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Ecscr regulates insulin sensitivity and
predisposition to obesity by modulating
endothelial cell functions
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Insulin resistance is closely associated with obesity and is one of the earliest symptoms of

type-2 diabetes. Endothelial cells are involved in the pathogenesis of insulin resistance

through their role in insulin delivery and adipose tissue angiogenesis. Here we show that

Ecscr (endothelial cell surface expressed chemotaxis and apoptosis regulator; also known as

ARIA), the transmembrane protein that regulates endothelial cell signalling, is highly

expressed in white and brown adipose tissues, and regulates energy metabolism and glucose

homeostasis by modulating endothelial cell functions. Ecscr-deficient mice fed a normal chow

show improved glucose tolerance and enhanced insulin sensitivity. We demonstrate that

Ecscr deletion enhances the insulin-mediated Akt/endothelial nitric oxide synthase activation

in endothelial cells, which increases insulin delivery into the skeletal muscle. Ecscr deletion

also protects mice on a high-fat diet from obesity and obesity-related metabolic disorders by

enhancing adipose tissue angiogenesis. Conversely, targeted activation of Ecscr in endothelial

cells impairs glucose tolerance and predisposes mice to diet-induced obesity. Our results

suggest that the inactivation of Ecscr enhances insulin sensitivity and may represent a new

therapeutic strategy for treating metabolic syndrome.
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T
he epidemic of obesity and type-2 diabetes are the major
health problems worldwide, both of which increase the risk
of developing cardiovascular disease1,2. The earliest defect

in developing type-2 diabetes is the reduced metabolic action of
insulin in peripheral tissues, namely insulin resistance3. Insulin
resistance induces the endothelial cell (EC) dysfunction through
hyperglycaemia, hyperinsulinaemia and increased circulating free
fatty acid concentrations4–7. Endothelial dysfunction causes the
disruption of vascular integrity, resulting in the increased
cardiovascular morbidity and mortality. On the other hand, EC
is an insulin target as well, and insulin-mediated signals modify
various EC functions. Insulin signalling in EC modulates
endothelial apoptosis and nitric oxide (NO) produc-
tion, and it attenuates the progression of atherosclerosis8,9.
Recently, an insulin-mediated Akt/endothelial NO synthase
(eNOS) activation was shown to have an essential role in
insulin delivery into the interstitium of the skeletal muscle that
accounts for B90% of whole-body glucose disposal in
human10,11. Therefore, insulin signalling in EC is also one of
the important factors regulating systemic insulin sensitivity.

Obesity is closely associated with insulin resistance by initiating
the white adipose tissue (WAT) inflammation that alters the
secretion of adipocytokines affecting glucose homeostasis12. The
healthy WAT expansion accompanies the proper neovessel
formation, but excessive adiposity triggers adipose tissue
hypoxia due to imbalanced vascularization and results in
chronic inflammation in WAT, leading to the obesity-related
metabolic disorders13. In contrast, the brown adipose tissue
(BAT) is a thermogenic organ, and its high degree of
specialization of lipolysis and fatty acid oxidation allows it to
make a major contribution to the overall energy balance14.
Oxygen consumption in BAT is enormously high; hence, its
thermogenic activity can counteract the obese phenotype13. The
high thermogenic activity of BAT requires a particularly high rate
of blood perfusion, and because of this functional requirement
BAT contains an extraordinarily well-developed vascular
networks. Moreover, a strong correlation between the blood
vessel density in BAT and the capacity of thermogenesis and
metabolic rate has been reported15–17. Therefore, angiogenesis in
WAT and BAT is a crucial factor in the pathogenesis of obesity
and its related metabolic disorders.

EC has a fundamental role in postnatal angiogenesis as well,
and thus EC functions are crucially involved in the regulation of
energy metabolism and glucose homeostasis, whereas the detailed
mechanisms regulating the endothelial insulin signalling and
adipose tissue angiogenesis remain to be elucidated. We and
others recently identified a previously uncharacterized gene,
termed Ecscr (EC surface expressed chemotaxis and apoptosis
regulator; also known as ARIA), which is highly preferentially
expressed in ECs and controls neovessel formation by regulating
the endothelial PTEN (phosphatase and tensin homologue
deleted from chromosome 10)/PI3K (phosphoinositide 3-kinase)
pathway18–20. PTEN is a non-redundant, plasma membrane lipid
phosphatase that antagonizes the PI3K function21. Membrane
association of PTEN is important, as it dephosphorylates the
target phospholipid on the plasma membrane to function22,23.
Ecscr is a transmembrane protein that locates at the plasma
membrane and binds to PTEN at its intracellular domain24.
Hence, Ecscr enhances membrane localization of PTEN, leading
to the negative regulation of PI3K/Akt signalling in ECs. In
accordance with the crucial role of endothelial PI3K/Akt
signalling in angiogenesis, loss of Ecscr substantially enhanced
the ischaemia-induced neovascularization24. Here we report an
unexpected function of Ecscr in the regulation of insulin
sensitivity and progression of obesity. We made the
serendipitous observation that Ecscr was highly expressed in

WAT and BAT, which urged us to investigate its role in the
metabolic regulation. Genetic deletion of Ecscr improved glucose
tolerance and enhanced insulin sensitivity without changes in
body weight (BW) and body fat mass, even under normal chow
diet, by modulating insulin signalling in ECs. Moreover, loss of
Ecscr led to the concurrent resistance to diet-induced obesity
and its related metabolic disorders by enhancing the adipose
tissue angiogenesis. Thus, Ecscr may have therapeutic potential
for the control of type-2 diabetes and obesity-related metabolic
disorders.

Results
Ecscr regulates glucose homeostasis and insulin sensitivity. We
and others previously showed that Ecscr is highly preferentially
expressed in ECs19,20,25. During a detailed analysis of Ecscr
functions, we found that Ecscr is expressed in adipose tissues at a
high level relative to other tissues (Fig. 1a). Moreover, Ecscr
expression was significantly increased in WAT of obese mice fed
a high-fat diet (HFD) compared with that in lean mice
(Supplementary Fig. S1). In accordance with the high expression
in ECs, Ecscr was largely present in the stromal vascular cells of
WAT (Fig. 1b). As Ecscr regulates postnatal angiogenesis, this
indicates a potential role of Ecscr in adipose tissue angiogenesis.
Adipose tissue angiogenesis is an emerging factor in metabolic
disorders, and thus we studied mice with a homozygous deletion
of Ecscr (Ecscr� /� mice)24 with respect to glucose homeostasis
and energy metabolism. BW, visceral or subcutaneous fat weight,
as well as food intake, were similar between Ecscr� /� and wild-
type (WT) mice (Fig. 1c and Supplementary Fig. S2a,b). No
significant difference in BW was also confirmed under a pair-fed
condition (Supplementary Fig. S2c). We found that blood vessel
density in WAT was modestly increased in Ecscr� /� mice
relative to WT mice, whereas the vessel density per adipocyte was
not different between these mice (Fig. 1d). Blood vessel density in
BAT was similar between WT and Ecscr� /� mice (Fig. 1e).

Interestingly, Ecscr� /� mice showed a small but significant
reduction in the size of visceral white adipocytes (Fig. 1f).
Adipocytes expressed Ecscr at minimal levels in comparison with
ECs (Supplementary Fig. S3a), and Ecscr expression was not
induced but rather decreased during the adipocyte differentiation
of 3T3-L1 pre-adipocytes (Supplementary Fig. S3b). Moreover,
loss of Ecscr did not affect the adipogenesis of mouse embryonic
fibroblast (Supplementary Fig. S3c). These collectively indicate
that Ecscr might affect the size of adipocyte in a non-cell
autonomous fashion.

Despite the comparable BW and body fat mass, Ecscr� /�

mice showed reduced fasting blood glucose levels accompanied by
lower serum insulin concentration relative to WT mice, resulting
in the lower homeostasis model assessment-insulin resistance
(HOMA-IR) (Fig. 1g). These strongly suggest that Ecscr� /�

mice have enhanced insulin sensitivity and, thus, we conducted
oral glucose tolerance test (OGTT) and insulin tolerance test
(ITT). Elevation of blood glucose after oral glucose administra-
tion was significantly reduced and the glucose-lowering effect of
insulin was significantly enhanced in Ecscr� /� mice in
comparison with that in WT mice, indicating that the inactivation
of Ecscr leads to the improved glucose tolerance and enhanced
insulin sensitivity even under a normal chow diet (Fig. 1h,i).

Ecscr modifies the skeletal muscle insulin sensitivity. The
skeletal muscle blood flow is one of the major determinants in the
insulin-mediated glucose uptake and, thus, it regulates the sys-
temic insulin sensitivity26–28. Recently, insulin signalling and
insulin-mediated eNOS activation in ECs have been shown to
have a crucial role in the skeletal muscle insulin sensitivity by
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regulating the muscle blood flow and insulin delivery into the
interstitium of the skeletal muscle10. Ecscr modifies the
endothelial PI3K/Akt/eNOS signalling19,24 and, therefore, we
investigated a role of Ecscr in the insulin-mediated Akt and eNOS
activation in ECs. Disruption of Ecscr enhanced the Akt/eNOS
signalling without affecting ERK signals in ECs in response to

insulin (Fig. 2a). Furthermore, insulin-mediated muscle blood
flow was significantly enhanced (Fig. 2b, and Supplementary
Movies 1 and 2) and the insulin content in the skeletal muscle
was increased in Ecscr� /� mice in comparison with those in WT
mice (Fig. 2c). Consistently, insulin-mediated activation of both
insulin receptor (IR)-b and Akt was enhanced in the skeletal
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age of 20 weeks (n¼ 5 each for male mice; n¼8 each for female mice). (g) Fasting blood glucose, serum insulin levels and HOMA-IR in WT and
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t-test). All data are mean±s.d.
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muscle of Ecscr� /� mice in comparison with that in WT mice
(Fig. 2d). Of note, Ecscr expression in the skeletal muscle was
relatively low (Fig. 1a) and the membrane association of
PTEN, which is modified by Ecscr, was similar between WT and
Ecscr� /� mice in the skeletal muscle (Supplementary
Fig. S4a). Moreover, insulin-mediated Akt activation in isolated
skeletal muscle was not different between these mice, indicating
that insulin signalling in the skeletal muscle was not altered in a
cell autonomous fashion by Ecscr deletion (Supplementary Fig.
S4b). Moreover, the membrane association of PTEN in the liver,
insulin signalling in isolated hepatocytes and hepatic gluconeo-
genetic gene expressions were not different between WT and
Ecscr� /� mice (Supplementary Fig. S4c–e).

We found that the inhibition of NOS by L-NAME abolished
the enhanced activation of both IR-b and Akt in response to
insulin in the skeletal muscle (Fig. 3a). Treatment with L-NAME
also abolished the improved glucose tolerance and enhanced
systemic insulin sensitivity in Ecscr� /� mice (Fig. 3b). More-
over, genetic deletion of eNOS abrogated the increase in insulin-
mediated muscle blood flow and also abolished the improved
insulin sensitivity observed in Ecscr� /� mice (Fig. 3c,d). These
collectively indicate that loss of Ecscr improves systemic insulin
sensitivity largely through an enhanced skeletal muscle insulin
sensitivity by increasing the insulin-mediated eNOS activation
in ECs.

To further investigate a role of Ecscr in insulin signalling in
ECs, we generated mice in which Ecscr was activated in ECs
under the control of Tie2 promoter (TIE2-Ecscr-Tg). As opposed
to Ecscr deletion, the targeted activation of Ecscr impeded
insulin-mediated Akt and eNOS activation in ECs (Fig. 3e and

Supplementary Fig. S5). Notably, TIE2-Ecscr-Tg mice showed
modest but significant impairment in glucose tolerance and
insulin sensitivity even under a normal chow diet in contrast to
Ecscr� /� mice, further supporting a crucial role of endothelial
Ecscr in glucose homeostasis (Fig. 3f).

Genetic deletion of Ecscr protects mice from obesity. As adi-
pose tissue angiogenesis has a significant role in the pathogenesis
of obesity and its related metabolic disorders, we investigated the
role of Ecscr in the progression of obesity. When challenged with
an HFD, weight gain was significantly attenuated in Ecscr� /�

mice despite the indistinguishable food intake from WT mice
(Fig. 4a,b). This reduced weight gain in Ecscr� /� mice fed an
HFD was also observed even under a pair-fed condition
(Supplementary Fig. S6a). Visceral and subcutaneous fat weight
was lower, and the body fat ratio was significantly reduced in
Ecscr� /� mice fed an HFD (Fig. 4c,d and Supplementary Fig.
S6b). Moreover, hepatic steatosis was ameliorated in Ecscr� /�

mice relative to WT mice after an HFD (Fig. 4e,f). Furthermore,
leptin expression was substantially reduced, whereas adiponectin
expression was enhanced in WAT of Ecscr� /� mice fed an HFD
(Supplementary Fig. S7). Serum cholesterol level in Ecscr� /�

mice was significantly lower than that in WT mice after an HFD,
whereas there was no difference in serum cholesterol and tri-
glyceride levels between these mice fed a normal chow diet
(Supplementary Table S1).

We then investigated the blood vessel density in WAT and
found that vascularization was significantly increased in WAT of
Ecscr� /� mice relative to WT mice fed an HFD (Fig. 5a and
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Supplementary Fig. S8a). Moreover, Hypoxyprobe staining
revealed a substantially reduced hypoxia in WAT of Ecscr� /�

mice fed an HFD (Fig. 5b). Of note, macrophage infiltration and
expression of inflammatory cytokines in WAT was reduced in
HFD-fed Ecscr� /� mice (Fig. 5c and Supplementary Fig. S8b,c).
As a result, improved glucose tolerance and enhanced insulin
sensitivity in Ecscr� /� mice were more evident after an HFD as
shown by OGTT and ITT (Fig. 5d). These indicate that Ecscr
inactivation ameliorates the obesity-related metabolic disorders at
least in part by enhancing the adipose tissue angiogenesis in
WAT.

In addition, we analysed the expressional changes of various
angiogenic factors in adipose tissues in response to the HFD
feeding. Expression of angiogenic factors, including vascular
endothelial growth factor, was significantly increased in WAT
and BAT as early as 2 weeks after an HFD (Supplementary
Fig. S9a). Of note, the expression of these angiogenic factors did
not change in the liver and skeletal muscle even after an HFD
(Supplementary Fig. S9b). These indicate that HFD feeding
initiates the blood vessel remodelling, particularly in adipose
tissues. Consistently, blood vessel density in the skeletal muscle
and heart was not different between WT and Ecscr� /� mice fed

an HFD, in contrast to the increased vascularization in WAT of
Ecscr� /� mice (Supplementary Fig. S10).

Ecscr deletion enhances thermogenesis and metabolic rate. We
then investigated the metabolic parameters in HFD-fed WT and
Ecscr� /� mice. The oxygen consumption and CO2 production
were greater, whereas the respiratory exchange ratio was reduced
in Ecscr� /� mice compared with those in WT mice fed an HFD
(Fig. 6a,b). In contrast, there was no difference in activity between
these mice (Supplementary Fig. S11). These indicate that
increased energy expenditure with augmented fat utilization as a
source of energy contributes to the resistance to obesity in
Ecscr� /� mice. Of note, the core temperature was significantly
higher in Ecscr� /� mice than that in WT mice after an HFD
(Fig. 6c). BAT is a thermogenic organ that makes a major con-
tribution to the overall energy balance14, and we found that BAT
in HFD-fed Ecscr� /� mice remained in a polygonal shape with
eosinophilic in the cytoplasm, whereas that in HFD-fed WT mice
lost the typical morphology with large lipid droplets accumulated
in the cytoplasm (Fig. 6d). Expressions of uncoupling proteins,
peroxisome proliferator-activated receptors and genes involved in
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fatty acid oxidation in BAT of Ecscr� /� mice was enhanced
comparing with those in WT mice fed an HFD (Fig. 6e and
Supplementary Fig. S12a). Moreover, thermogenesis in response to
acute cold exposure was substantially augmented in Ecscr� /� mice
fed an HFD (Fig. 6f). Consistent with the enhanced thermogenesis,
fatty acid uptake was considerably increased in BAT of Ecscr� /�

mice fed an HFD, whereas the glucose uptake was not altered
(Supplementary Fig. S12b). As the high thermogenic activity of BAT
requires a particularly high rate of blood perfusion, we investigated
the blood vessel density in BAT. Vascularization was substantially
enhanced and hypoxia was significantly attenuated in BAT of
Ecscr� /� mice relative to WT mice after an HFD (Fig. 6g,h and
Supplementary Fig. S13). These collectively indicate that Ecscr
inactivation enhances thermogenesis by increasing the blood per-
fusion and oxygen supply in BAT during an HFD, and thus it
counteracts the diet-induced obesity.

Ecscr activation in ECs predisposes mice to obesity. To confirm
the crucial role of endothelial Ecscr in the Ecscr-mediated
metabolic control, we investigated whether the activation of Ecscr
in ECs affects the progression of obesity. BW was similar between
WT and TIE2-Ecscr-Tg mice fed a normal chow diet
(Supplementary Fig. S14). In contrast to Ecscr� /� mice, TIE2-
Ecscr-Tg mice were predisposed to diet-induced obesity and they
developed aggravated glucose intolerance and insulin resistance
compared with WT mice after an HFD (Fig. 7a–d). Moreover, the
expression of inflammatory cytokines in WAT was enhanced in
association with the reduced blood vessel density in HFD-fed
TIE2-Ecscr-Tg mice (Fig. 7e,f). In addition, leptin expression was

increased, whereas adiponectin expression was reduced in WAT
of TIE2-Ecscr-Tg mice fed an HFD (Fig. 7g). On the other hand,
lipid accumulation was aggravated, and expressions of uncou-
pling proteins, peroxisome proliferator-activated receptors and
genes involved in fatty acid oxidation were reduced in BAT of
TIE2-Ecscr-Tg mice in comparison with those in WT mice fed an
HFD (Fig. 7h,i). Core temperature was not significantly different
between HFD-fed WT and TIE2-Ecscr-Tg mice under ambient
condition, but thermogenesis in response to acute cold exposure
was impaired in HFD-fed TIE2-Ecscr-Tg mice (Fig. 7j). More-
over, TIE2-Ecscr-Tg mice fed an HFD showed the reduced vas-
cularization in BAT (Fig. 7k). These indicate that targeted
activation of Ecscr in ECs aggravated diet-induced obesity and its
related metabolic disorders by reducing the adipose tissue
angiogenesis in WAT and BAT.

Ecscr rescue in ECs reverses the metabolic phenotypes. To
further confirm that EC is the primary target in Ecscr-mediated
metabolic control, we performed rescue-type experiments by
crossing the TIE2-Ecscr-Tg and Ecscr� /� mice. Endothelial-
specific re-expression of Ecscr completely abolished the enhanced
insulin sensitivity in Ecscr� /� mice fed a normal chow diet
(Fig. 8a). Moreover, re-expression of Ecscr in ECs reversed the
ameliorated diet-induced obesity and abrogated the enhanced
adipose tissue angiogenesis observed in Ecscr� /� mice fed an
HFD (Fig. 8b–d).

Taken together, Ecscr modifies the systemic insulin sensitivity,
the progression of obesity and its related metabolic disorders
largely through a modification of EC functions (Fig. 8e).
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Discussion
In the present study, we demonstrated that Ecscr provides a
previously undescribed mode of regulation in energy metabolism
and glucose homeostasis. Genetic loss of Ecscr enhanced the
systemic insulin sensitivity and concurrently counteracts diet-

induced obesity. Until recently, there have been only a few reports
of genetically modified mice that show enhanced insulin
sensitivity under normal diet and concomitant resistance to
diet-induced obesity29,30. The striking difference of Ecscr� /�

mice from these mice is that the enhanced insulin sensitivity
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under normal diet arises in the absence of leanness in Ecscr� /�

mice. This unique metabolic phenotype of Ecscr� /� mice is due
to the roles of Ecscr in both endothelial insulin signalling and
adipose tissue angiogenesis.

PTEN/PI3K pathway has a central role in insulin signalling
and, therefore, this pathway has been an attractive

pharmacotherapeutic target to modulate insulin sensitivity to
treat type-2 diabetes. Nevertheless, systemic regulation of this
pathway is not feasible, because it evokes crucial and universal
cellular functions in a variety type of cells. Genetic loss of PTEN
or catalytic subunit of PI3K causes fetal death in utero, indicating
their essential roles during the embryonic development31–33.
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Moreover, systemic reduction in PTEN levels induces cancer
susceptibility31,34. Ecscr modifies PTEN function by regulating its
membrane association and it shows highly preferential expression
in ECs. Hence, the regulation of Ecscr could provide a partial and
cell type-specific modification of PTEN function. Therefore, the
inhibition of Ecscr offers a unique therapeutic potential without
inducing detrimental conditions, such as oncogenicity, yet it still

possibly accelerates the growth of pre-existent tumours through
enhanced angiogenesis.

Ecscr� /� mice fed a normal chow showed modest reduction
in adipocyte size, but its underlying mechanisms remain to be
elucidated. The expression of Ecscr in adipocytes was minimal,
and Ecscr expression was not induced but rather decreased
during the adipocyte differentiation in 3T3-L1 pre-adipocytes.
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Furthermore, loss of Ecscr did not affect the adipocyte
differentiation, indicating that Ecscr does not directly regulate
the adipogenesis in a cell autonomous fashion. On the other
hand, it has been reported that ECs and/or angiogenesis enhances
pre-adipocyte proliferation and differentiation into mature
adipocyte, and thus promotes adipogenesis35,36. As the blood
vessel density in WAT was increased in Ecscr� /� mice, we
presume that the smaller size of adipocyte observed in Ecscr� /�

mice might be associated with the increased blood vessel density
in WAT.

Ecscr� /� mice were resistant to diet-induced obesity due to
the increased energy expenditure with augmented utilization of
fat as a source of energy. Higher core temperature concomitant
with the enhanced thermogenic capacity strongly suggests that
increased energy expenditure is due to the enhanced thermogen-
esis. Enhanced palmitate uptake, as well as increased expression
of uncoupling proteins, peroxisome proliferator-activated recep-
tors and genes involved in fatty acid oxidation in BAT, further
corroborates the enhanced thermogenesis in HFD-fed Ecscr� /�

mice. These findings were associated with the enhanced
vascularization and reduced hypoxia in BAT, and therefore the
increased angiogenic function in ECs of BAT largely contributes
to the resistance to obesity in Ecscr� /� mice, although a
molecular link between angiogenesis and the mitochondrial gene
expression in BAT is still unclear. Further experiments using
UCP1-deficient mice would be helpful to strengthen the BAT
activation in HFD-fed Ecscr� /� mice. Moreover, increased
vascularization and reduced hypoxia in WAT contributes to the
ameliorated obesity-related metabolic disorders at least in part in
HFD-fed Ecscr� /� mice by reducing the adipose tissue
inflammation.

As previous data showed the highly preferential expression of
Ecscr in ECs19,20,25, we presume that Ecscr expression in most
tissues reflects its expression in ECs. Reverse effects of the
targeted Ecscr activation in ECs on systemic insulin sensitivity
and progression of obesity, especially in mice with Ecscr-null
background, strongly suggest that Ecscr regulates glucose
homeostasis and energy metabolism largely by modulating EC
functions. Nevertheless, we cannot exclude the possibility of a
minor expression of Ecscr in insulin target cells other than ECs,
and without the EC-specific gene deletion study the possibility
that part of the metabolic effects observed in Ecscr� /� mice are
due to altered signalling in other cell types still remains.
Experiments using mice with EC-specific Ecscr deletion in the
future would certainly strengthen our conclusion.

Endothelial insulin signalling controls insulin delivery parti-
cularly in the skeletal muscle, because of the continuous capillary
structure of the muscle37–39. Accordingly, enhanced insulin-
mediated eNOS activation in the EC led to the increased muscle
capillary blood flow and enhanced the insulin delivery into the
skeletal muscle in Ecscr� /� mice. On the other hand, under an
HFD, enhanced angiogenesis in WAT and BAT of Ecscr� /�

mice also contributes to the reduced insulin resistance by
attenuating the hypoxia-mediated chronic inflammation in
WAT, as well as by increasing the thermogenesis in BAT.
Notably, enhanced angiogenesis in response to the HFD feeding
was initiated specifically in adipose tissues but not the other
tissues examined. These collectively make the effects of Ecscr
deletion selective to adipose tissues and skeletal muscle, and thus
enhanced PI3K/Akt/eNOS signalling in ECs is the primary
mechanism for the improved insulin sensitivity in Ecscr� /�

mice fed both a normal chow and an HFD.
Our data established Ecscr as a new factor in the pathogenesis

for insulin resistance and obesity, and shed light on the EC-
mediated regulation in the systemic energy metabolism and
glucose homeostasis. Enhancing the insulin sensitivity without

increasing BW is a major challenge for the treatment of type-2
diabetes. Recent studies with positron emission tomography/
computed tomography (CT) scanning using 18F-fluorodeoxyglu-
cose have shown the presence of metabolically active BAT that
contributes to energy expenditure in adult human40. Therefore,
the inhibition of Ecscr potentially improves insulin sensitivity and
concurrently counteracts obesity in human as well, and thus Ecscr
represents an attractive target for the control of metabolic
disorders, although its role in other PTEN-controlled biological
processes remains to be elucidated.

Methods
Materials. Phospho-Akt (Ser473), Akt, phospho-eNOS (Ser1177), phospho-p44/
42 MAPK (ERK1/2), ERK1/2, phospho-IR-b (Tyr1146), IR-b, PTEN antibodies
were purchased from Cell Signaling Technology. Antibody for eNOS was
purchased from Santa Cruz Biotechnology. Glyceraldehyde 3-phosphate
dehydrogenase antibody was purchased from Upstate Biotechnology. F4/80
antibody was purchased from Abcam.

Cell culture. 3T3-L1 pre-adipocytes were obtained from the Health Science
Research Resources Bank (Japan). Adipogenesis was induced as described pre-
viously41. Briefly, confluent 3T3-L1 pre-adipocytes were treated with insulin,
dexamethasone and isobutylmethylxanthine at day 0 for 48 h, followed by the
treatment with insulin for another 48 h. Afterwards, cells were cultured in the
growth medium (DMEM supplemented with 10% fetal bovine serum). ECs were
isolated from mouse aorta and were cultured as reported previously42. Briefly, the
aorta from adult C57BL/6 mice were cut into 1-mm-thick rings and placed in 24-
well culture plates, and were cultured in EGM2-MV medium (Clonetics). ECs that
sprouted out of the aortic rings were passaged for one to two times before use for
experiments. Aortic ECs were cultured in the medium supplemented with 1% fetal
bovine serum for 12 h before the stimulation with insulin. Hepatocytes were
isolated and cultured as reported previously43. Briefly, mouse liver was perfused
with perfusion medium containing collagenase (type-I), followed by plating on
culture plates coated with collagen-I. Cells were starved by culturing in serum-free
medium for 12 h before the stimulation with insulin.

Animal study. All experimental protocols were approved by the Ethics Review
Committee for Animal Experimentation of Kyoto Prefectural University of
Medicine. Targeting of the Ecscr gene in mice was performed as reported pre-
viously24. In the knockout allele, exon 1–3 of Ecscr were replaced with the Neo
cassette. Transgenic mice were generated, which overexpressed Ecscr in ECs under
the control of the Tie2 promoter (TIE2-Ecscr-Tg). The plasmid containing the Tie2
promoter and enhancer was a kind gift from Thomas N Sato (Nara Institute of
Science and Technology, Japan). The TIE2-Ecscr-Tg mice were propagated as
heterozygous Tg animals by bleeding with WT C57BL6/J mice.

Male and female mice were fed either a normal chow diet (containing 23.1%
protein and 5.1% fat) or a HFD (Oriental Bio HFD-60 that contains 35% fat, 25.3%
carbohydrate and 23% protein). For the HFD feeding, mice at the age of 6 weeks
were maintained on an HFD for up to 14 weeks. For the pair-feeding study,
Ecscr� /� mice at the age of 6 weeks were allowed feed ad libitum, and the control
WT mice at the same age were pair-fed the same amount of food as was consumed
by the Ecscr� /� mice.

Isolation of mature adipocytes from WAT. Adipocytes and non-adipocytes were
prepared by the collagenase method from epididymal adipose tissue of 20-week-old
mice on a normal chow diet as reported previously44. Briefly, the tissue
homogenates were fractionated by brief centrifugation (350g for 20 s) in Krebs–
Henseleit 4-(2-hydroxyethyl)-2-piperazine ethanesulphonic acid buffer (pH 7.4)
supplemented with 20mgml� 1 of BSA (fraction V) and 2mmol l� 1 of glucose.
Floating cells were mature adipocytes, and pelleted cells were used as stromal
vascular fraction.

Insulin signalling studies. In female mice, 0.75U kg� 1 insulin or saline was
injected subcutaneously. The soleus muscle was removed at the indicated times and
was immediately lysed in RIPA buffer. In some experiments, mice were treated
with 3mM L-NAME (Sigma) in drinking water for 1 week before the experiments.

Metabolic measurements. Food intake and oxygen consumption (VO2) was
determined in 18-week-old mice fed an HFD for 12 weeks with an O2/CO2

metabolic measuring system (Muromachi CO., Ltd, Japan) as reported
previously45,46. VO2 was determined when the minimum plateau shape was
obtained during the light cycle, which corresponded to the period of sleep or
inactivity. VO2 is expressed as the volume of O2 consumed per kilogram weight
per minute. Rectal temperature was monitored with an electronic thermometer
(Model BAT 12R, Bio Research Center, Japan) equipped with a rectal probe
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(Model RET-3). For the acute cold exposure experiments, 14-week-old mice fed an
HFD for 8 weeks were housed single mouse per cage and were kept at 4 �C. The
rectal temperature was measured at indicated times after acute cold exposure.

The OGTT and ITT were performed as reported previously45,46. Briefly, for the
OGTT, mice were fasted for 6 h and D-glucose at 2 g kg� 1 (mice fed a normal chow
diet) or 0.5 g kg� 1 (mice fed an HFD) was orally administered. For the ITT, mice
were given human insulin at 0.75U kg� 1 (mice fed a normal chow diet) or
1U kg� 1 (mice fed an HFD) by subcutaneous injection. Blood glucose was
measured by the glucose oxidase method (Sanwa Kagaku, Japan). Serum insulin
concentration was measured by ELISA assay.

Histological analysis. Target tissues were extracted following perfusion fixation
with 4% paraformaldehyde. Specimens were further fixed with 4% paraformalde-
hyde and then embedded with paraffin. Adipose tissue sections were stained with
haematoxylin and eosin, with anti-F4/80 antibody to detect macrophage, or with
isolectin GS-IB4 from Griffonia Simplicifolia (Invitrogen) to detect capillaries as
reported previously47. Briefly, sections were incubated with anti-F4/80 antibody
(1:100 dilution) or isolectin-IB4 (1:200 dilution) at 4 �C overnight, following
blocking with PBS containing 5% normal goat serum for 1 h. F4/80-positive or
isolectin-positive cells were quantified at two randomly chosen independent fields/
each section. Liver tissues were embedded in OCT compound (Sakura Finetech,
Japan) and were snap-frozen followed by staining sections with Oil Red O.

Quantification of blood vessel density and immunostainings. Blood vessel
density and immunostain-positive areas were measured by using the NIH image
software as previously reported48,49. Briefly, images of stained sections were
extracted by colour-split function of the software. Thereafter, the stain-positive area
was measured automatically by the NIH image.

Analysis with Hypoxyprobe. Adipose tissue hypoxia was analysed according to
a standard protocol using Hypoxyprobe-1 kit (Hypoxyprobe, Inc.) as reported
previously16. Briefly, the Hypoxyprobe was administered by intraperitoneal
injection. After 1 h, adipose tissues were excised and fixed with 4%
paraformaldehyde, followed by embedding with paraffin. Hypoxia was detected
by immunohistochemistry analysis using anti-Hypoxyprobe antibody.

Immunoblotting. Cell lysates were prepared in RIPA buffer, and then immuno-
blotting was performed as described previously50. Briefly, lysates containing the
same amount of proteins underwent SDS–PAGE, followed by transferring onto the
nitrocellulose membrane. Membranes were incubated with specific antibody to
detect target molecules. Detailed information for antibodies is described in
Supplementary Table S2. In some experiments, membranes were cut into two to
three pieces, to detect several target molecules in one blot without the stripping
process (for example, the IR, Akt and glyceraldehyde 3-phosphate dehydrogenase).
When the phosphorylation of target molecules was analysed, total and
phosphorylated forms were detected using the same membrane, but in some
experiments different blots prepared in the same way at the same time were used
because of the low affinity of the antibodies.

Preparation of membrane fraction. Isolated liver or skeletal muscle specimens
were put in ice-cold homogenization buffer containing 250mM sucrose, 20mM
phosphate buffer (pH6.8), protease inhibitor cocktail (Sigma) and phosphatase
inhibitors. Skeletal muscle specimens were treated with collagenase to remove
connective tissues before the procedure. Tissues were homogenized gently on ice
using a Dounce tissue grinder (Sigma) and centrifuged at 1,000g for 10min to
remove nuclei and remaining cells. The supernatants were ultracentrifuged at
150,000g for 30min using an Optima TLX (Beckman) with TLA 100.3 rotor. The
supernatants were collected as the cytosol fraction. Pellets were lysed with RIPA
buffer and centrifuged, and the supernatants were obtained as the membrane
fraction.

Quantitative RT–PCR. Total RNA was extracted by using Trizol (Invitrogen)
followed by purification with RNeasy MiniElute cleanup kit (Invitrogen). Com-
plementary DNA was synthesized from 2 to 5 mg of total RNA using SuperScript
first-strand synthesis system (Invitrogen). PCR reactions were prepared by using
LightCycler FastStart DNA Masterplus SYBR Green I (Roche Applied Science)
followed by the real-time PCR using LightCycler (Roche Applied Science) or by
using CYBR Premie Ex TaqII (TaKaRa, Japan) followed by the real-time PCR using
Thermal Cycler Dice (TaKaRa). Nucleotide sequence of each primer is shown in
Supplementary Tables S3 and S4. Target genes mRNA levels relative to b-actin was
shown unless otherwise described.

CT scan analysis. The body fat ratio was investigated radiographically using CT
(LaTheta, ALOKA) according to the manufacturer’s protocol. CT scanning was
performed at 2-mm intervals from the diaphragm to the bottom of the abdominal
cavity.

Measurement of the skeletal muscle capillary blood flow. The skeletal muscle
capillary blood flow was measured as reported previously10, with a minor
modification. The hindlimb muscles were imaged in the short axis using a
30-MHz transducer (RMV 704) connected to an ultrasound system (Vevo 2100;
VisualSonics Inc.). Sonazoid (Daiichi Sankyo Corporation), which consists of
an aqueous dispersion of lipid-stabilized perfluorobutane-filled gas microbubbles,
was infused before or 10min after insulin administration. Then, images were
immediately collected for 10 s to assess the enhancement. The capillary blood
volume filled with microbubbles was measured by using ImageJ software. Briefly,
moving images were imported as 228 frames of still pictures, and each picture
was subtracted with the mean intensity image calculated by the software. The
remaining images represent the microbubble contrast agent and the area of which
was measured for each picture frames.

Measurement of insulin content in skeletal muscle. Mice were injected with
0.75U kg� 1 insulin that contains 125 nCiml� 1 I125-labelled insulin (PerkinElmer).
After 5min, circulating blood was washed out with 10ml PBS, and soleus muscle
was extracted. The radioactivity of the extracted muscle was measured by using g-
counter.

Measurement of glucose and palmitate uptake. The amount of radio-labelled
glucose and palmitate to administer to mice was determined according to the
previous report51,52. Mice fed an HFD were intravenously injected with 800 nCi
14C-glucose and 20 nCi 3H-palmitate. After 10min, circulating blood was washed
out with 10ml PBS, and then the heart, liver, WAT, BAT and soleus muscle were
extracted. The radioactivity of the extracted organs was measured by using
scintillation counter.

Statistical analysis. All data are presented as mean±s.d. Differences between
groups were analysed by Student’s t-test or one-way analysis of variance with post
hoc multiple comparison by Bonferroni/Dunn test. Po0.05 was considered
statistically significant.
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