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Dissipative binding of atoms by non-conservative
forces

Mikhail Lemeshko2* & Hendrik Weimer!23+

The formation of molecules and supramolecular structures results from bonding by
conservative forces acting among electrons and nuclei and giving rise to equilibrium
configurations defined by minima of the interaction potential. Here we show that bonding can
also occur by the non-conservative forces responsible for interaction-induced coherent
population trapping. The bound state arises in a dissipative process and manifests itself as a
stationary state at a preordained interatomic distance. Remarkably, such a dissipative bonding
is present even when the interactions among the atoms are purely repulsive. The dissipative
bound states can be created and studied spectroscopically in present-day experiments with
ultracold atoms or molecules and can potentially serve for cooling strongly interacting
quantum gases.

TITAMP, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA. 2 Department of Physics, Harvard
University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA. 3 Institut fur Theoretische Physik, Leibniz Universitat Hannover, Appelstr. 2,

30167 Hannover, Germany. * The two authors contributed equally to this work. Correspondence and requests for materials should be addressed to M.L.
(email: mlemeshko@cfa.harvard.edu).

| 4:2230 | DOI: 10.1038/ncomms3230 | www.nature.com/naturecommunications

© 2013 Macmillan Publishers Limited. All rights reserved.


mailto:mlemeshko@cfa.harvard.edu
http://www.nature.com/naturecommunications

ARTICLE

n most experiments investigating coherent quantum dynamics,

dissipation is an undesirable process. However, there have been

several recent theoretical proposals for turning controlled
dissipation into a useful resource, for examgle, for the realization
of interesting many-body quantum states! ™. The main idea is to
engineer the interaction with the environment such that the
combination of coherent and dissipative dynamics drives the
system in question to a stationary state identical to the quantum
state of interest. The feasibility of such a reservoir engineering has
already been demonstrated experimentally”

In our work, we employ a similar idea to show that a bond
between two interacting atoms (or molecules) can be induced by
dissipation, thereby extending the notion of a bonding mechan-
ism from purely conservative to dissipative forces. The bond
manifests itself as a stationary state of the scattering dynamics
that confines the atoms at a fixed distance. Owing to the
unprecedented control available for ultracold atoms and mole-
cules®, the characteristics of the resulting molecules such as bond
lengths and spectroscopic properties are highly tunable and can
be observed in current experiments. As a specific physical
implementation, we first consider two interacting atoms whose
motion is restricted to one-spatial dimension (1D), see Fig. la.
For ultracold atoms and molecules, such a constraint can be
enforced by appropriate trapping potentials®. We assume the
internal level structure of the atoms as shown in Fig. 1b: each
has one internal state |1) exhibiting a distance-dependent
interaction shift, and two other non-interacting states |2 and
|3, with |2 undergoing spontaneous decay into states |1 ) and
|3 ). This particular level structure is quite common in ultracold
atoms and molecules, see the Methods section for two different
possible realizations based on Rydberg-dressed atoms’~ or laser-
cooled molecules!®12, Although our approach is general, we focus
on dipole-dipole interactions, as this brings in additional tunability
due to the anisotropy of the interaction potential'3, We generalize
our results to higher spatial dimensions and many-particle systems,
and discuss the prospects of using dissipative bonding as a cooling
mechanism for strongly interacting quantum gases.

Results
Interaction-induced coherent population trapping. The process
behind the formation of the bond is coherent population trapping
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Figure 1| Setup of the system. (a) Strong confinement by external fields
restricts the atoms' motion to one spatial dimension parallel to the two
counter-propagating laser beams represented by the driving fields with Rabi
frequencies Q; (b) internal level structure of the atoms. Two internal states
[1) and |3) are coupled to a metastable state |2) spontaneously decaying
with a rate y. The laser field coupling the states |1) and |2) is detuned from
the resonance by A; state |1) is subject to a dipolar interaction shift 5(r),
which depends on the interparticle distance r; states |2) and |3) are
non-interacting.
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(CPT)!13, In our setup, we include two counter-propagating
laser beams; the one is resonant with the transition between states
|2 and |3), and another is detuned by A from the resonance
between |1) and |3); for simplicity we set the Rabi frequencies
of both fields to Q. CPT entails a dark state, that is, a stationary
state that cannot absorb photons.

For a system of two atoms subject to the electromagnetic field
treated as a reservoir'®, the dynamics is obtained from the
quantum master equation,

% = —i/h[H, p] + Zyn (cnpc - 7{5 cn,p}) (1)

whose stationary solution is given by the condition dp/dt=0.
Here H is the Hamiltonian describing the two atoms and their
interaction with the laser fields, p is the density operator
describing the two atoms, and 7y, and ¢, are the rates and
corresponding jump operators associated with spontaneous
decay, see the Methods section for details. From the master
equation (1), one can extract an effective non-Hermitian
Hamiltonian, He= H — iV, containing a dissipative potential,

Va="h Z T, (2)

The zero-energy eigenstate of Hg corresponds to the dark state
W gac) if its dissipation vanishes, that is, (c{c,) =0. In the non-
interacting but resonant case, 6(r)=A =0, the dark state for each
atom is given by (|1)—|3))/v/2. Taking the coupling to
translation via the Doppler effect into account retains this dark
state and gives rise to the well-known velocity-selective CPT'>.
In contrast, here we consider the regime where the kinetic energy
is small compared with the dipolar interaction between the atoms,
which in turn is small compared with both the laser driving and
the decay, that is, (fik)*/2m < A,d(r) <y, Q. We note that
although the conventional velocity-selective CPT scheme can
preserve a dark state in presence of the dipole dipole interactions
between the ground and excited states!’, our setup involves
interactions only in state |1 ) and therefore does not entail a true
dark state corresponding to zero dissipation. In the limit of
infinite mass m, we find via perturbation theory, that the
dissipation has a minimum when the atoms are separated by a
distance ry where the dipolar interaction J(r) destructively
interferes with the detuning A the most,

dZ Q2 1/3
[ (e 3)] ¥

Here d is the dipole moment of state |1), & the vacuum
permittivity, h Planck’s constant, and the numerical constants are
=(94+2v2)/16 and ¢;=(3+2v/2)/8. The width of the
Raman hole in the absorption profile, on the order of Q2/y,
amounts to the distances where the dipolar interaction and the
detuning approximately cancel each other. Although in
conventional CPT schemes the photon-scattering rate depends
quadratically on the detuning from the resonance, the dipolar
interaction shift scales with distance as 6(r) ~ 1/r*. This results
in an anharmonic shape of the dissipative potential V4(r), and
thereby in dependence of r4 on the Rabi frequency Q in
equation (3). Even though there still is some residual dissipation
for atoms confined to the vicinity of r4, the probability to find the
atoms separated by rq is strongly enhanced. Such a confinement
of the atoms amounts to the formation of a dissipative bond.
Additional perturbations arising owing to a finite mass lead to a
stationary state that exhibits a distribution of distances sharply
centred around ry rather than a single-fixed distance.
In the case of molecules bound by conservative forces, the
strength of the bond is characterized by the binding energy—the
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amount of energy needed to be transfered to a molecule for
dissociation. Similarly, the strength of the dissipative bond can be
characterized by an imaginary binding energy, reflecting the
amount of dissipation that is required to be added to the system
in order to achieve dissociation. The imaginary binding energy is
then defined as the difference between the decay rates at r= o
and r=ry4, and can be calculated in the regime Q<7 as

8(A/y)*
(4+9v2)(Q/y) + (8+6v2)(Q/y)*

(4)

E, = ih))

Numerical simulations of the dynamics. We now turn to
numerical simulations to confirm the existence of the dissipative
bond. We solve the quantum master equation (1) using the wave-
function Monte-Carlo method!®, see the Methods section for
details. During the time evolution the atomic positions are
redistributed by the kinetic energy and photon recoil, and the
atomic population is accumulated in the vicinity of r4 on a fast
timescale of a few tens of 7 ~ 1. For an ensemble of atoms with
randomly distributed initial conditions, we observe the appearance
of a quasi-stationary distribution strongly peaked around ry, see
Fig. 2. For even longer times, the spatial distribution of the atoms
appears to evolve towards a completely delocalized distribution of
the laboratory-frame positions, r; and r,, compatible with a
relative distance r4~ 500 nm. This constitutes evidence that in the
long-time limit the state corresponding to the dissipative bond is a
state with a relatively low entropy, which is confirmed by the
semiclassical studies of the dynamics described below. Once the
dissipative bond has been formed, it is possible to further reduce
the probability of subsequent spontaneous decay events by
decreasing the Rabi frequencies Q. This leads to an effective
decay rate Y= yp,, with p, the total probability of any of the
atoms being in state |2 ). For experimentally realistic parameters,
see the Methods section for details, we find p,~0.01, implying the
lifetime of the dissipative bond to be longer than the timescale of
the formation of the bond. Furthermore, we find that the
reduction of the Rabi frequencies does not lead to a significant
increase of the spread about ry4, and that lifetimes of the bound
state exceeding y;' ~ 0.1s can be achieved.

The above results can be generalized to higher spatial
dimensions, thereby allowing to study the motion of the bound
atoms. This merely requires the inclusion of additional counter-
propa%ating laser beams as used in conventional laser cooling
setups 9. For a two-dimensional (2D) configuration, we consider
the case when the quantization axis defined by the electric dipole
moment is perpendicular to the plane of the motion, that is, when

the dipolar interaction is always repulsive. Then, the dissipative
bond restricts the relative radial motion to a ring where the atoms
are separated by rgq. The effective Hamiltonian H.g for the
remaining angular motion is then described by a 2D rigid rotor,
Heg :B]ZZ, with J, the projection of the angular momentum on
the quantization axis. The rotational constant B=H"/(mr3)
can be widely tuned by changing rg; for typical experimental
realizations, we find that values of B~100-1,000 Hz are realistic,
that is, by far exceeding the effective decay rate .. The rotational
spectrum of the bound atoms can be then probed with standard
techniques of molecular spectroscopy.

In three-spatial dimensions (3D), the constrained relative
motion of the two atoms is even richer due to the anisotropy of
the dipolar interaction. The dynamics is confined to a surface
defined by

()

with 3 the angle between the collinear dipoles and the interatomic
radius-vector. Due to the rotational symmetry about the
quantization axis, the projection of the angular momentum, J,
is conserved, allowing to reduce the problem to an effective one-
dimensional problem. The effective potential corresponds to an
azimuthally symmetric double well centred at 3 =m/2, resulting
in an almost equidistant spectrum consisting of tunnelling
doublets, Fig. 3a, similar to those encountered in microwave
spectra of ammonia®® or molecules in strong laser fields?!.
Figure 3b features the probability density distributions on the
three-dimensional surface. Although the results shown in Fig. 3
correspond to J, =0, energy spectra and wavefunctions for other
values of ], exhibit similar features.

Experimental observation of the resulting bound states can be
performed by making use of the techniques well-established in
the area of ultracold quantum gases. In particular, a suitable
setting would be a many-body system, in which the atoms are
essentially uncorrelated at the beginning, with an average
interatomic distance much larger than ry4, so that many-body
effects could be neglected. Then, the existence of the bound state
will appear as a sharp peak in the pair-correlation function, see
Fig. 2b, which is readily accessible through Bragg scattering?? or
noise correlation spectroscopy23’24.

To analyse the behaviour in a many-body setting in more
detail, we employ a semiclassical model of the dynamics, see the
Methods section for the details. To compare this semiclassical
approach with the quantum mechanical model, we calculated the
pair-correlation function for the case of two particles in a one-
dimensional trap, see Fig. 4a. Despite being obtained in different

r* =r3(1 - 3cos*),
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Figure 2 | Formation of the dissipatively bound states. (a) The probability density distribution shows that the absolute coordinates of the two particles,
n, I, are delocalized; (b) the pair-correlation function exhibits a sharp peak around ry=500 nm. Parameters correspond to a pair of Rydberg-dressed

caesium atoms (see the Methods section for details).
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Figure 3 | Three-dimensional eigenstates. (a) The Lowest energy levels featuring tunnelling doublets due to the azimuthal symmetry of the interaction
potential; (b) probability density distributions. The angle 9 gives the orientation of the collinear dipoles with respect to the vector connecting them. The
quantum number n gives the number of nodes of the probability density distribution (purple colour) depending on the angle 3. The results shown

correspond to J,=0.
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Figure 4 | Semiclassical simulations of the dynamics. (a) Pair correlation of two particles in 1D, using the same parameters as in Fig. 2. The inset shows
the time evolution of the relative distance entropy. (b) Many-body systems containing 102 particles in 1D (red circles) and 10% particles in 2D
(blue triangles). (c) 104 particles in 3D, with the polar angle $ as shown in Fig. 3b.

temperature regimes, there is a good agreement with the quantum
mechanical treatment of Fig. 2b. The observed decrease in
entropy towards a stationary value, shown in the inset of Fig. 4b,
is a sign of a substantial cooling of the relative motion in the
system. As shown in Fig. 4b,c, the appearance of a sharp peak
around r4 corresponding to the formation of dissipative bonds is
independent of the number of particles and the dimensionality
of the system. Note that in all the cases described above the
density is low enough to neglect any effects beyond two-body
interactions.

Discussion

We have established the existence of a dissipative-binding
mechanism triggered by non-conservative forces found in
interaction-induced coherent-population trapping. Our results
are applicable to a large class of atomic and molecular systems,
while the properties of the bound states are highly tunable.
Finally, we note that the mechanism underlying the formation of
the dissipative bond can potentially be used for cooling of
strongly interacting many-body systems. Clearly, the appearance
of a low-entropy stationary state independent of the initial
conditions already amounts to a demonstration of a cooling
of the relative motion. In the high-density regime, the correlation
length r4 will be modified by an effective coordination number,
embodying the interactions of an individual atom with its
surroundings in the stationary state. Despite this renormalization,

the formation of dissipatively bound complexes?® in free space or
even the realization of dipolar crystals®®?” appear possible.

Methods
Quantum dynamics. The coherent part of the dynamics according to the quantum
master equation (1), is given by the two-atom Hamiltonian,

H=Y" @M)(k\ —9(|1 k+Ak) (2, +h.c.)
_ki 2m o\ P

- % (13, k= AK) (2, K], + h.c.) — AJL k) (1, K|

+ Z Vdd(q)llkaqh‘lvkl +q>2<lvk‘1<1vk/‘2'
kK .q

(6)

Here i=1,2 and k label the atoms and their corresponding momentum states, and
V4a(q) is the Fourier transform of the dipole-dipole interaction potential. The
dissipative part of equation (1) contains the rates y, =7y and jump operators
=D _ilk+Aky,jn)(2,K|; in the Lindblad form, responsible for the decay of each
atom from state |2). The index i, = 1,2 runs over the two atoms, while j,=1,3
accounts for the two final states, and Ak, contains all possible values of the emitted
photon’s wave vector!8,

The results presented in Fig. 2 correspond to a state after the evolution time of
4.6 ps, averaged over 250 realizations with random initial conditions. In each
realization, two atoms are confined in a one-dimensional box L ~ 6ry, which
corresponds to the three-dimensional particle density of 3 x 10' cm ~3. The initial
state was chosen as a quasi-thermal distribution of Gaussian wavepackets having
an initial momentum of 4hk,, where k, is the recoil momentum.
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Semiclassical dynamics. For the semiclassical analysis, we use Langevin equations
for the motion of the particles. In analogy to the semiclassical description of laser
cooling?®, we introduce a velocity-dependent friction force and a stochastic heating
force, which are derived within perturbation theory. In addition, our model
includes a transition rate to a bound channel, y, = A?/(21/2Q), in which two
bound particles move with the same velocity. This binding term is only active for
particles separated by |r — rq| <wq, where wy is corresponds to the half-width at
half-maximum of the absorption profile. The reverse process, responsible for
breaking of the dissipative bond, is governed by the stochastic heating force
mentioned above. All results shown in Fig. 4 were obtained using the same atomic
parameters and density as in the quantum treatment, with the pair correlations
computed at a time of 4.6 ps. As the semiclassical approach is only valid for
momenta much larger than hk,%3, the initial momentum distribution was chosen
from a Boltzmann distribution with \/(k?) = 40k,. The relative distance entropy
was calculated as the Shannon entropy S= — 3 p(r:)log p(r;), where p(r;) gives a
probability to find atoms separated by distance r; in the box.

Experimental implementation. We consider two different realizations of our
setup depicted in Fig. 1, based on driven-dissipative Rydberg atoms?*~3! and laser-
cooled molecules. In the case of Rydberg-dressed caesium atoms, the states |1 ) and
[3) are chosen as different hyperfine components of the electronic ground state,
62815, of caesium. The state |1 is provided with a dipole moment of d=15D
perpendicular to the 1D trap due to Rydberg dressing in an external electric
field”"%; laser fields Q = y/4 drive the 6°S,,, — 62P3/2 transition having a linewidth
of y =21 x 5.2 MHz. These parameters correspond to an imaginary binding energy
of E, =i2mh x 31 kHz. We would like to stress that in contrast to the previous
Rydberg dressing proposals for the observation of interactions in a Bose-Einstein
condensate, the requirements on coherence times for the observation of the
dissipative bond are much less stringent; preserving coherence on the timescale of
the rotational constant B~ 100 Hz can be achieved in present-day experiments>2~%7,
see Low et al.®® for a recent review.

Although we exemplified our scheme by the case of bonding between a pair of
atoms, it is equally applicable to bonding between a pair of molecules, such as
strontium monofluoride (SrF) that is being laser-cooled!!. For SrF, different
hyperfine components, F=0, 1, of the X232t (v=0; N=1, J= 1/2) state are chosen
as |1) and |3). Here a dipole moment of 3.5D in the rotating frame is imprinted
on |1) via microwave dressing®®, while the fields Q = y/4 drive transitions to the
electronically excited A2IT,,(v' =0; N=0, J' = 1/2) whose natural linewidth is
y=2m x 7 MHz.
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