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Semiclassical Monte-Carlo approach for modelling
non-adiabatic dynamics in extended molecules
Vyacheslav N. Gorshkov1,2, Sergei Tretiak1 & Dmitry Mozyrsky1

Modelling of non-adiabatic dynamics in extended molecular systems and solids is a next

frontier of atomistic electronic structure theory. The underlying numerical algorithms should

operate only with a few quantities (that can be efficiently obtained from quantum chemistry),

provide a controlled approximation (which can be systematically improved) and capture

important phenomena such as branching (multiple products), detailed balance and evolution

of electronic coherences. Here we propose a new algorithm based on Monte-Carlo sampling

of classical trajectories, which satisfies the above requirements and provides a general

framework for existing surface hopping methods for non-adiabatic dynamics simulations. In

particular, our algorithm can be viewed as a post-processing technique for analysing

numerical results obtained from the conventional surface hopping approaches. Presented

numerical tests for several model problems demonstrate efficiency and accuracy of the new

method.
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C
omputational chemistry became a mature field able to
address many problems of chemistry and materials
science. Commonly, it numerically solves time-indepen-

dent Schrödinger equation for electronic system of a molecule

ĤeðRcÞ j ciðRcÞi¼EiðRcÞ j ciðRcÞi; ð1Þ
assuming the Born–Oppenheimer approximation, where electrons
adjust instantaneously to the slower motion of the nuclei.
Consequently, the (classical) nuclear positions Rc enter as
parameters to the electronic Hamiltonian ĤeðRcÞ, adiabatic
many-body eigen functions j ciðRcÞi and energies EiðRcÞ of
electronic states1,2. The wavefunctions j ciðRcÞi provide a complete
characterization of the electronic system such as electronic density
distribution, dipoles and optical responses. In addition, the adiabatic
potential energy surfaces (PES) EiðRcÞ (generally 3N-dimensional
hypersurfaces in a space of all nuclear degrees of freedom Rca,
a¼ 1; :::; 3N) deliver information on the molecular energetics.
Although complete mapping of molecular PES is impossible except
for few-atom systems, efficient calculation of PES gradients (forces)
and Hessians allows determination of global and local energy
minima (optimal and meta-stable structures), location of transition
states, energy barriers and so on. Development of adiabatic ab initio
molecular dynamics made possible to propagate ‘on-the-fly’
Newton/Lagrange equations of motions for the nuclear degrees of
freedom along the selected PES EiðRcÞ (ref. 3)

ma€Rca ¼ fa � � @EiðRcÞ=@Rca a¼ 1; . . . ; 3N: ð2Þ
The situation becomes more complex when the Born-Oppen-

heimer approximation becomes invalid, for example, when the
neighbouring PESs become closely spaced (by about a few
vibrational quanta) and the system attains a non-equilibrium state
being excited to some superposition of excited states j ciðRcÞi. This
is the case of many important non-adiabatic dynamical phenomena
such as non-radiative relaxation (for example, photoisomeriza-
tion)4,5, intersystem crossing6, charge and energy transport in
many technological applications (for example, photovoltaics,
catalysis and energy storage)7–10 and natural systems (for
example, photosynthetic complexes)11,12. All these processes
involve transitions between electronic states and the underlying
electronic wavefunctions evolve in the space of multiple PESs.
Many semiclassical approximations developed over the past
decades are able to deal with this situation13–16, however, only a
few methods can be effectively coupled with computational
chemistry techniques enabling simulations of realistic molecular
systems with ten-to-hundreds of atoms in size. Here most
commonly used are mixed quantum-classical dynamics
approaches, which generally operate with solutions of equations
(1) and (2)15,17. The oldest approach, the Ehrenfest (or mean field)
dynamics, propagates nuclei using an average force corresponding
to the electronic subsystem being in a linear combination
(superposition) of adiabatic states j ciðRcÞi18. Surface hopping
approaches (such as fewest switches surface hopping (FSSH)
algorithm19) typically average over a family of classical trajectories
(equation (2)), where quantum transitions among states are
allowed. The ab initio multiple spawning technique
simultaneously solves nuclear dynamics (via evolution of frozen
Gaussian wavepackets) and electronic structure problems20. The
relative simplicity in these approaches comes at the expense of
built-in severe approximations underlying inconsistencies between
quantum and classical mechanics17. For example, proper treatment
of electronic coherence evolution10,12 remains challenging in all
methods21,17,16. Nevertheless, important findings have been
reported for large systems (such as organic molecules20,5,
quantum dots22,23 and carbon nanotubes24) using the mixed
quantum-classical techniques. A recent issue in the Journal of
Chemical Physics17 summarizes the current state of the field.

In this paper, we propose a practical computational approach
suitable for modelling non-adiabatic molecular dynamics in large
molecular systems. Our semiclassical Monte-Carlo (SCMC) algo-
rithm is based on a well-controlled physical approximation (that is,
the Wentzel–Kramers–Brillouin approximation) and naturally
couples to an arbitraty electronic structure theory (for example,
density functional theory (DFT) and time-dependent DFT1, which
became methods of choice for calculation of ground and excited
state properties in extended systems, respectively). The quantum
chemistry calculates only a few specific quantities for a given
molecular geometry Rc (input), namely, state energies Ei, gradients
(forces) fa ¼ @EiðRcÞ=@Rca and the first order non-adiabatic
couplings (vectors NACR dij;a ¼hciðRcÞ j @cjðRcÞ=@Rcai and
scalars NACT dijðtÞ¼ hciðRcÞ j dcjðRcÞ=dti¼

P
a
dija _Rca). The

derivatives can be evaluated very efficiently using analytical
approaches25,26. Unlike common surfaces hopping approaches,
the SCMC is not ad hoc by its construction, and is able to account
for the quantum interference effects between different
photoinduced pathways16. Yet, its realization is based on the
FSSH-like computational framework19,17: ‘on-the-fly’ propagation
of equation (2) without prior knowledge of the PESs involved. The
accumulated phase information characterizing each classical
trajectory (for example, the action along the trajectory) is further
used to perform ‘post-processing’ evaluation of multidimensional
integrals using the Monte-Carlo technique27,28.

Results
Expression for the occupation probability of a certain state. We
consider a system with 3N nuclei degrees of freedom and M
electronic levels. For simplicity, here we describe M¼ 2 case;
generalization to an arbitrary M is straightforward and will be
discussed later. We assume that initially the system occupies j’s
electronic state ( j¼ 1; 2) with vibrational quantum state char-
acterized by a product of Gaussians centred around classical
(average) positions Rcað0Þ and momenta Pað0Þ (see
Supplementary Note 1). At a later time t, the wavefunction of
the full system can be written as j CðtÞi¼

P
i
CiðR; tÞ j ciðRÞi,

where coefficients CiðR; tÞ are nuclei wavefunctions (or prob-
ability amplitudes) when the electronic subsystem occupies the
i’th state. Herman29 expressed the total probability for the
electrons to occupy the i’th state, PiðtÞ¼

R
d3NR j CiðR; tÞ j2, via

a semiclassical expansion in terms of the non-adiabatic couplings
evaluated along the classical trajectories of nuclei30. Here we use
its modified form (see Supplementary Notes 1,2 for a complete
derivation using path integral formalism31):

PiðtÞ¼
X1

m;n¼ 0

Z
dmt

Z
dnt0Fi

mnðt; t0Þ ð3Þ

where we have denoted t � ðt1; :::; tnÞ and t0 � ðt10; :::; tm0Þ,R
dnt �

R t
0 dtn

R tn
0 dtn� 1:::

R t2
0 dt1 and F i

mnðt; t0Þ ¼Dij
nðtÞDij�

m ðt0Þ
ei½j

i
nðtÞ�ji

mðt0Þ�wnmðt; t0Þ. Here Dij
mðtÞ¼ dii1ðt1Þdi1i2ðt2Þ:::dim� 1jðtmÞ,

dinim being the respective NACT. Equation (3) can be viewed as a
(double) path integral (in the subspace of electronic levels, not
nuclei!) over the paths corresponding to the sequences of hops at
times t1; :::; tm and t10; :::; tn0 between electronic levels, starting in
state j and ending in state i. Indices n and m denote the number
of hops between electronic levels along a given trajectory. Phases
jn are related to the classical actions of the nuclei Sn as
ji
n ¼ Sn �PnðtÞ � RcnðtÞ, where

Sn ¼
Xn
i¼ 0

Ztiþ 1

ti

dt
X3N
a¼ 1

mað _RcnÞ2a
2

�EiðRcnÞ
" #

; ð4Þ
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and classical momenta PnðtÞ and coordinates RcnðtÞ of nuclei are
taken at the endpoint time t of a trajectory for which action Sn in
equation (4) is evaluated. Note that in equation (4) we have
defined t0 � 0 and tnþ 1 � t. Functions wnmðt; t0Þ are the overlap
integrals of the gaussians corresponding to the wavefunctions of
nuclei that evolved along different paths in the subspace of the
electronic levels, that is, with different sequences of hops between
these levels. Explicit expressions for wnmðt; t0Þ and discussion of
equation (3) are presented in the Supplementary Note 1.

Note that while trajectories of the nuclei entering equations
(3 and 4) can be obtained by solving the classical equations of
motion (for example, equation (2)), they should be supplemented
by the boundary conditions connecting the nuclei velocities
immediately before and after the hop. These boundary condi-
tions, as suggested by Herman29, correspond to rescaling the
velocity components along the NACR vector d12a, so that the total
energy of the system is conserved (see Supplementary Note 1).

Sampling the integrand function with classical trajectories. The
main result of this study is formulation of the efficient SCMC
algorithm that evaluates the integral series in equation (3) by
Monte-Carlo method using a procedure similar to the traditional
surface hopping approaches. However, unlike the latter, in the
SCMC approach the classical trajectories are used to sample the
integrand functions in equation (3). The algorithm consists of
two (pre- and post-) processing steps. The first step is identical to
the surface hopping schemes, for example, FSSH19. Namely, we
propagate a swarm of classical trajectories according to
equation (2) allowing the system to hop from the current PES
to the other PES (or PESs in a general case). However, in our
approach the hopping rate gij½RcðtÞ� is arbitrary (that is, at each
integration time step dt the system is allowed to hop to another
PES with probability gij½RcðtÞ�dt). To preserve energy, as in the
FSSH17, we assume that a hop occurs (at time tk and from j’th
PES to the i’th PES) only if it is allowed by the energy balance
condition,

P
a maR2

cðtkÞ=2þEj½RcðtkÞ� � Ei½RcðtkÞ�. Note, the
hopping rates at the moments of hops and some phase
information need to be retained along the classical trajectories
as detailed below.

In the second, post-processing step, the trajectories are sorted
out into groups according to their final electronic states and the
numbers of hops that occurred during their course. Each group
represents a sample that is used to evaluate a corresponding
integral in equation (3). That is, groups with m and n hops, both
ending up on the i’th PES, correspond to the Monte-Carlo sample
of the integrand function in the Iimn’th integral (that is, the term
with m integrations over tk and n integrations over tk0 in
equation (3)), taken with respect to the probability distribution

Pi
mnðt; t0Þ ¼Pi

mðtÞPi
nðt0Þ � Gij

mðtÞ
Cm

Gij
nðt0Þ
Cn

; ð5Þ

where Gij
mðtÞ¼

Qm
k¼ 0 gikikþ 1

½RcðtkÞ� (with i0 � i and imþ 1 � j)
and CmðnÞ are normalization coefficients, Ci

m ¼
R
dmtGij

mðtÞ. Then,
by multiplying and dividing the integrand function F i

mn in the
ðmþ nÞ-fold integral in equation (3) by Pi

mn, the value of I
i
mn can

be expressed as an average of function F i
mn=Pi

mn evaluated over
the sample points ðt1; :::; tmÞ and ðt10; :::; tn0Þ of the distribution
function Pi

mnðt; t0Þ,

Iimn ¼ðMi
mMi

nÞ
� 1
XMi

m

k¼ 1

XMi
n

k0 ¼ 1

F i
mnðtk; tk0 0Þ

Pi
mnðtk; tk0 0Þ

; ð6Þ

where Mi
mðnÞ are the numbers of trajectories (that is, data points)

with m and n hops. The function F i
mn can be readily evaluated for

a given pair of trajectories. Indeed, one can easily calculate phases

jn and values of function Dn for each trajectory, as well as the
overlap integrals for the pair.

The value of Pi
mn, on the other hand, is unknown as one does

not know the values of the normalization constants Ci
m. These

constants, however, can be determined from the statistics of the
stochastic process defined by the rates gij, that is, from the
numbers of trajectories Mi

m that finished at the i’th PES after m
hops. As hops are independent, one can readily evaluate the
probability pim of such a trajectory. Rather straightforward
combinatorial considerations (see Supplementary Note 2 for
details) yield

pim ¼
Z

dmtGij
mðtÞe�Oi

mðtÞ; ð7Þ

where Oi
mðt1; :::; tmÞ¼

P
k¼m
k¼ 0

R tkþ 1

tk
dtgikikþ 1

½RcðtÞ�. In the case of
multiple PESs gikikþ 1

in this expression should be replaced byP
j; j 6¼ ik

gikj, that is, the escape rate to the other ðM� 1Þ states.
The integral in equation (7) can be found by a similar Monte-
Carlo procedure. Indeed, introducing probability distribution Pi

m,
the same as in equation (5), one rewrites the rhs of equation (7) as
an average taken with respect to the sample,
ðCi

m

�
Mi

mÞ
P

k e
�Oi

mðtkÞ, with k¼ 1; :::;Mi
m. As the value of

O ðtkÞ can be readily evaluated for each trajectory, the above
expression can be used to calculate the probability pim, provided
one knows Ci

m. On the other hand, if Mi
m and the total number

of trajectories M are both sufficiently large numbers,
pim ’ Mi

m=M, then the normalization constants entering
equations (5, 6) for evaluation of Iimn are

Ci
m ’ ðMi

mÞ
2 M

Xk¼Mi
m

k¼ 1

e�Oi
mðtkÞ

2
4

3
5

� 1

ð8Þ

Notably, the SCMC algorithm can be readily generalized to the
case of an arbitrary number of the PESs. For M4 2, each term in
the series in 1quation (3) must contain all possible transitions
among M levels, for both m and n hop paths; hence the integrals
over dmt and dnt0 should be supplemented with the sums

P
i1;:::;im

and
P

i1;:::;in
over the intermediate PESs that system has hopped

while travelling from the initial to final state. This forms
distribution functions and averages over the corresponding
samples including the discrete subspace of electronic levels
together with the continuous Rn space spanned over temporal
positions of n jumps.

Application of the SCMC algorithm to Tully’s test suite. Tully’s
three model ‘chemical’ problems19 involving a single nuclei
degree of freedom and two coupled electronic levels, present a
standard test suite for non-adiabatic molecular dynamics
algorithms. Figures 1–3 demonstrate that a simple choice of
hopping rate, g12½RcðtÞ� ¼ j d12½RcðtÞ� j, yields a very good
agreement between the results obtained with the SCMC and the
exact numerical results for all three model problems (for
comparison, these figures also show the results obtained by the
mean field (Ehrenfest) and FSSH methods). The figures display
the scattering probabilities (for large times) as a function of initial
momenta of the particle. In all three problems, the particle is
localized initially on the lower PES with momentum directed
towards the non-adiabatic region. The PES forms and the
absolute values of the non-adiabatic couplings are shown in (a) of
the figures; the details, such as the explicit form of the
Hamiltonians and the initial wavefunction, are presented in
Methods. In particular, qualitative failures of the Ehrenfest and
FSSH methods are well recognized for model problem 3 (for
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Figure 1 | Scattering probabilities for the test problem 1 (simple avoided

crossing). (a) Shows energy levels and non-adiabatic coupling. (b–d)

Display calculated scattering probabilities. Samples of 25,000 and 10,000

trajectories for each data point were used to compute the SCMC and FSSH

results, respectively.
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Figure 2 | Scattering probabilities for the test problem 2 (double avoided

crossing). (a) Shows energy levels and non-adiabatic coupling. (b–d)

Display calculated scattering probabilities. Samples of 75,000 and 10,000

trajectories for each data point were used to compute the SCMC and FSSH

results, respectively.
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example, see Fig. 3b,d)19,17. Here, the SCMC essentially
reproduces the exact result, which indicates the proper
accounting for the quantum interference effects and dynamics
of electronic coherences21, missing, for example, in the FSSH
approach.

Application of the SCMC algorithm to multidimensional
problem. Finally, application of the SCMC approach to the model
multidimensional problems32–34 represents an important test of
numerical convergence in cases where nearby trajectories are
diverging or converging. This may potentially result in large
prefactors which off-set favourable numerical cost scaling of the
present method with the number of vibrational degrees of
freedom (see Discussion below). We use model 2D problem
introduced in Shenvi et al.34, which involves two nuclear degrees
of freedom and a rather non-trivial geometry of two PES (Fig. 4a)
and the corresponding NACR vector field (Fig. 4b,c). This is a
non-separable 2D problem providing a natural extension of 1D
Tully problem 2 to the higher dimensions (see Methods for an
explicit form of the Hamiltonian and the initial wavefunction).
Subsequently, the exact solution (numerically tractable only for a
moderate range of the initial wavepacket momentum, 15tkt45)
displays significant so-called Stueckelberg oscillations35, which

are also present in problem 2 (Fig. 2c,d). These oscillations appear
when the probability amplitudes evolving along two potential
curves interfere, and render the conventional methods to be
rather inaccurate34 (for example, Fig. 4d). Moreover, in problem
4, the size of the non-adiabatic region for this problem is
comparable to the width of the wavepacket, which puts the
underlying semiclassical approximation to a stringent test. In
spite these challenges, our numerical SCMC results agree well
with the exact data (Fig. 4d). The observed deviations are related
to the simple Gaussian approximation for the shape of the
wavepacket used in the algorithm, which was assumed to
correspond to that for a free particle. The error can be reduced
by computing the time-dependence of the wavepacket’s width
‘on-the-fly’ for each trajectory; a particularly convenient way to
do it has been introduced by Heller36. Such refinement would,
however, lead to the necessity to evaluate the second derivatives
of EiðRÞ (with respect to R), which can possibly increase the
numerical cost of the underlying electronic structure calculations
when applied to realistic molecular systems but not in the SCMC
evaluation itself. Finally, we point out, that the numerical cost of
our algorithm is practically invariant with respect to the number
of the nuclear degrees of freedom, as exemplified by the test
problem 4. Indeed, in both problems 2 and 4 we observe the same
convergence rate despite the latter one has an extra spatial
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(nuclear) degree of freedom. This fact is not surprising: the
dynamics of the nuclei between the hops is fully deterministic and
the sampling is done in the space of the electronic states only.

Discussion
After formulating the SCMC algorithm and its numerical tests,
here we discuss the essential features, advantages and the future
outlook of this approach.

First, Scalability: Our method of Monte-Carlo sampling is
invariant with respect to the number of vibrational degrees of
freedom (3N). In contrast, in the previous proposals (for

example, Herman37) using semiclassical expressions similar to
equation (3) to model non-adiabatic dynamics, the computational
complexity scales (presumably) exponentially with N or results in
a poor convergence38. In terms of electronic statesM, formally, in
the SCMC there is a significant expansion of the sampling space
(by a factor ðM� 1Þmþ n for each term in equation (3)). This
reflects an increase of all possible products during dynamics in
the multilevel system. However, in the realistic molecular systems,
typically there are only a few photoinduced pathways heavily
dominating the excited state dynamics. These pathways are well
identified even on the first step, when conducting hopping
dynamics simulation. Consequently, we expect that most paths
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(in the subspace of electronic levels) can be divided into relatively
few groups with common sequences of hops that represent
samples of the most relevant integrals in equation (3) (see
an extension to the case of arbitrary M in the Supplementary
Notes 1 and 2).

Second, Convergence and hopping rates: Although the SCMC
approach formally allows for arbitrary hopping rates, a poor
choice may result in an unreasonably high computational cost for
the evaluation of the integrals in equation (3). We note that the
total unnormilized probability for all products (equal to one in
the limit of infinite sample, as confirmed by the numerical tests)
provides a natural criterion of the SCMC convergence. Compared
with the FSSH, the SCMC approach requires larger sample of
trajectories in order to achieve comparable to FSSH convergence
(Figs 1–4). Partially, this is due to interference effects between
trajectories containing the phase information. Moreover, our
choice of the hopping rates gij ¼ j d12ðtÞ j used is far from
optimal. Indeed, while such choice of gij properly accounts for an
amplitude of the integrand function, it is clearly ‘unaware’ of its
oscillatory behaviour leading to significant errors in small
samples. To improve the sampling efficiency,38 one might use
gij that increases in the regions with rapidly varying Sn, and so on.
Other possibilities include use of the stationary state Monte-
Carlo39–41 and analytical continuation method42 applied in
evaluation of conventional path integrals. In general, the
hopping rate choice is related to the optimization of an
important sampling function explored in many other Monte-
Carlo schemes27,43.

Third, Thermal noise and bath effects are commonly included
into simulations to model molecular environment44. Although
equations (2) and (3) do not account for these phenomena,
inclusion of the thermal effects will not change significantly the
outlined sampling protocol38. However, it will lead to the
diffusion of the nuclei and, therefore, will affect the overlap
integrals wmn and the simulation results at both quantitative and
qualitative levels.

In summary, we have proposed a new computational paradigm
to model non-adiabatic dynamics based on a hybrid of
semiclassical approximation and surface hopping method
invoking Monte-Carlo sampling of multidimensional integrals
(equation (3)). Although our findings and numerical tests are very
encouraging, most importantly, we believe that this work opens a
broad field of future studies on how to improve the proposed
protocol (for example, how to refine the sampling efficiency),
which is closely connected to other formally unrelated areas of
computer and physical sciences utilizing complex Monte-Carlo
schemes. For example, one may start asking questions on how to
define the optimal important sampling function38 (here hopping
rate) to probe a very specific photoinduced pathway (which
potentially may be a rare event). We expect, that the proposed
method to become a standard tool that will be used to address a
variety of problems in photoinduced molecular dynamics (such as
coherent excited state dynamics10,12) and will complement the
existing approaches (for example, Ehrenfest and FSSH).

Methods
Numerical test. The Hamiltonian operator for all four test problems takes the
form

H¼ � 1
2mr2 þHe11ðRÞ He12ðRÞ

He21ðRÞ � 1
2mr2 þHe22ðRÞ

� �
; ð9Þ

where R is a nuclear coordinate and matrix HeijðRÞ describes two coupled elec-
tronic PES. The wavefunction of the system is thus a two-component vector
½CðR; tÞ�T ¼ðC1ðR; tÞ;C2ðR; tÞÞ. The potential energy matrix (that is, Ĥe in
equation (9)) has non-adiabatic coupling vector d12ðRÞ¼ hc1ðRÞ j r j c2ðRÞi,
which is nonzero in the vicinity of the origin (R¼ 0). In all test problems, the mass
of the particle is taken close to proton’s mass, m¼ 2; 000 a:u:

The first three problems are one-dimensional, that is, R � x. The first problem
corresponds to a single avoided level crossing (see the energy levels, that is, the
eigenstates of Ĥe, in Fig. 1a) the coefficients of the matrix Ĥe are given by

He11ðxÞ¼ 0:01sgnðxÞ½1� expð� 1:6 xj jÞ�;
He22ðxÞ¼ �He11ðxÞ;
He12ðxÞ¼He21ðxÞ¼ 0:005expð� x2Þ�;

ð10Þ

while for the second problem, a double avoided level crossing (Fig. 2a) the
coefficients are given by

He11ðxÞ¼ 0;

He22ðxÞ¼ � 0:1expð� 0:28x2Þþ 0:05;

He12ðxÞ¼He21ðxÞ¼ 0:015expð� 0:06x2Þ:
ð11Þ

In the third, the so-called ‘extended coupling with reflection’ problem (Fig. 3a),
the coefficients of the potential energy matrix are

He11ðxÞ¼ 6�10� 4; He22ðxÞ¼ �He11ðxÞ;
He12ðxÞ¼ � 0:1 expð0:9xÞ; xo 0;

He12ðxÞ¼ 0:1½2� expð� 0:9xÞ�; x4 0:

ð12Þ

In all three problems the particle starts with a wavefunction

Cðx; 0Þ¼
0ffiffiffiffi

2
ps

q
expðikxÞ exp½ � ðx� x0Þ2=s2�

 !
; ð13Þ

where x0 is negative and relatively large in absolute value (we take x0 ¼ � 12 a:u:)
and s¼ 20=k, k being the initial momentum (here and in the following all
quantities are measured in atomic units). All the parameters are the same as in
Tully19.

The wavepacket, initially at the lower energy level (equation (10)), propagates
toward the region with nonzero adiabatic coupling (that is, x¼ 0) and scatters off
the effective potential, thus forming the transmitted and the reflected wavepackets
on lower or upper PESs, schematically shown in (a) of Figs 1–3. We evaluate
numerically the probabilities of forward and backward scattering (that is,
transmission and reflection probabilities) into the two levels at x ! 1 (for
transmission) and at x ! � 1 (for reflection) at sufficiently large times (that is,
at t ! 1). These probabilities are evaluated as

p1i ¼
R1
0 dx j hCðx; t ! 1Þ j ciðxÞi j 2

p�1
i ¼

R 0
�1 dx j hCðx; t ! 1Þ j ciðxÞi j 2

ð14Þ

where subscript i labels the electronic level (i¼ 1; 2), the superscripts 	1
correspond to transmission and reflection, and j Cðx; tÞi is obtained by solving the
time-dependent Schrödinger equation with the Hamiltonian (equation (9)) subject
to the initial condition (equation (13)).

Problem 4 is two dimensional (Fig. 4a), that is, R¼ðx; yÞ, with all parameters
taken from Shenvi et al.34:

He11ðRÞ¼ � 0:05;

He22ðRÞ¼ � 0:15exp½ � 0:105ðxþ yÞ2 � 0:035ðx� yÞ2�;
He12ðRÞ¼ 0:015exp½ � 0:015ðxþ yÞ2 � 0:045ðx� yÞ2�:

Following Shenvi et al.34, the initial wavefunction is given by

Cðx; y; 0Þ¼
0ffiffiffiffi

2
ps

q
exp ðikxÞ exp

�
� ðx� x0Þ2 þ y2

s2
� !

; ð16Þ

where x0 ¼ � 8 and s¼ 1. Figure 4d shows the full probability of the system to
occupy the second (lower) PES at t¼1,

p2 ¼
Z

dxdy j hCðx; y; t ! 1Þ j c2ðx; yÞi j2; ð17Þ

where c2ðx; yÞi is the adiabatic eigenstate corresponding to the second PES.
In equations (10–15), the energy and the distance are measured in atomic units

(a:u:).
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