of VINC
(Fig. 1b). In the absence of the drug, the sorted cells in the
MDR1Low/effluxLow state had an B5-fold net growth advantage
over cells in the MDR1High/effluxHigh state (Supplementary
Fig. S5) and, accordingly, the DNA content of live-cell measure-
ment revealed a smaller fraction of the MDR1High/effluxHigh cells
in the S/G2 state of the cell cycle (Supplementary Fig. S6). This
difference in cell cycle status disappeared when the two
subpopulations re-equilibrated to the same MDR1 distribution
(Supplementary Fig. S6). In the presence of VINC (10 nM),
the relative fitness was reversed: the effluxLow cells exhibited
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Figure 1 | Dynamical heterogeneity of MDR1 expression within a clonal population of HL60 cells. (a) A distinct subpopulation of 1–2% of the cells of a

clonally derived HL60 cell population consistently expresses high levels of MDR1 on the cell surface in the absence of drug exposures. The MDR1High (red)

and MDR1Low subpopulations (blue) differ in sensitivity to vincristine after 48 h. (b) Measurements of population dynamics and effective growth were

obtained in three different laboratories using different culture of HL60 cells and representative results are shown. Error bar are s.d. of one representative

experiment with n¼ 2 biological replicates. (c) Scheme of the state transition model for distinguishing between drug-induced shifts in state

transition rates (cell-individual switch to the MDR phenotype) versus drug-induced growth rate differences (selection of the MDR phenotype). x,

population fraction of cells in the respective state indicated by the index: H, MDRHigh (effluxHigh) and L, MDRLow (¼ effluxLow); k, kinetic rate constant for

the first-order state transition represented by the arrows. P-state transition probability used in the Markov model. (d) Results of the steady-state

Markov model. The state transition and ‘self-renewal’ probabilities required to reach the steady state, shown as heat map with colours indicating the

steady-state ratio xH/xL (colour bar) as a function of the ratios of the Markov model probabilities P (see Methods section). Change in ratio of transition

probabilities PLH/PHL (vertical axis) visibly affects xH/xL, whereas change in the ratio PLL/PHH does not result in significant change of xH/xL. *Undefined

regions. (e) Results of the non-equilibrium ODE model. Colour map represents the parameter space, indicating which combination of the two sets of

parameters, the ratio of the relative growth rate constants, gL/gH (horizontal axis), and the ratio of the state transition rate constants, kL/kH (vertical axis),

causes which population fraction xH/xL (colour map) 24 h after addition of the VINC.
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reduced growth and were growth-arrested after 3 days while the
effluxHigh cells survived, displaying slow net population growth
(Supplementary Fig. S5).

Quantitative model of cell state interconversion. The current
paradigm in tumour biology assumes a predominantly selection-
based mechanism to explain population-level shifts of phenotypes,
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even for acquisition of epigenetic states21,55. This process requires
that the spontaneous presence of 1–2% cells in the MDR1High/
effluxHigh state (Fig. 1a) exploit their growth advantage in the
presence of VINC (Supplementary Fig. S5). To quantify the the-
oretical contribution of selection versus instruction (Fig. 1c), we
analysed the observed relative growth and induction kinetics in
two mathematical models. First, we used a simple kinetic state
transition Markov model to examine the contribution of growth
rate and transition rate in a population at steady state as often
employed for modelling tumour cell dynamics21 (Methods). With
the observed numbers for the ratio of the observed effective
growth rate constants (gL, gH; Table 1), we found that a stationary
state with a proportion of 1.5% effluxHigh cells, as observed, does
not exist unless one accepts substantial state transitions between
the effluxHigh and effluxLow states (Fig. 1d). Consequently, already
under basal conditions (absence of drugs) the measured difference
in the effective growth rates of the two subpopulations in isolation
is far from being able to ensure the preservation of the observed
steady proportions of these two fractions.

In a second model, we examined the response to treatment,
where stationarity/equilibrium is not reached within the observed
time period. We used ordinary differential equations (ODEs) to
model the joint effect of differential growth and transitions
between the two states on the cell population dynamics
(Methods):

_xL ¼ xL gL � kLð Þþ kHxH
_xH ¼ xH gH � kHð Þþ kLxL

�
ð1Þ

where xL and xH denote the population fraction of effluxLow (L)
and effluxHigh (H) cells and gi and ki (i¼H,L) are the respective
rate constants for effective growth and transition, and are
separately measured in the absence (g, k) and presence (g0, k0)
of the drug (Table 1). As the observed change after 24 h is far
from the new equilibrium state and we are only interested in the
relative contribution of state transition to the departure from the
existing stationary population proportions, we assumed a simple
first-order transition, kx. This equation unites the Darwinian and
Lamarckian principles, because the effect of selection will come

from the difference in g and induction is captured by the
difference in k for the two states, in the presence versus absence of
the drug (Table 1).

Instead of fitting the unknown parameters kH and kL we
computed, based on the measured numbers of differential growth
rates, how a change of the values for k and g due to the presence
of the drug would account for the observed ratio of the two
subpopulations, effluxLow and effluxHigh, at 24 h after adminis-
tration of VINC, r(24 h)¼ xH(t¼ 24 h)/xL(t¼ 24 h). The para-
meter plane (Fig. 1e) displays the non-steady state population
ratio, r(24 h)¼ xH/xL after 24 h treatment with VINC, as a
function (colour of the map) of the ratios of the growth and state
transition rate constants. The almost horizontal course of the
colour contour lines, parallel to the x axis that represents
variation of the growth parameters gL/gH, indicates that a shift of
xH/xL (colour) is minimally affected by the change of the relative
growth rate but instead is predominantly defined by a change in
the relative state transition rates. Clearly, to achieve the observed
appearance of a fraction of 30–40% effluxHigh cells after 24 h
(Fig. 2a), corresponding to a ratio xH/xL E0.5–0.7 (green zone in
parameter space in Fig. 1e), the measured growth advantage of
the effluxHigh cells in the presence of VINC, at g0L/g0HE0.25/
0.37¼ 0.67, is far from sufficient (dotted vertical line in the
parameter space of Fig. 1e). If there were no cell-individual state
transitions, then, with the observed growth differential g0L/g0H
(Supplementary Fig. S5), selection alone could account for only
an increase of MDRHigh cells to xH/xL¼ 0.04 after 1 day
(corresponding to a population fraction of MDRHigh of B4%)
instead of the observed xH/xL¼ 0.67 (40% MDRHigh).

The rapid appearance of heterogeneous nuclear RNA (hnRNA)
for MDR1 following a 24-h pulse of VINC by targeting the
reverse-transcriptase PCR (RT–PCR) to the first intron–exon
junction, with a 420-fold induction of MDR1 pre-mRNA at the
whole-population level within 30min of VINC treatment
(Fig. 2b), followed by detectable expression of mature mRNA
followed within 24 h (Supplementary Fig. S7), supports an
induction by a molecular change. However, this finding does
not prove induction because it could, in principle, reflect an
extreme selection of ‘fitter cells’ that display an intrinsic high
constitutive synthesis of the MDR1 transcript.

Validation of cell-individual induction of resistant state.
Unequivocal demonstration of cell-individual induction (‘instruction’)
of the MDR phenotype requires the direct observation of the
actual induction event in the very same cell before and after
addition of the drug to the medium by real-time longitudinal
monitoring of the cell culture during treatment. The drug-treated
cells preloaded with fluorescent dye (effluxLow) displayed a visible

Table 1 | Growth rate constants.

Effective growth rates, g

Control, no drug gL¼0.50 per day gH¼0.10 per day
þVincristine g0L¼0.25 per day g0H¼0.37 per day

Measured net growth rate constants for the effluxLow and effluxHigh subpopulations in the
presence (gL, gH) and absence (g0L, g

0
H) of vincristine 10 nM.

Figure 2 | Chemotherapy induces expression of the MDR1 protein and the MDR phenotype in HL60 cell population. (a) Flow cytometry measurements

of surface MDR1 (immunostaining) and cell efflux capacity (fluorescent dye ejection) at the population level reveal the kinetics for the appearance

of the MDR1High and the MDRHigh/effluxHigh subpopulation following VINC treatment. (b) Quantitative (real-time) RT–PCR (qPCR) using primers targeting

the first two exon–intron junctions of MDR1 to measure hnRNA as marker of ongoing transcription. Bar height indicates the average (n¼ 2) of one

experiment representative of two independent experiments. The s.d. of all shown qPCR Ct-values was o0.7. (c) Cell-individual induction of the MDR

phenotype by VINC. Cells loaded with the fluorescent dye Rh123 (green) as the marker of efflux capacity and stained with a DNA dye (Hoechst 33342,

blue) as the cell indicator and to monitor cell death were treated with VINC (10 nM) time t¼0h and were followed by video microscopy under incubator

conditions for 36 h. Scale bar, 20mm (Supplementary Movies 1 and 2 for longitudinal tracking of the individual cells and Supplementary Fig. S8). Snapshots

at the indicated times are shown. Disappearance of the green fluorescent dye in the viable cells indicates cell-autonomous induction of the MDR

phenotype. Nuclear condensation in the Hoechst 33342 stain reveals apoptotic cells. As dying cells will eventually release the dye, we quantified only live

cells for dye elimination. After 48 h monitoring of a typical time course, 63% of the live cells treated with VINC exhibited elimination of the dye,

representing the switch to the effluxHigh phenotype compared with 16% of untreated cells (n¼ 80 cells counted). (d) Saturating doses of verapamil, an

inhibitor of MDR1-mediated transport, given at varying times before VINC treatment as indicated, does not alter the induction of MDR1 after 72 h of

treatment with VINC. (e) HL60 cells previously exposed for 48 h to the indicated doses (5 nM and 10 nM) of VINC exhibited improved survival compared

with naive cells when challenged with 10 nM VINC for 72 h. Error bar, s.d. (n¼ 3), **Po0.01, Student’s t-test.
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reduction of fluorescence starting 12 h after addition of the
drug. In contrast, no change in fluorescence was detectable
in the untreated cells. We also observed onset of apoptosis as
indicated by DNA condensation in the VINC-treated sample
after 424 h (Fig. 2c and Supplementary Movies 1 and 2).
Counting after a typical 48-h longitudinal monitoring revealed
63% of the live cells treated with VINC exhibited elimination
of the dye, representing the switch to the effluxHigh pheno-
type compared with 16% of untreated cells (n¼ 80 cells;
Supplementary Fig. S8).

To demonstrate that selection per se has no significant role in
the emergence of cells with the MDR phenotype, we decoupled
MDR1’s functional activity from its expression by blocking
MDR1-mediated drug efflux with verapamil56,57. By separating
fitness function of a trait from the expression of that trait, we can
expose the role of instructive (non-selective) factors of phenotype
change. We first confirmed that baseline or VINC-induced efflux
of the fluorescent dye calceinAM (CaAM) was reduced almost
completely by saturating doses of verapamil (Supplementary
Fig. S9). However, this inhibition of efflux did not measurably
suppress the early emergence of the subpopulation of MDR1-
expressing cell after VINC treatment (Fig. 2d). The observation
that cells increased MDR1 expression independently of the
increase of the length of pre-incubation with verapamil over the
time window in which verapamil gradually unfolds its inhibitory
function further suggests that MDR1 induction was independent
of the pump function of this protein (Supplementary Fig. S10).
This corroborates the role of a selection-independent, instructive
mechanism, at least for the rapid appearance of this new
phenotype after chemotherapy.

This persistent effluxHigh state induced by a transient drug
treatment was also associated with improved survival when the
same cells were re-exposed to VINC after washout of the drug
(Fig. 2e). Thus, drug-induced resistance is non-genetically
inherited across cell generations independently of the presence
of the drug—at least for a limited period of time (Supplementary
Fig. S11). This dynamics represents a Lamarckian scheme for
acquisition of a new phenotype.

Wnt signalling mediates state transition into a stress state. As
the presence of discrete effluxHigh and effluxLow subpopulations
may reflect transitions between distinct stable cellular states
(attractor states), we next measured their transcriptomes after a
24-h pulse of 10 nM VINC (Fig. 3a), when the cell population
exhibited a stable bimodal distribution. Even after this short time,
globally distinct gene expression pattern were seen when the
effluxHigh and effluxLow subpopulations were compared (Fig. 3a).
Comparison revealed 974 significantly differentially expressed
genes in these two subpopulations, indicating a fractional, globally
diverse response within a clonal cell population. Gene Ontology
(GO) analysis unveiled the enrichment in this set for genes
involved in cell cycle, translation, ribosome and rRNA synthesis,
as well as response to DNA damage, metal binding, oxidative
phosphorylation and mitochondrial function (Supplementary
Fig. S12 and Supplementary Table S1), suggesting that these two
transcriptomes represented biologically distinct, high-dimensional
attractor states17.

To determine whether a stem-cell-like state has actually been
induced by VINC treatment26,40–48, we next performed pairwise
comparisons for all sorted subpopulations, now including
untreated cells: cells treated and sorted for effluxHigh, cells treated
and sorted for effluxLow, as well as untreated mock-sorted and
treated mock-sorted cells. The set of 2,096 genes that were
significantly expressed above background (BeadChip detection
p-valueo0.05, Methods), and whose expression level differed for

each comparison pair by more than fourfold, were first manually
examined for the relevant functional annotations using the
NCBI Gene database and the stem-cell signatures reported in
Brandenberger et al.58 Of note are the alterations in the expression
of genes that belong to the Wnt and Polycomb pathways,
consistent with the role of a stemness signature in drug-resistant
tumour cells. These differentially expressed genes were also
subjected to unbiased gene set enrichment analysis (GSEA;
Supplementary Fig. S13), which also extracted the Wnt signalling59

gene set (Supplementary Figs S14 and S16) in line with previous
studies60,61, showing an apparent ‘induction’ of Wnt during
therapy. Many of the gene expression changes induced by VINC
treatment were not detected when we simply compared treated and
untreated whole (not sorted) cell cultures, highlighting the cell
population heterogeneity and the importance of cell sorting to
isolate relevant cell subpopulations for biochemical cell analysis.

A feature of a high-dimensional attractor state is the memory
of the perturbation, that is, a lasting change of a large set of
responding genes that persists after removal of the perturbation.
To determine whether the transcriptome-wide adaptive response
exhibited such memory, VINC was washed out after the 24 h
treatment. Whereas the effluxHigh phenotype persisted for a
week after transient exposure to VINC (Fig. 3b), the VINC-
treated cells remained globally altered beyond 17 days, long after
the population had relaxed to the native distribution with baseline
efflux (Fig. 3b and Supplementary Fig. S15). Crucially, if the
reappearance of the effluxLow state, which has a growth advantage
in the absence of drug (Supplementary Fig. S5), is the result of
selection of naive effluxLow cells (which either have never
responded or fully reverted back), one would expect to see the
reappearance of the transcriptome of untreated cells. However, in
these post-treatment cells, the global changes in gene expression
triggered by VINC persisted for 417 days, suggesting that VINC
induced an adaptive, slowly reversible response with respect to
the efflux phenotype as a non-specific stress response, but a
stable (apparently irreversible) attractor transition with respect to
other state space dimensions, which are orthogonal to those
conferring the efflux phenotype.

As many Wnt pathway components (Supplementary Fig. S16)
were highly induced in the effluxHigh cells, we next knocked down
b-catenin in HL60 cells to determine whether it has an active role
in the induction of the MDR phenotype (Supplementary Fig. S17).
When b-catenin was suppressed, after 60h of VINC treatment
both efflux capacity (Fig. 4a) and MDR1 expression (Fig. 4b) were
reduced by half relative to the control. This inhibition had
functional consequences, because the viability of b-catenin
knockdown cells in just 1 nM VINC was reduced to half compared
with the control (Fig. 4c). Rescue by ectopic overexpression of an
RNA interference-resistant b-catenin construct completely
restored VINC-induced efflux and expression of MDR1 in the
knockdown cells, confirming specificity of the knockdown
(Supplementary Fig. S18).

Discussion
Our analysis of the rapid ‘appearance’ of the MDR phenotype and
of MDR1 expression following chemotherapy provides evidence
that this early drug resistance phenotype can be induced by a
Lamarckian instruction, independent of selection. Our conclusion
is supported by a series of findings: first, the experimental
measurement of a rapid drug-triggered induction of a MDR1High

(effluxHigh) subpopulation comprising 40% of the cells within 1
day and associated mathematical cell population dynamics
modelling show that the observed moderate fitness advantage of
the effluxHigh cells cannot account for this response kinetics.
Second, single-cell longitudinal monitoring directly demonstrates
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‘true’, cell-individual adaptation. Third, the decoupling of the
expression of a trait from its function (which conveys selective
advantage) excludes a role for Darwinian selection. Finally, trans-
criptome analysis reveals a genome-wide, distinct and enduring
stress-induced state that is unlikely orchestrated by random
mutations.

The results of course do not preclude a role of canonical
Darwinian somatic evolution driven by the selection of random
genetic mutants at later stages, as amply supported by the
observed genomic alterations whose nature readily offer a
mechanistic rationale for selective advantage. However, the
argumentation for this evolutionary scheme as the sole mechan-
ism requires the assumption of a substantial amount of pre-
existing mutations11. This requirement is alleviated by admitting
non-genetic processes as a catalyser31,32, which is mediated by

cells that either transiently, and by chance, occupy a stem-like
attractor state and hence survive the treatment, or are induced by
the cytotoxic stress to enter such a protective state. Here we show
that the latter dominates.

Although the apparent ‘activation’ of resistance mechanisms
and alternative survival pathways or of stem-like states after drug
or radiation therapy is frequently observed26,40–48, the distinction
between Lamarckian induction and Darwinian selection is
rarely explicitly articulated. Existing thinking in cancer biology
tacitly implies the latter but often communication is blurred by
the use of metaphoric shorthand expressions that are common in
evolution biology, such as the ‘the tumour adapts to the therapy’,
which suggests the former. Awareness of this dualism and
specifically, of non-genetic dynamics may help to explain several
non-intuitive tumour behaviours, such as follows: why does treat-
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ment not only cause drug resistance but inseparably also increases
malignancy in recurrent tumours; why can drug resistance not
be suppressed by just blocking MDR1 (ref. 57); why do early
tumour cell clones disappear and reappear62 or why do recurrent
tumours, after developing resistance to target-selective drugs,
become sensitive to the same therapy again63,64. Considering
non-genetic and drug-triggered cell-state dynamics may open
new opportunities for the management of resistant tumours, such
as targeting molecular pathways before conventional treatment to
prevent therapy-induced tumour progression.

Methods
Cell culture. Acute leukemic cell line HL60 was obtained from ATCC, and
independently re-cloned twice from individual cells and cultured in three inde-
pendent laboratories (see author affiliations). HL60 cells were cultured in Iscove’s
modified Dulbecco’s medium (Invitrogen) supplemented with 20% fetal bovine
serum (Sigma), 1% L-glutamine, penicillin (100Uml� 1, Invitrogen) and strepto-
mycin (100mgml� 1, Invitrogen). Cell number was monitored daily and culture
was maintained at a density of 2� 105 to 2� 106 cells per ml.

Viable cell count. To determine the viability and number of cells, 0.4% trypan
blue solution was used. Cell suspensions were diluted 1:5 with trypan blue and
viable cells, which exclude the dye, were scored on a haemocytometer under a light
microscope.

Flow cytometry. HL60 cells were labelled with MDR1/P-glycoprotein APC-con-
jugated mouse anti-human monoclonal antibody (e-Biosciences, 2.5 ng ml� 1). Flow
cytometry analysis was performed on a BD FACSCalibur cell cytometer or a Guava
cell cytometer. To determine the percentage of labelled cells, a quadrant gate using
an equal concentration of a relevant mouse isotype control was placed. For each
analysis, 10,000 of viable events that exclude Propidium Iodide (PI, Sigma) were
saved. For cell cycle studies, cells were labelled with 1mM DRAQ5 (Axxora, San
Diego, CA) according to manufacturer’s instructions.

MDR functional assay. HL60 cells (2� 105) were washed in Hank’s balanced salt
solution/5% fetal bovine serum (washing buffer) and then incubated with 1 nM of
CaAM (Invitrogen) for 15min at 37 �C. Cells were then washed in cold buffer and
resuspended in PI staining buffer (PI in washing buffer, 1:200 dilution), and
samples were kept on ice until analysis. For each analysis in the cytometer, 10,000
of viable events that exclude PI were saved. As controls, cells that had not been
loaded with CaAM were used. In addition, dead cells were also gated out using
scatter characteristics.

Fluorescence-activated cell sorting. FACS analysis was conducted on a BD
Biosciences Aria II at the Hematologic Neoplasia Flow Cytometry Facility of the
Dana Farber Cancer Institute. For studies of the dynamics of sorted subpopula-
tions, antibodies (2.5 ng ml� 1) were removed following cell sorting using brief
incubation in low-pH buffer29.

RNA isolation. Approximately 7–10� 106 cells were collected for RNA isolation
from each condition or subpopulation. RNA was extracted following standard
protocol from RNeasy Mini Kit (Qiagen).

Quantitative RT–PCR. Two hundred nanograms of total cellular RNA was used to
prepare complementary DNA following the standard protocol from iScript cDNA
synthesis kit (BioRad). QuantitativePCR analysis was performed according to the
manufacturer’s protocol using iTaq SYBR Green Supermix with Rox (BioRad).
Three hundred nanomolars each of forward and reverse MDR1 primers were used.
MDR1 primer sequences were as follows: for the hnRNA(Ex1–Intr1): 50-CTCAC
TTCAGGAAGCAACCA-30 (forward) and 50-TGATTGCAAACTTCTAGTCAA
GACA-30 (reverse); for the hnRNA(Intr1–Ex2): 50-TGGAGAGGTCGGAGTT
TTTG-30 (forward) and 50-GGTTGAATTTCCAGGAGGAATG-30 (reverse); for
the coding region: 50-TACAGTGGAATTGGTGCTGGG-30 (forward) and 50CCCA
GTGAAAAAATGTTGCCA-30 (reverse). Quantitative RT–PCR was carried out
with a BioRad CFX96 real-time system C1000 and the iQ5 thermal cycler.

Single-cell imaging. HL60 cells were labelled with CaAM using the Vybrant
Multidrug Resistance Assay or 10 mgml� 1 of Rhodamine123 (Rh123, Invitrogen).
Single cells were seeded into 96-well optical plates with a BD FACS Aria (Dana
Farber Hematologic Neoplasia Core Facility) based on size/forward scatter,
regardless of CaAM fluorescence. Following plating, a baseline fluorescence image
was obtained for each individual cell. Ten nanomolars VINC or an equivalent
volume of drug-free control media was added to each well and the dye pumping
function of individual cells was measured by imaging CaAM fluorescence 24 and
48 h after drug administration. Phase-contrast imaging was conducted in parallel to
assist in locating the cell within the well.

Live-cell microscopy. HL60 cells at a density of 1� 106 cells ml� 1 were seeded
for 30min in a glass-bottom dish (Iwaki) and imaged with a Zeiss Exciter (Plan-
Neofluar � 40 NA 1.3 Oil DIC). Cells were stained with Rh123 (Invitrogen;
1:20,000) or Hoechst 33342 (Invitrogen; 1:200,000). For both dyes, the expression
level was monitored until it reached a plateau (uptake) before initiation of
experiment. Image analysis was conducted with LSM Aim Software.

b-catenin constructs. b-catenin small hairpin construct: b-catenin targeting small
hairpin (shRNA) was kindly provided by Jürgen Deka. It was cloned using a
published b-catenin target sequence65. The oligonucleotide was subcloned (Xho1
and EcoR1) into the pInducer11 backbone (kindly provided by Stephen Elledge66)
to result in pInd-b-catenin.

shRNA-resistant b-catenin. An shRNA-resistant b-catenin cDNA was kindly
provided by Jürgen Deka and Frédérique Baruthio. It is based on a b-catenin
D164A plasmid67, which was kindly provided by Konrad Basler. The D164A
mutation was reversed by PCR. The pInd-b-catenin construct targets the following
sequence (underlined) in b-catenin: (1,580 bp) 50-GTCTGCCAAGTGGGTGG
TATAGAGGCTCTTGTGCGTACTGTCCTTCGGGCT-30 (1,630 bp). Wobble
base mutations were introduced under consideration of highest human codon
usage into the target sequence (underlined), resulting in a rescue cDNA fragment:
50-GTCGGAGGCATTGAAGCCC-30 . The b-catenin rescue fragment was
amplified by PCR using AttB-containing primers and subsequently subcloned
into pInducer20 (kindly provided by Stephen Elledge66) resulting in pInd-b-cat-
rescue.

Western blot analysis. HL60 parental cells, sh-b-catenin knockdown cells and
rescued (sh-resistant cDNA) knockdown cells were cultured in regular growing
medium supplemented with 2 mgml� 1 doxycycline for 96 h. Cells (107) were
suspended in CelLytic MT cell lysis reagent (Sigma-Aldrich) containing protease
inhibitors (Complete mini cocktail, Roche). The lysis solution was sonicated and
centrifuged, and the total protein extraction contained in the supernatant was
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quantified based on the Bradford colorimetric assay (BioRad). Samples were
resolved by electrophoresis on a 8% SDS–PAGE gel, transferred to a polyvinylidene
difluoride membrane and probed with primary antibodies against b-catenin
(1:2,000 in TBST þ 5% BSA; BD Biosciences) and a-Tubulin (loading control,
1:3,000 in TBST; Calbiochem). A horseradish peroxidase-conjugated goat anti-
mouse antibody was added, and secondary antibodies were detected through
chemiluminescence (ECL, Amersham) on a Fusion FX7 charge-coupled device
image acquisition system.

Statistical analysis. Two-way analysis of variance followed by Dunnett’s multiple
comparisons test was performed using GraphPad Prism version 6.00 for MacOS,
GraphPad Software, La Jolla, CA USA, www.graphpad.com.

Mathematical modelling. For the Markov state transition model, we make two
assumptions. First, we discretize the continuous distribution of cell population as
two discrete states, MDRLow and MDRHigh. This is warranted given the bimodal
distribution (that is better visible in the drug-induced conditions). Second, we
assume that the probabilities at each time step for staying in the same state (‘self-
renewal’) and for transition are linear (first-order kinetics). The governing equa-
tions of the Markov model of the state transition model are (equation 2):

xnL
xnH

� �
¼ PLL PHL

PLH PHH

� �n
x0L
x0H

� �
ð2Þ

where x0L; x
0
L denote the initial relative proportions of cells in the two respective

states MDRLow (L) and MDRHigh (H) and xnL ; x
n
H represent the relative proportions

of cells in the MDRLow and MDRHigh states in the n� the time step (xLþ xH¼ 1).
Pij represents the probabilities of transitioning from state i to j (the basis of
instruction by the drug) and Pii represents the ‘self-renewal’ (probability of staying
in the same state), as previously employed21, although the Markov mode is not a
growth model. Because of its Markov property, the transition matrix P satisfies:

X2
i¼1

Pij ¼ 1 ð3Þ

It also has a maximum eigenvalue lmax ¼ 1 and a corresponding eigenvector,
which determines the final steady state of cell population.

V1

V2

� �
¼

PLL � PHHð Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PLL þ PHHð Þ2 � 4 PLLPHH �PHLPLHð Þ

p
2PLH
1

( )
ð4Þ

With this equation, we can study the influence of the transition rates PHL; PLH and
the self-renewal rates PLL;PHH on the steady state.

From equation(4), we obtain for the steady-state ratio r*¼ x*L/x*Hof the two
populations, effluxLow and effluxHigh:

r� ¼ x�L
x�H

¼
PLL � PHHð Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PLL þ PHHð Þ2 � 4 PLLPHH � PHLPLHð Þ

q
2PLH

ð5Þ

With this model, we determine the parameter space, which maps the relative values
of growth and transition rates to a given steady-state composition, r*. Using the
numbers for the observed effective growth rate constants (gL, gH; Table 1) in
equation(5) for the relative magnitudes of PLL and PHH, we display r* as a function
of the ratios of the transition rates PLH and PHL, and of the self-renewal rates PLL
and PHH on the steady-state ratio r* (Fig. 1d). One cannot measure the effective
transition rates accurately, because the observed apparent reconstitution of the
effluxHigh population from the sorted effluxLow cells is a composite result of
effective transition and effective growth, and the observed state transition is slower
than cell proliferation. By contrast, the initial effective growth rates of the sorted
subpopulations can be reliably estimated, because in this initial period the
transition to and from the other state is negligible for both subpopulations due to
the small probabilities P or the small population size n.

For the Linear ordinary differential equation model as with the Markov model,
we discretize the continuous distribution of cell population as two distinct states,
MDRLow and MDRHigh, and assume again that the rate of both cell effective growth
(death and birth combined) and transitions follow first-order kinetics. The
governing equations of the linear ODE model can be written as follows
(equation 6):

_xL ¼ xL gL � kLð Þþ kHxH
_xH ¼ xH gH � kHð Þþ kLxL

�
ð6Þ

where xL and xH denote the population fraction of effluxLow (L) and effluxHigh (H)
cells as in the last Markov model. gi and ki (i¼H,L) are the respective rate
constants for effective growth and transition, and are separately measured for
absence (g, k) and presence (g0 , k0) of the drug. The mathematical solutions of
equation (6) depend on the eigenvalue of following matrix:

gL � kLð Þ� l kH
kL gH � kHð Þ� l

����
���� ¼ 0 ð7Þ

With the quadratic equation for the eigenvalue l and the solutions l1 and l2, the
solution of the ODEs is:

xL ¼ A11el1 t þA12el2 t

xH ¼ A21el1 t þA22el2 t

�
ð8Þ

We numerically estimated the ratios of growth rate constants gL=gH and the
transition rate constants kL=kH , which produce a given ratio of the subpopulations
r(24 h)¼ xH(24 h)/xL(24 h) after 24 h of drug treatment as displayed in Fig. 1e using
the values shown in the Table 1.

Microarray analysis. Microarray studies were performed by the Molecular
Genetics Core Facility at Children’s Hospital Boston supported by NIH-P50-
NS40828 and NIH-P30-HD18655. RNA samples were hybridized to Illumina
Human Ref-3 expression BeadChips, and initial processing and normalization was
performed with BeadStudio software. BeadChip internal P-values (technical bead
replicates) were used for filtering out genes significantly expressed above the
background noise. To filter out genes with signals not significant above the
background noise, P-value from Illumina BeadStudio (see above) of 0.05 was used
as the cutoff value and only genes with a P-value o0.05 in all four samples passed
the filter. From the original set of 18,401 probes, 2,096 genes met this criterion.
Significant genes were identified with Significance Analysis of Microarrays
using a false-discovery rate of o1% on all genes, resulting in 974 genes. Self-
organized maps of significant gene lists were prepared using the Gene Expression
Dynamics Inspector software (http://www.childrenshospital.org/research/ingber/
GEDI/gedihome.htm)68. Hierarchical clustering based on Euclidean distance
was performed on time course gene expression data normalized by z-score.
Gene expression data have been deposited in the GEO databank under this
publication ID.

For GSEA, the data set analysed corresponds to the four samples shown in
Fig. 3 (MDR-High subpopulation after VINC (sample 1); MDR-Low subpopula-
tion after VINC (sample 2); no treatment/mock sort, (sample 3); and VINC
treatment/mock sort (sample 4). The gene set with 2,096 genes (see above) was
normalized using the quantilenorm function in MatLab. The aim was to identify
genes differentially expressed between the untreated population (sample 3) and
the other three samples. To do that, we calculated the pairwise ratios between
sample 3 and samples 1, 2 and 4, respectively. Genes with a log fold change
(log2(ratio)) Z2 or r� 2 are listed in Supplementary Data 1. The genes in
Supplementary Data 1, columns 2 (sample 3 versus sample 2) and column 3
(sample 3 versus sample 4), were manually checked for their biological function
using NCBI–Gene database. For the genes listed in Table 1 column 1 (sample 3
versus sample 1), we manually mapped it to the stemness pathways identified by
Branderberg et al.58

The set of 2,096 genes was subjected to GSEA69 to identify gene sets in MSigDB
enriched for genes of KEGG (Kyoto Encyclopedia of Genes and Genomes)
pathways in all the samples when using untreated mock-sorted samples as
reference (Supplementary Fig. S14). A ranked list is presented as a heat map plot in
Supplementary Fig. S13, showing the most significantly differentially expressed
genes between mock-sorted and the other three samples (treated/mock-sorted,
treated/sorted low efflux, treated/sorted high efflux). The GSEA analysis expands
the manual approach and confirms the stem-cell signature of the Wnt pathway,
whose genes are differentially expressed after treatment.

For GO analysis, the same gene set used for GSEA was tested in DAVID
(Database for Annotation, Visualization and Integrated Discovery) against the
Homo sapiens gene reference set70. Sixteen functional categories were found to be
significantly enriched in the data set with a P-valueo0.001. These GO terms, their
significance and the number of associated genes in the data set are summarized in
Supplementary Table S1.
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