
ARTICLE

Received 13 Dec 2012 | Accepted 14 Jun 2013 | Published 31 Jul 2013

The effects of carbon dioxide and temperature on
microRNA expression in Arabidopsis development
Patrick May1, Will Liao2,3, Yijin Wu2,4, Bin Shuai5, W. Richard McCombie6, Michael Q. Zhang7,8 & Qiong A. Liu4

Elevated levels of CO2 and temperature can both affect plant growth and development, but

the signalling pathways regulating these processes are still obscure. MicroRNAs function to

silence gene expression, and environmental stresses can alter their expressions. Here we

identify, using the small RNA-sequencing method, microRNAs that change significantly in

expression by either doubling the atmospheric CO2 concentration or by increasing tem-

perature 3–6 �C. Notably, nearly all CO2-influenced microRNAs are affected inversely by

elevated temperature. Using the RNA-sequencing method, we determine strongly correlated

expression changes between miR156/157 and miR172, and their target transcription factors

under elevated CO2 concentration. Similar correlations are also found for microRNAs acting in

auxin-signalling, stress responses and potential cell wall carbohydrate synthesis. Our results

demonstrate that both CO2 and temperature alter microRNA expression to affect Arabidopsis

growth and development, and miR156/157- and miR172-regulated transcriptional network

might underlie the onset of early flowering induced by increasing CO2.
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A
ccording to the Intergovernmental Panel on Climate
Change (IPCC 2007) (ref. 1), atmospheric CO2

concentration will raise from 389 parts per million
(p.p.m.) in 2005 to 550–700 p.p.m. by 2050 and to
650–1,200 p.p.m. by 2100, which will result in a global climatic
warming of 1.1 to 6.4 oC by the end of this century. CO2 is a
major component in photosynthetic reaction that converts
solar energy into energy stored in carbohydrates, therefore,
controlling plant yield. Elevated [CO2] raises photosynthetic
rate and plant primary net production or biomass2, while
rising temperature increases the ratio of photorespiratory
loss of carbon to photosynthetic gain, thus having an opposite
effect3. In Arabidopsis, elevated atmospheric [CO2] enhances
photosynthetic rate, and reduces stomatal density and
conductance, resulting in a higher amount of plant mass and
seeds4, while mildly increased temperatures leads to fewer
rosette leaves5 and lengthened hypocotyls6. Mildly elevated
temperature can also act as a potent inducer of early flowering
in Arabidopsis5; by contrast, elevated [CO2] can advance4,7,
delay8,9, or impose no change10 on Arabidopsis flowering
time, depending on plant ecotypes, genotypes and growing
conditions7. Auxin has a critical role in regulating cell elongation,
division and differentiation during plant growth, and is known as
plant ‘nervous system’ in mediating plant responses to
environmental changes. Elevated [CO2] can affect root hair
development through auxin signalling11, while mildly increased
temperature promotes auxin-mediated hypocotyl elongation in
Arabidopsis6.

Both elevated [CO2] and elevated temperature have been
shown to affect gene expressions. It was demonstrated that a
high level of [CO2] altered the expression of the genes involved
in regulating flowering time12, carbon accumulation, defence,
redox control, transport, signalling, transcription and chromatin
remodelling in Arabidopsis13. It can also modify gene expression
in Populus14, sugarcane15, Chlamydomonas reinhardtii16 and
soybean17. Similarly, a mild increase of 2–4 �C above the
optimum 23 �C affected the expression of a significant number
of genes, including splicing regulatory genes, and several robust
early markers for flower development4.

Non-coding small RNAs (smRNAs) of 21–24 nucleotides (nts)
function as important regulators of gene expression in nearly all
eukaryotes18. SmRNAs consist predominantly of microRNAs
(miRNAs) and small interfering RNAs (siRNAs). The primary
function of the former is to silence genes by forming a complex
with Argonaute (AGO) family proteins to guide sequence-specific
cleavage of messenger RNAs (mRNAs) or to repress their
translation, while the latter may target mRNAs and also
mediate siRNA-directed DNA methylation (RdDM)18. SmRNAs
recognize targets by Watson–Crick base pairing to transcripts to
specify the identities of the genes to be silenced18. Both biotic and
abiotic stresses have been shown to alter the expressions of plant
miRNAs, and also generate new miRNAs19. For example, freezing
(0 �C) (ref. 20), low (4 �C) (ref. 21) and ambient (16 �C) (ref. 22)
temperatures have been demonstrated to alter the expressions of
mostly different miRNAs.

In this study, we identify the significant expression changes in
known and predicted miRNAs that are regulated by doubling the
amount of atmospheric [CO2] or increasing 3–5 �C temperature.
We also detect inversely correlated expression changes in the
target transcripts of these miRNAs that are involved in regulating
flowering time, auxin-signalling, stress responses and potential
cell wall carbohydrate syntheses. Our results suggest that a long-
term elevated [CO2] and elevated temperature affect plant
development and growth through miRNAs, and provide
potentially a miRNA regulatory mechanism for CO2-mediated
flowering time change.

Results
Known miRNAs regulated differentially by CO2 and temperature.
We grew Arabidopsis plants with [CO2] as the only variant
(430 p.p.m. as the control, and 810 p.p.m. as the testing condition),
or with temperature as the only variant (22±0.5 oC as the control,
and 28±0.5 oC as the testing temperature) in well-controlled
environments (see Methods). Total RNAs were isolated from
uppermost fully expanded rosette leaves of CO2- and temperature-
treated plants before or at early bolting stages (Fig. 1) and used to
make smRNA-seq libraries (Methods). These leaves have the
largest surface areas for photosynthesis, and are easy to be col-
lected according to specific developmental phenotypes (Fig. 1;
Methods). Six to eight million sequence reads were obtained from
sequencing these libraries (Supplementary Table S1). The read
length distribution analysis revealed that reads mapped to genome
were enriched with 20–24 nt reads, and the most abundant among
them were 21 and 24 nt, which represent the lengths of the
majority of miRNAs and siRNAs, respectively (Supplementary
Fig. S1). After obtaining miRNA sequence expression levels
(Supplementary Table S1), miRNAs including isomirs and
miR-siblings altered significantly by elevated [CO2] or elevated
temperature were determined (Table 1; Fig. 2; Supplementary
Tables S2–S7; Supplementary Note 1). For miRNA families con-
taining differentially regulated miRNAs, expression changes were
calculated for each individual member, as well as for the whole
family, and statistical significances were found in all families
(Supplementary Data 1–4).

We verified some differentially regulated miRNAs in four pairs
of independently grown plant samples using commercially
available Taqman MicroRNA Assays (Invitrogen Inc.). These
assays were developed for quantifying specific Arabidopsis
miRNAs based on a stem-loop reverse transcriptase quantitative
PCR (RT–qPCR) method23. Seventeen miRNAs from seven
families including miR156a–f, � 156h, � 157a–c, � 160,
� 161.1, � 172a, b, � 390a, b and � 5026 were verified to be
regulated by both CO2 and temperature, and all except miR390a,
b were altered inversely by these two conditions (Table 1;
Fig. 2a,b,e; Supplementary Data 5, 6). An additional 18 miRNAs
from seven families were affected only by elevated temperature,
including miR162a, b, � 164a, b, � 166a-g, � 167a, b, � 169a,
� 172c, d and � 399b, c (Table 1; Fig. 2c; Supplementary
Data 6); miR158a expression was changed significantly only by
elevated [CO2] (Table 1; Fig. 2c; Supplementary Data 5). RT–
qPCR products were shown as correct sizes in agarose gels
(Supplementary Fig. S4). For each verified miRNA, the same
expression trend was shown in four biological replicates for all
CO2-regulated miRNAs, except miR156h and miR158a in three
replicates (Fig. 2a; Supplementary Data 5). Both 26 and 28 �C
(23 �C as control) grown samples were analysed because
Arabidopsis plants displayed similar phenotypes at both
temperatures (Fig. 1), although to a lesser extent at 26 �C. The
same expression trend was detected four times for all miRNAs
except miR156h, � 157, � 169a and � 399b, c three times
(Fig. 2b,c; Supplementary Data 6). For each miRNA, the same
expression trend shown at least four times in all experiments is
statistically significant (Supplementary Methods).

Prediction and expression analysis of new miRNAs. Our
computational analysis has led to the prediction of 59 new
miRNAs (Table 1; Supplementary Figs S2 and S3; Supplementary
Data 7–9) using miRCat24 and a plant-specific miRDeep methods
(Supplementary Methods)25,26. To validate these newly predicted
miRNAs, we compared mature miRNA sequences to smRNAs
that were co-precipitated in AGO protein complexes by AGO
antibodies27, and identified 26 miRNAs preferentially associated
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with AGO1, and eight equally with both AGO1 and AGO4
(Supplementary Data 10). These are more likely to be miRNAs
because miRNAs are preferentially bound to AGO1, while
siRNAs to AGO4 (ref. 27). Among them, 10 were mapped to
precursors in miRBase18, but differed from annotated mature
miRNA sequences (Supplementary Data 11). Furthermore,
16 miRNAs were found to have messenger RNA cleavage
products in Degradome-seq database28 (Supplementary
Methods; Supplementary Note 2; Supplementary Data 7).
Transcripts of 44 precursors were also detected in RNA-
sequencing datasets (RNA-seq; Supplementary Data 7). Fifty-
four predicted mature miRNAs were found to be conserved with
the genomes of other plant species with two mismatches at most
(Supplementary Data 12).

Among all predicted miRNAs, four were increased significantly
by elevated temperature, and one decreased by elevated [CO2]
(Fig. 2d,f; Table 1). Their target genes and annotated functions
are described in Table 2. These expressions were further
confirmed in RT–qPCR experiments in three biological replicates
except miRPAL2, which was both up- and downregulated by
elevated [CO2] (Fig. 2d; Supplementary Data 13,14).

The expressions of the target transcripts of miRNAs. As most
miRNAs cleave their target transcripts to suppress their function,
we thus performed RNA-seq experiments to determine whether
differentially regulated miRNAs can lead to inversed expression
changes in their target transcripts. Three pairs of biological

Table 1 | A summary of miRNA analyses.

Known miRNAs expressed differentially 430±50p.p.m. versus
810±50p.p.m.

22±0.5�C versus
28±0.5�C

MiRNAs (families) 30 (15 families) 74 (38 families)
MiRNAs (families) overlapped between CO2 and temperature conditions 28 (13 families)
MiRNAs (families) inversely expressed under CO2 and temperature conditions 23 (10 families)
Verified miRNAs (families) 18 (8 families) 36 (14 families)
Verified miRNAs (families) overlapped between CO2 and temperature conditions 17 (7 families)
Verified miRNAs (families) inversely expressed under CO2 and temperature
conditions

15 (6 families)

Newly Predicted miRNAs
Precursors 59
Mature miRNAs associated with AGO proteins 43
Mature miRNAs associated with AGO1 protein 34
Verified mature miRNAs expressed differentially 1 4

AGO, argonaute. Shown in the table are the numbers of known miRNAs including differentially regulated miRNAs by elevated [CO2] and/or elevated temperature, miRNAs inversely regulated by both
conditions, and miRNAs verified by RT–qPCR. Also shown are the numbers of new miRNAs predicted in all growing conditions, the new miRNAs that match sequences co-precipitated with AGO1 and
AGO proteins, and the new miRNAs regulated differentially by elevated [CO2] and elevated temperature. RT–qPCR, reverse transcription followed by quantitative polymerase chain reaction.
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Figure 1 | Elevated CO2 and temperature promote Arabidopsis flowering. Presented are Arabidopsis plant growing periods starting from seed plantation to

flowering time under (a) 430 and 810 p.p.m. [CO2] and (b) 23 �C and 26 �C or 28 �C temperatures. Big arrows indicate the time when leaf samples were

collected. Uppermost fully expanded leaves were collected from 10 leaves stage Arabidopsis plants grown under different CO2 concentrations before bolting

stage or from plants with 1–2 inches of stems grown under different temperatures at the early bolting stage. Dark blue: 810 p.p.m.; light blue: 430 p.p.m.;

red: 26 �C or 28 �C; pink: 23 �C; grey rectangles: the period of time when plant flowerings onset.
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replicates were sequenced for each pair of growing condition;
one pair of libraries were generated from the same total RNA
samples that were used to make the smRNA-seq libraries (see
Methods).

Twenty-six to forty-nine million raw reads were obtained from
sequencing these libraries. Computational analyses led to the
identification of differentially expressed mRNAs regulated by
elevated [CO2] or/and elevated temperature (Supplementary
Table S8; Supplementary Data 15,16). Expression correlations
between differentially regulated miRNAs and their target
transcripts were thus identified (Table 3). These miRNAs include
miR156a–f/157a–c, � 172a–d, � 160a, � 164a, b and a predicted
miRPAL2 regulated by CO2 and temperature, miR169a and
miR399b, c by elevated [CO2] only, and miR162a, b by elevated
temperature only (Table 3; Supplementary Table S8).

Elevated CO2 affects the miR156-regulated flowering pathway.
In this study, we showed that miR156 and miR157 decreased, and
miR172 increased in expression significantly under elevated
[CO2]. The downregulations of miR156/157 expressions corre-
lated with upregulations of several squamosa promoter binding
protein-like (SPLs) gene transcripts; these SPLs include SPL10 in
all three biological replicates, SPL13A and SPL13B in replicate 2
and 3, and SPL9 and SPL2 in replicate 1 and 3 (Fig. 3; Table 3;
Supplementary Table S8). SPL13A and SPL13B are identical in
open-reading frame, but differ in untranslated regions of
their mRNAs. The similar expression correlations were also
identified for miR172 and its target transcription factors;
nearly all miR172 targets were downregulated, including SMZ
in replicate 1 and 2, TOE1 in replicate 2 and 3, TOE2 in replicate
2 and SNZ in replicate 3, correlating with increased levels
of miR172 (Fig. 3; Table 3; Supplementary Table S8). The
exception was also detected; TOE1 and TOE3 in replicate 1 were
upregulated (Fig. 3).

It was observed that Arabidopsis plants exposed to 810 p.p.m.
[CO2] flowered about 1 week earlier than those grown at
430 p.p.m. (Fig. 1a). This occurred without a change in leaf
numbers. Our smRNA-seq and RNA-seq results indicated that
this early-flowering phenotype was likely to be mediated by the
miR156/miR157—SPLs—miR172—AP2-like transcription factor
pathway (Fig. 4a). It is well-established that the sequential action

of the components in this pathway controls the vegetative
juvenile-to-adult phase transition and flowering time during
normal development29. Specifically, miR156 is known to target
and suppress the expressions of 10 SPL transcription factors,
including SPL2, � 3, � 4, � 5, � 6, � 9, � 10, � 11, � 13 and
� 15 (ref. 29). MiR157 shares 85.7% sequence identity with
miR156, and both miRNAs suppress SPLs similarly30. MiR156
levels are at the highest in young seedlings and decline gradually
over a period of several weeks into flowering development time
(Fig. 4a) (ref. 31). When miR156 level is reduced, its target
transcription factor, SPL9, is upregulated, thus directly increases
the transcription of miR172, which in turn suppresses AP2 and
AP2-like transcription factors such as TOE1, TOE2, TOE3, SMZ
and SNZ to promote adult epidermal identity and flowering
(Fig. 4) (refs 29,31). SPL9, � 10, � 2,� 3, � 11, � 13 and � 15
have been shown to function similarly and redundantly with each
other in regulation of the juvenile-to-adult phase transition and
flowering time29–36. SPLs also feedback-regulate miR156
precursor transcription29.

In summary, our results demonstrate that elevated [CO2] has a
significant impact on the miR156/157-SPLs-miR172-AP2s path-
way likely through accelerating the normal decline of miR156/157
and the rise of miR172 during development. The correlated
expression changes in SPLs and AP2s confirmed these effects,
which could induce the early onset of flowering that was observed
in the plants in response to elevated [CO2].

Elevated temperature affects the miR156-regulated pathway.
We observed that a 3–5 �C increase in temperature advanced the
flowering time in the plants by B4–6 days (Fig. 1b). This was
accompanied with fewer leaves, agreed with a previous report5.
We showed that elevated temperature increased miR156/157 and
decreased miR172 expressions, which is opposite to the effects of
elevated CO2 on these miRNAs (Fig. 2b; Supplementary Data 6).
Inversely correlated expressions of miR156/157 targets were only
identified in SPL2, � 3 and � 13 in replicate 1, however, while
SPL11, � 2 and � 15 were expressed oppositely in replicate 1, 2
and 3, respectively (Table 3). Mixed responses were also found in
miR172 targets: TOE1 was downregulated by elevated
temperature in replicate 1, while SMZ upregulated in replicate 2
(Table 3).

Table 2 | Predicted miRNAs and their function description.

Predicted
miRNAs miRPAL1* miRPAL2*,w,z miRPAL3 miRPAL4

IDs Chr4_7882773_
7882879_1

Chr2_15511763_ 15511867_0 Chr3_16160743_ 16160840_0 Chr1_28889396_ 28889510_0
(ath-miR4228 precursor)

Sequences (star
sequence)

UGACAUCCAGA-
UAGAAGCUUUG
(AACUUCUAUU-
UGGAUGUCAUG)

AGAAGUGGAGAG-
AGCAAGGGAAUG

CAAGCACAUG-
UAGAGAAGGUU;
AAGCACAUGUAG-
AGAAGGUUUGGA

UCGGAUGCGAA-
ACGGUGGUGU;
AUAGCCUUGAA-
CGCCGUCGUU

Lengths 22 24 21; 24 21
Target mRNAs F-box/RNI-like

superfamily
GATL9 or LGT8*,z TCP family
transcription factorw

Nudix hydrolase homologue 11; apyrase 1 UNE1 (unfertilized embryo sac 1);
cellulose synthase 10; CDC27
family protein

Functional
description of
target miRNAs

Unknown Synthesis and remodelling of
cell wall carbohydrates*,z

morphogenesis of
plant shoots and leaf and floral
organs through cell divisionw.

NADþ diphosphatase and CoA
pyrophosphatase activity; pollen
germination and stomatal aperture

Unknown; synthesis of cellulose;
cell cycle

Presented are predicted miRNA precursor IDs, mature and star sequences and their lengths, target genes and their annotated functions. The statistical tests were performed using Student’s t-test by
comparing FPKM value between samples, and fold changes are statistically significant with Po0.01 (FDR test: qo0.2).
*Mature miRNAs sequences were found to be associated with AGO1 protein.
wThe cleavage product of this miRNA-targeted transcript was found in Degradome data.
zThe predicted targets of this miRNA were differentially regulated by elevated [CO2] and elevated temperature in RNA-seq data.
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Our results demonstrate that elevated temperature can alter the
expressions of all components in the miR156/157-SPLs-miR172-
AP2s pathway in a complicated fashion. The role of this pathway
played in regulating elevated temperature-induced early flowering
needs to be further investigated.

Elevated CO2 and temperature affect miRNAs in auxin-
signalling. We identified five differentially regulated miRNAs
that function in auxin-signalling pathways. MiR160, � 167 and
� 390 target transcripts of auxin responsive factors (ARFs;
Supplementary Table S9), which control auxin-regulated tran-
scription. MiR164a–g and miR166a–g also target transcription
factors and are involved in auxin-regulated organ development
(Supplementary Table S9).

A strong expression correlation was identified between miR164
and its targets, NAC family members; NAC1 was downregulated
by elevated temperature in two biological replicates, correlated
inversely with miR164 expression (Fig. 2c; Table 3;
Supplementary Table S8). NAC1 is required for transducing
auxin signals for lateral root emergency and the development of
embryonic, leaves and floral organs (Supplementary Table S9).
Another expression correlation example is related to miR160.
Normally, miR160 negatively regulates the expressions of ARF10,
� 16 and � 17, which promote cell divisions in a variety of
tissues (Supplementary Table S9). Elevated temperature down-
regulates ARF17, while elevated [CO2] upregulates ARF10; both
correlated inversely with miR160 expression (Fig. 2a,b; Table 3;
Supplementary Table S8). Thus, elevated temperature might
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Figure 2 | MiRNAs differentially regulated by elevated CO2 and temperatures. Presented are expression fold changes in known miRNAs regulated by

both (a) elevated [CO2] and (b) elevated temperature and (c), elevated [CO2] or elevated temperature specifically, and in (d), predicted miRNAs that are

differentially expressed under these two conditions. MiRNA fold changes were calculated by 810 p.p.m.-over 430 p.p.m.-, 28 �C-over 22 �C- or 23 �C-, or
26 �C-over 23 �C-treated samples. The overlapping oval shapes indicate the numbers of miRNAs that were regulated by (e) temperatures and (f), CO2

conditions. Empty circles: fold changes of miRNA sequence reads between different [CO2]-treated samples. Solid circles: expression fold changes between

different [CO2]-treated samples determined by stem-loop RT–qPCR. Empty triangles: fold changes of miRNA sequence reads between different

temperature-treated samples. Grey and solid triangles: miRNA expression fold changes between the samples treated by different temperatures, 26 �C over

23 �C and 28 �C over 23 �C, respectively, determined by stem-loop RT–qPCR. The statistical tests were performed to obtain fold changes of sequence reads

using w2-test (Po0.01), and Benjamini-Hochberg method for multiple-testing correct (qo0.05).
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reduce plant growth through down- and upregulating the
expressions of miR164 and miR160, respectively, while elevated
[CO2] may enhance it through decreasing miR160.

Elevated CO2 and temperature affect stress-responsive miRNAs.
Expressions of six stress-responsive miRNAs were altered
significantly by elevated [CO2] and/or elevated temperature
(Fig. 2a–c). The inversely correlated expression was detected
between miR162 and its target, dicer-like 1 transcript in one bio-
logical replicate (Table 3; Supplementary Table S8). The expression
changes in miR162 and its target have been demonstrated pre-
viously to be induced by drought, cold and salt (Supplementary
Table S9). However, the targets of miR161.1, � 169, � 158, � 399
and � 5026 were not found with significant expression changes
(Supplementary Table S9; Supplementary Data 15,16).

Predicted target genes of new miRNAs. Using the psRNATarget
webserver37 and Degradome data28, we predicted targets of
differentially regulated new miRNAs (Supplementary Methods;
Table 2; Supplementary Data 17). Several of these targets have
previously annotated functions (Table 2). For example, miRPAL2
target, galacturonosyltransferase-like 9 (GATL9) or glucosyl
transferase family 8 (LGT8) gene functions in cell wall pectin
and/or xylan biosynthesis38. MiRPAL5 targets the transcripts of
cellulose synthase 10 (ref. 39), a member in cellulose synthase
family that catalyses the reaction between substrates, uridine
diphosphate glucose and a chain of 1,4-beta-D-glucosyl residues
to generate uridine diphosphate and an elongated chain of
glucosyl residues or cellulose (Table 3; Supplementary Data 17 ).
The predicted target gene of miRPAL3, nudix hydrolases 11
(Table 3; Supplementary Data 17) encodes a protein that has
pyrophosphatase activity with CoA as its substrate40. None of the
predicted miRNAs were found with significant expression
changes in their target genes except miRPAL2 (Table 3;
Supplementary Table S8). As these miRNAs all expressed lowly,
it is unclear whether their expression changes can lead to
phenotypic changes.

Discussion
Using deep-sequencing methods, we identified known and
predicted miRNAs that were regulated differentially by elevated
[CO2] and/or elevated temperature. We categorized these
miRNAs into four groups based on the annotated functions of
their targets as follows (Fig. 4b): Group I targets the transcription
factors that control Arabidopsis juvenile-to-adult phase transition
and flowering time; Group II targets the transcription factors that
regulate auxin-mediated cell polarity, division and differentiation
during Arabidopsis development; Group III targets the stress-
responsive genes; Group IV includes newly predicted miRNAs
that target potentially genes involved in cell wall carbohydrate
synthesis, respiration and other functions.

The sequential action of Group I miRNAs, miR156/157 and
miR172 control vegetative traits and the transitional timing
from vegetative to reproductive phase during development29.
Manipulations of the expression in these miRNAs can change
Arabidopsis flowering time; for example, the overexpression of
miR156 prolongs the juvenile phase and delays flowering
time29,34,41, while its reduction is similar to SPLs overexpression,
leading to the early-flowering phenotype29,42. Overexpressed
miR172 also results in the early-flowering phenotype29,43. In this
study, we identified the correlated expression changes in all
components in this pathway with the fold changes of 0.37–0.85
and 0.63–0.80 in miR156a–f and miR157a–c, 1.44–2.40 in miR156
targets, SPLs, 1.40–2.19 in miR172a, b and 0.14–0.67 in miR172
targets, AP2s (except two targets in Biological replicate 1) in

Table 3 | A summary of the expression trends of miRNAs
and their target transcripts.

Targeting
miRNAs

miRNA
expression

trend
miRNA target expression trend

(numbers of targets)

Rep 1 Rep 2 Rep 3

Elevated CO2 concentration
miR156a–f k m (2) m (4) m (4)
miR157a–c k
miR172a–d m m (2);k(1) k (3) k (2)
miR160a k m (1) - -
miRPAL2 m k (1) - m (1)

Elevated temperature
miR156a–f m k ( 3);m(1) m (1) m (1)
miR157a–c m
miR172a–d k k (1) m (1) -
miR160a m - - k (1)
miR162a,b k m (1) - -
miR164a,b m k (1) k (1) m (1)
miRPAL2 m - k (1) -

Presented in the table are CO2- and temperature-regulated miRNAs and the numbers of their
targets and the expression trends. All expression changes are statistically significant. The
statistical tests were performed using Student’s t-test by comparing FPKM value between
samples, and fold changes are statistically significant with Pr0.007 (FDR test: qr0.1), or
Pr0.03 (FDR test: 0.1rq r0.2, marked by * in Supplementary Table S8). Underlines, miRNA
targets that were not found to be inversely correlated with the expressions of miRNAs; m or k,
significantly increased or decreased expression under elevated levels of CO2 or temperatures;
-, an expression difference is not statistically significant.
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Figure 3 | The expressions in miR156 and miR172 targets regulated by

CO2. Presented are CO2-regulated expression fold changes in miR156/157

and miR172 target transcripts of genes encoding SPLs and AP2-like

transcription factors in three biological replicates, I, II, and III. The

expression changes in SPLs and AP2-like transcription factors were

identified in RNA-seq experiments. Bars without colour represent SPLs;

numbers on these bars, 1, 2, 3, 4 and 5 represent SPL10, SPL9, SPL13A,

SPL13B and SPL2. Bars in grey colour represent AP2-like transcription

factors; numbers on the bars, 1, 2, 3, 4 and 5 are TOE1, SMZ, TOE3, TOE2,

and SNZ, respectively. The statistical tests were performed on transcript

fold changes using Student’s t-test by comparing fragments per kilobase of

transcript per million mapped reads or FPKM value (sample size) between

samples, and the numbers are shown in Table 3. Fold changes in target

transcripts are statistically significant with Po0.01 (FDR test: qo0.1), or

Po0.03 (FDR test: 0.1oqo0.2, marked by *).
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elevated CO2-treated 10-leaf stage leaves (Fig. 2a; Fig. 3;
Supplementary Table S8). These are comparable changes to
development-driven expressions: 0.3- and 2.4-fold changes were
observed in miR156 and miR172 between 12 and 26 days of plants
(short day)29, thus might be sufficient to induce early flowering.
The potential difference in development between 10-leaf stage
leaves treated by different [CO2], if there is any at all, is unlikely to
result in the expression changes that can be reached in many days
during development. The correlated expressions in miR156/157
and miR172 targets, SPLs and AP2s support that this pathway was
indeed affected by a high level of [CO2]. The significant
downregulation in miR172 targets, AP2s seems unusual as AP2s
do not respond to miR172 expression significantly during
development44,45. It has been proposed that miR172 regulation
of its targets is a balanced result of translation suppression44,45,
transcript cleavage43,44,46,47 and self-feedback regulation47 of these
targets46. A recent study showed that this balance may be changed
under stress; it was found that miR172 targets, SMZ and TOE2
increased significantly in expression at 16 �C, correlating with a
significant decrease in miR172 (ref. 22). Therefore, it is likely
for significant decreases in miR172 targets under high [CO2]
stress to occur.

We do not know how elevated [CO2] affects the miR156/157-
SPLs-miR172-AP2s pathway, whether through acting on miR156

expression alone, which, in turn, alters sequentially the expres-
sions in its downstream components, or by effecting all
components independently (Fig. 4a). Given that these compo-
nents regulate with each other either directly or through feedback
loops, it is hard for the correlated expression changes to occur
coincidently. The advantage of sequencing is that an expression
profile of miRNAs and mRNAs involved in all biological
pathways or networks can be generated at the same time. The
information generated can be highly valuable, considering that
expression levels are crucial for the silencing effects of miRNAs
and the function of mRNAs, particularly to those miRNAs and
their targets that are known to regulate-specific phenotypes.
Nevertheless sequencing approach does not provide the details on
how CO2 act to affect this pathway, directly or indirectly. This
information can be only obtained through genetic analysis.

To understand whether other flowering regulatory genes
contribute to the early-flowering time induced by elevated
[CO2] and temperature, we examined the expressions of some
early markers of flower development including SOC1, FRUITFUL
(FUL), AP1, CAULIFLOWER (CAL), LEAFY (LFY) and some
floral transition genes, FLC, FLOWER LOCUS M (FLM),
FLOWER LOCUS T (FT), CONSTANS (CO) and LONG DAY
(LD)48 in our RNA-seq data. For CO2-treated samples, we
detected the increased expressions in FT and FUL in two
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biological replicates (Supplementary Data 15). FT and FUL
promote the onset of flowering, and AP2s antagonize their
expressions49, suggesting that the downregulation of AP2s by
elevated [CO2] can promote flowering potentially through
upregulating FT and FUL. However, we cannot exclude
completely the involvement of other flowering regulatory genes
until other developmental time points are also investigated and
genetic studies are conducted. In temperature-treated samples, we
detected significant expression differences in several flowering
regulatory genes including GI, FT, FLM, FLC and AP1, but not
GIGANTEA (GI) and SHORT VEGETATIVE PHASE (SVP) that
controls the expression of miR172 (Supplementary Data 16)
(refs 50,51). A 4.2-fold increase in FLC and a B1.8-fold decrease
in FLM support a previous finding that FLC potently suppressed
thermal induction, while the closely related floral repressor, FLM,
was a major-effect quantitative trait locus modulating thermo-
sensitivity4. These results suggest that the miR156-regulated
pathway might play a minor role in thermo-induced early
flowering.

None of our identified miRNAs target the transcripts of
proteins involved directly in light and dark reactions of
photosynthesis and photorespiration52. Nevertheless, elevated
sugar levels in leaf tissues resulting from enhanced photosynthesis
by elevated [CO2] have been shown to affect plant metabolism,
development and gene expression53. It was hypothesized that
sugar can affect the developmental transitions and are highly
responsive to environmental signals53. For example, 1% sucrose
was reported to promote floral transition of late-flowering
mutants54. This suggests that elevated [CO2] might induce the
early flowering by increased sugar level. It has also been shown
that hexoses tend to affect cell division and expansion, whereas
sucrose favors differentiation and maturation53. It will be
interesting to see whether sugar affect miRNAs in flowering-
and auxin-signalling pathways.

Microarray studies revealed the expression changes in homo-
logues of the genes affected by CO2 (refs 11–16). In C. reinhardtii,
elevated [CO2] downregulated the expressions of five SPLs,
although in the opposite direction of that observed in this study15.
In sugarcane, ARF2 was found to be downregulated, suggesting
that auxin-signalling is also involved14. We did not find the
conservation of miRNA targets in poplar13 and soybean16,
perhaps because only a proportion of total genes were analysed
in these species.

In our RNA-seq results, not all targets of miR156/157 and
miR172 were found to be altered differentially, and the
differentially regulated targets were not identified in the same
biological replicates. This nonselective targeting might be
contributed by multiple factors such as miRNA expressions,
expression patterns of miRNA target genes, the accessibility of
target sites by miRNAs, and feedback regulation of miRNAs by
target transcripts55. A previous study demonstrated that multiple
mRNAs could be successfully targeted by artificially designed
miRNAs, but the degree of downregulation varied for different
targets55. It was shown that no clear correlation of targeting
efficiency was found either with the extent of complementarity
between artificial miRNAs and targets or with expression levels of
targets55. In addition, RNA-seq technique has been shown
recently with technical variability particularly in exons at low
levels of read coverage, and the relative abundance of a transcript
can also substantially disagree56. Besides, plant intrinsic
variations might contribute to the variations in miRNA
expressions, which exhibited as opposite or subtle expression
changes compared with the majority, particularly in response to
low levels of environmental changes, that is, 26 oC temperature.
The intrinsic variation is readily observed during plant
development; for example, flowering time may vary in a few

days in plants grown from the seeds descended from the same
plant.

In this study, we showed that Arabidopsis seed and biomass
production were both significantly increased by elevated [CO2],
but decreased by elevated temperature (Fig. 5). As nearly all
elevated CO2-regulated miRNAs were inversely regulated in
expression by elevated temperature, it is likely for those
that function to regulate plant growth to contribute to the
opposing effects of elevated [CO2] and elevated temperature on
plant biomass and seed production. Further investigations
on individual miRNAs will help us to elucidate their roles in
plant yields.

In summary, we identified known and predicted miRNAs,
their target genes and molecular pathways that are regulated
by elevated [CO2] and elevated temperature. Our results
demonstrate that the miR156/157-SPLs-miR172-AP2-like trans-
cription factor pathway is likely to have a major role in elevated
[CO2]-induced early flowering. The conservation of this pathway
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in plant species suggests its fundamental role in controlling plant
flowering time in response to increasing atmospheric CO2

concentration. Both CO2 and temperature can also regulate
miRNAs and their targets in several pathways, which modulate
plant growth and development. The opposing effects of these two
conditions on several miRNAs suggest mechanistic clues for
understanding the interactions of CO2 and temperature in
regulation of plant growth and development. Our results have
opened new perspectives for understanding plant response and
adaptation to climate change.

Methods
Arabidopsis plant growth conditions. Seeds of Arabidopsis thaliana (ecotype
Col-0) were imbibed at 4 �C with distilled water for 4 days to facilitate uniform
germination. The seeds were resuspended in 0.05% agarose after the cold treatment
and planted in 1m3 mesocosms in greenhouse where low (430±50mmolmol� 1 or
p.p.m.) and high (810±50mmolmol� 1 or p.p.m.) carbon dioxide concentrations
were maintained and monitored every hour daily. The temperature was set between
24 �C and 18 �C (the highest during the day/the lowest at night), natural lighting
was augmented on overcast days with sodium halide lamps, and humidity was
maintained at natural conditions. All environmental parameters were monitored
every hour daily.

After five self-seeding generations, the sixth generation plants were grown for
this study. The plants grown under 810 p.p.m. [CO2] were seen the first
inflorescence stems on the 70th day after plant germination and those under
430 p.p.m. concentration a week later (Fig. 1a). The onset of flowering in these
plants occurred within 5–6 weeks. A sample consisting of a pool of 100 uppermost
fully expanded rosette leaves from plants at the 10 leaves stage were chosen
and collected at random from the mesocosm population using a point-grid system.
Samples grown under 810 and 430 p.p.m. [CO2] were collected at the same
time, about 1 or 2 weeks before first inflorescence stems were observed, respectively
(Fig. 1a). Leaves were sampled onto liquid nitrogen and stored at � 80 �C
until further analysis. Although 400 and 800 p.p.m. were CO2 concentrations
to be obtained, our calculation of means based on all recorded [CO2]
concentrations during plant growth indicate the mean values as 430 and
810 p.p.m.

To grow plants at different temperatures, Arabidopsis seeds (ecotype Col-0)
were soaked in water and then planted onto soils (Cat no.: 65-3191; Sunshine LC1
Suncoir Mix) that were previously wet in KORD 3.0 Sq Grn 504 growing pots (Cat
no.: 50-1210; Griffin Greenhouse and Nursery Supplies Inc.). The growing pots
were then moved into a 4 �C cold room for 3 days before being transferred into two
GCW30 Arabidopsis walking-in chambers (Environmental Growth Chambers
Inc.) set with 22±0.5 and 28±0.5 �C and long-day lightening (16 h light/8 h dark).
Plants used for stem-loop real-time PCR verification experiments were grown in an
Arabidopsis growth chamber with two identical and independent units (AR22L;
Percival Inc.). Uppermost fully expanded rosette leaves were collected from 8–10
plants with 1–2 inches stems at bolting stage grown under different temperature
conditions; plants grown at 26 or 28 �C were collected about 4 or 6 days earlier
than those grown at 22 or 23 �C (Fig. 1b). Collected leaves were frozen immediately
in liquid nitrogen for storage. Two pairs of samples grown at 430 and 810 p.p.m.
[CO2], and one pair at 22 and 28 �C temperatures were used to extract total RNAs
in preparation of smRNA libraries for sequencing.

Seed and biomass production under different levels of temperatures and [CO2]
were analysed in plants grown in Arabidopsis growth chambers (AR22L; Percival
Inc.). The plant growing conditions included long-day lightening (16 h light/8 h
dark) and 65% humidity and optimum lightening condition. The temperatures
were the same as described above, and CO2 concentrations were 400±30 and
800±30 p.p.m. Seeds were collected from plants grown up to 2 months, except
those CO2-treated plants in I and II (Fig. 5) for 1 month and a half. For plant
biomass production, above-ground plants were collected and dried in 55 oC oven
for 1 week, and weighted.

Preparation of smRNA-seq and RNA-seq libraries. Total RNAs were extracted
from frozen leaves using TRIzol Reagent (Life Technologies Cat no. 15596-026).
The smRNA libraries were prepared using a Digital Gene Expression for Small
RNA Sample Prep Kit purchased from Illumina Inc. (P/N: 1002398) following the
manufacturer’s instructions. These libraries were then sequenced on Illumina
Genome Analyzer IIx (GAIIx) Sequencer.

For generating RNA-seq libraries, total RNAs were extracted similarly as
described above. The qualities of total RNAs were checked with 2100 Bioanalyzer
(Agilent Inc.), and those that have good quality were used for making RNA-seq
libraries. RNA-seq libraries were prepared using TruSeq RNA Sample Preparation
v2 kit (Illumina Inc.) following manufacturer’s instruction. The qualities of the
libraries were analysed with Bioanalyzer before sequencing on Illumina Hi-seq2000
Sequencer. Sequencing data was deposited under the National Gene Expression
Omnibus series number, GSE36934.

General analyses of smRNA-sequencing data. The smRNA reads from all
libraries were 30 trimmed using NOVOALIGN (http://www.novocraft.com). Reads
containing low complexity regions such as poly (A) stretches and low quality reads
(containing N’s) were removed, and filtered for length 15–30 nts. All read sets from
the different conditions were subsequently mapped onto the Arabidopsis TAIR9
genome and data set sequences using RazerS57. Known miRNA reads were
obtained by matching mapped reads to annotated miRNAs with no mismatch. For
annotating isomirs and miR-siblings for known miRNAs, we used mapped reads
without mismatch in sense direction onto miRNA precursor sequences annotated
in miRBase16, which have a minimum abundance of 20 reads, but do not represent
annotated miRNA mature and star sequences. We defined isomirs as reads that are
not shifted 45 positions from their original mature or star 50-position and miR-
siblings as the remaining highly abundant reads that were mapped to the miRNA
precursor. Reads mapping to annotated transcripts or regions were normalized as
reads per million per library.

The prediction of new miRNAs. For prediction of new miRNAs, reads matching
with no mismatch to TAIR9 cDNA, annotated miRNA, tRNA, snoRNA or other
non-coding RNA sequences were removed from mapped reads (Supplementary
Table S1). For each condition, reads with a minimum abundance of 20 reads and
fewer than 25 distinct matches on the TAIR9 genome were collected for further
processing. Two distinct strategies were used to detect hitherto unknown miRNAs:
miRCat24 and an in-house plant-specific version of miRDeep (Supplementary
Methods)25,26,58. A workflow is presented in Supplementary Fig. S2, and read
analyses are summarized in Supplementary Table S1.

The determination of differentially expressed miRNAs. All predicted and
miRBase 16 annotated miRNAs were analysed to detect differential expression
between corresponding conditions (430 versus 810 p.p.m., and 22±0.5 �C versus
28±0.5 �C) using the w2-test for P-value calculation and the Benjamini-Hochberg
method for multiple-testing correction (false discovery rate (FDR) qo0.05) as
described previously59. The biological replicates for the CO2 experiments showed a
high correlation in normalized miRNA reads (Spearman’s rank correlation rho of
0.94 and 0.89 for 430 and 810 p.p.m., respectively).

To determine the differential expressions of each miRNA family, we tallied the
counts for each of its mature sequences, then star, and finally the most abundant. A
w2-test (Po0.01) was applied using normalized counts in temperatures and CO2

conditions versus the total read counts for each library. P-values were adjusted
using the Benjamini-Hochberg method for calculating FDR (qo0.05).

The determinations of differentially expressed miRNA targets. The RNA-seq
analysis was performed using GALAXY online tools. The raw RNA-seq reads were
mapped uniquely to Arabidopsis Tair10 reference genome by TopHat (paired-end).
Gene model was downloaded from ftp://ftp.arabidopsis.org/home/tair/Genes/
TAIR10_genome_release/. Cufflinks was used to assemble transcripts and estimate
the abundances, and Cuffcompare to compare the assembled transcripts to refer-
ence annotation. A list of differentially expressed genes was obtained by applying
Cuffdiff between two samples in each biological replicate. Both Cufflinks and
Cuffdiff used upper-quantile normalization to normalize total mapped reads.
Expression read normalization was done between two samples in each replicate,
but not among all three pairs of samples. Transcripts that overlapped with dif-
ferentially expressed genes were then identified by genome locations.

The potential targets of newly predicted mature miRNAs that are differentially
regulated were predicted using the psRNATarget webserver37 at http://
plantgrn.noble.org/psRNATarget/ with the TAIR9 annotated transcripts as
potential target sequences.

Quantification of miRNAs by Taqman stem-loop RT–qPCR. Taqman stem-loop
RT–qPCR reactions were performed to quantify known miRNAs following pre-
viously published method23 and manufacturer’s instructions (Applied Biosystem
Inc.). To quantify predicted miRNAs, we designed stem-loop RT primers and
qPCR primers based on previously published method (Supplementary Data 18)
(ref. 60), and SYBR Green was used in qPCR reactions. Expression fold changes for
each miRNA between different CO2 concentrations- or different temperatures-
treated samples (Supplementary Data 5, 6, 13, 14) were calculated as follows: Ct:
Cycle threshold. Ct5s rRNA: Ct number obtained for the internal control 5s rRNA.

�DDT: � [(Cthigher temperature sample�Cthigher temperature 5s rRNA)� (Ctlower
temperature sample�Ctlower temperature 5s rRNA)]. �DDC: � [(Cthigher CO2 concentration

sample�Cthigher CO2 concentration 5s rRNA) � (Ct lower CO2 concentration sample�Ct lower

CO2 concentration 5s rRNA)]. Expression fold changes were obtained by calculating
antilog2 (–DD). The statistical significance was obtained for miRNAs that showed
the same expression trend for at least four times by w2-test, Po0.05.
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