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Disparity between microRNA levels and promoter
strength is associated with initiation rate and Pol II
pausing
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MicroRNAs are transcribed by RNA polymerase II but the transcriptional features influencing

their synthesis are poorly defined. Here we report that a TATA box in microRNA and protein-

coding genes is associated with increased sensitivity to slow RNA polymerase II. Promoters

driven by TATA box or NF-kB elicit high re-initiation rates, but paradoxically lower microRNA

levels. MicroRNA synthesis becomes more productive by decreasing the initiation rate, but

less productive when the re-initiation rate increases. This phenomenon is associated with a

delay in miR-146a induction by NF-kB. Finally, we demonstrate that microRNAs are

remarkably strong pause sites. Our findings suggest that lower efficiency of microRNA

synthesis directed by TATA box or NF-kB is a consequence of frequent transcription initia-

tions that lead to RNA polymerase II crowding at pause sites, thereby increasing the chance

of collision and premature termination. These findings highlight the importance of the tran-

scription initiation mechanism for microRNA synthesis, and have implications for TATA-box

promoters in general.
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M
icroRNAs (miRNAs) are a class of noncoding
RNAs that regulate stability and translation of target
mRNAs1. miRNAs are important regulators in many

physiological processes and their misexpression has been found to
be associated with a variety of diseases2. A miRNA is synthesized
as a long primary transcript (pri-miRNA) that is cleaved in the
nucleus by the RNase Drosha to produce pre-miRNA, an B70-
nucleotide molecule containing a characteristic stem-loop
structure. The pre-miRNA is transported to the cytoplasm, and
is further processed by the RNase Dicer into mature miRNA.
miRNAs are either encoded by autonomous genes, or are
processed from various RNA sources such as introns, 30 UTRs
and long noncoding RNAs1. Most miRNAs are transcribed by
RNA polymerase II (PolII)3,4 and recent studies suggest that
nuclear processing of the pri-miRNA by Drosha is coupled to
transcription5. However, the potential effect of the transcription
initiation process, through different promoters, on miRNA
synthesis is presently unknown.

Regulation of transcription of protein-coding and noncoding
genes is governed by two types of cis-regulatory elements known
as enhancers and core promoters. The core promoter consists of
sequence elements that surround the transcription start site
(TSS), and serve as a docking site for general transcription factors
and PolII that assemble into a pre-initiation complex (PIC)6,7.
The core promoter has a crucial role in transcription, as it
functions as the most important target for enhancer-bound
transcription factors; it contributes to the overall efficiency of the
transcription process and determines the site of transcription
initiation. The TATA box, which is the first core promoter
element to be identified and characterized in eukaryotes8, has a
strict location between (� 35) and (� 25) relative to the TSS. It is
present in a fraction of PolII genes: between 20 and 46% in yeast
(depending on the definition of the TATA-box sequence)9,10,
B30% of Drosophila genes11 and up toB20% of human genes12–15.
The presence or absence of a TATA box in core promoters has
been linked in yeast9,10,16–18 and humans19 to two pathways of
PIC assembly, one being TFIID-dependent (weak TATA or
TATA-less) and the other TFIID-independent and SAGA
dependent, suggesting that the mechanism of transcription
initiation in TATA-less promoters is quite different from
TATA promoters20.

Bioinformatics analysis of human genes has revealed a
surprising observation: genes with a TATA box are much shorter
than TATA-less genes. Furthermore, within the TATA-contain-
ing genes, length is inversely correlated to the strength of the
TATA box14. Analysis of gene expression data revealed the
expected inverse correlation between gene length and levels of
expression, but this negative correlation is the highest for genes
with a TATA box and lowest for TATA-less genes. Having a
TATA box in the core promoter seems beneficial for expression
of short genes, while its advantage diminishes with longer genes.
The underlying basis for this phenomenon is presently unknown.

In the present study, we examined the influence of specific
promoter features and of elongation dynamics on the efficiency of
miRNA synthesis. Our findings stress the importance of the
transcription initiation mechanism in determining the efficiency
of co-transcriptional miRNA processing.

Results
Genes affected by slow PolII are enriched with a TATA box. To
investigate the influence of elongation rate on gene expression, we
used the a-amanitin-resistant human PolII large subunit (Rpb1-
amr) and a mutated variant (R749H-amr) that exhibits a slower
elongation rate in vitro and in vivo21–23. Cells were transfected
with plasmids encoding the a-amanitin-resistant variants of PolII

and 24 h later selected for the expression and function of the
exogenous Rpb1 by incubation with a-amanitin. After additional
24 h, global gene expression changes were determined using
microarray chips. Within the time frame of the experiment (24 h),
167 genes were reproducibly downregulated in the R749H-amr

compared with Rpb1-amr-expressing cells, in three independent
experiments (Supplementary Data 1). We selected six genes for
validation using quantitative real-time RT–PCR analysis and
found that all the selected genes were indeed downregulated and
to a greater extent than the microarray (Fig. 1a). Analysis of the
genomic structure of the affected genes revealed significant
enrichment of long genes with their median length B1.6-fold
higher than that of all expressed genes (Fig. 1b, left). The
enrichment of long genes is accompanied with an increase in
the number of exons (Fig. 1b, middle). We also analysed the
expression levels and found that the affected genes are typically
expressed at higher levels compared with all expressed genes in
the microarray (Fig. 1b, right). The enrichment of long genes is
expected due to accumulation of transcriptional elongation delay,
confirming that the R749H-amr is slow. However, B37% of
the downregulated genes are nevertheless relatively short
(427,405 bp, the median length of all expressed genes)
(Fig. 1c), with a particular enrichment of the intron-less histone
genes, which are among the shortest genes in mammalian cells
(Supplementary Data 1). To examine whether the sensitivity of
the short genes to the slow PolII is associated with other
transcription regulatory features, we analysed their promoters.
Remarkably, the majority of the short genes (67%) are governed
by TATA-box promoter (TATAA with up to one mismatch at the
appropriate location) (Fig. 1c), which is eightfold higher than the
prevalence of the TATA box is all genes (8.3%,) and fivefold
higher than the prevalence in short genes (12.5%)14. The
enrichment of the TATA box persists even without the histone
genes (45%) and is also seen among the affected long genes. These
findings raise the possibility that a TATA promoter may confer
susceptibility to a slow rate of elongation.

TATA-box miRNA genes are more susceptible to slow PolII.
We next examined the effect of elongation rate on expression of
miRNAs and its relation with transcription regulatory features.
We selected a subset of miRNAs on the basis of experimentally
mapped TSS position, which allows the definition of the pro-
moter; expression of the miRNA in the cells; and qualification of
the miRNA for RT–qPCR analysis. Supplementary Table S1
shows a list of miRNA genes with validated TSSs that we collected
either from the literature or from public databases. It is evident
from this data that miRNA genes with TATA promoters con-
stitute a very small group, consistent with the low prevalence of
the TATA box in general14. We analysed the effect of the a-
amanitin-resistant slow PolII mutant R749H-amr described above
on levels of native miRNAs, measured by quantitative real-time
PCR and normalized to the PolIII-dependent U6 RNA (Fig. 2). In
analysing the data, we also took into consideration the distance
between the TSS and the miRNA-coding sequence, as the
susceptibility to a slow PolII is expected to be proportional to
the length of the transcript. As expected, miRNAs located tens of
kilobases away from the TSS, miR-107,miR-30e, miR-32 and miR-
339, were downregulated by the slow Rpb1, most likely due to
increased transcription elongation delay. With miRNAs localized
closer to the TSS, the slow PolII significantly diminished the
expression of miR-554 and miR-590, while it hardly affected the
expression of miR-15b, and miR-23a, miR-423, miR-616, miR-22,
miR-15b, miR-148b, miR-643 and miR-631 (Fig. 2). Interestingly,
the two miRNAs that were affected by the slow PolII are the only
ones driven by TATA-box promoters, whereas the unaffected
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miRNAs were all TATA-less. Thus, the sensitivity to a slow rate
of elongation in short miRNA genes, seems to correlate with a
TATA box as was observed with the protein-coding genes.

Disparity between TATA-box promoter activity and miRNA
level. To investigate further the potential link between promoter
features and miRNA expression, we selected the mir-22 gene for
further analysis, as it is comprised of a strong ubiquitous TATA-
less promoter confined to B500 nt upstream of the TSS24. The

gene has three exons and the pre-miR-22 is processed from the
second exon. We constructed a miR-22 mini-gene (MG) in which
the promoter, the first two exons and part of the intron were
placed upstream of the luciferase gene (Fig. 3d). Another MG
variant (MG-Dpre) is similar to the MG except that the pre-miR-
22 and flanking sequences were deleted from the second exon
(Fig. 3b), as they dramatically reduced the luciferase expression
from the MG due to miRNA processing (Fig. 3f). In addition, we
used a construct containing only the miR-22 promoter (Fig. 3a).
We next introduced a canonical TATA box (TATAAAA) to the
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Figure 1 | Enrichment of TATA-box promoter among short genes affected by a slow RNA polymerase II. HEK293Tcells were transfected with the Rpb1-

amr or slow (R729H-amr) a-amanitin-resistant subunit of RNA PolII and selected with a-amanitin 24 h after transfection for an additional 24 h. Total RNA

was extracted and global changes in gene expression were determined using microarray chips. (a) From the list of affected genes (Supplementary Data 1),

six genes were selected for validation using RT–qPCR. The results were normalized to the mRNA levels of GAPDH. The level of the transcript in cells

expressing the WT a-amanitin-resistant PolII was set to 1. The graph represents the mean of three independent transfection experiments. Error bars

represent standard error (s.e.). (b) Gene length, exons number and expression level of the affected genes. Gene length and exon number of all expressed

genes and the genes affected by the slow RNA PolII were retrieved from the UCSC genome browser. Expression levels are derived from the microarray

results. The data are presented as boxplots that show the 25%, median and 75% quartile values for each gene set. (c) Pie charts that show the distribution

of all genes or genes affected by the slow RNA PolII according to their length (greater or smaller than the median length in all genes). Long genes are in blue

and short in yellow. Each group is further divided into TATA and TATA-less genes. The promoter sequence for each gene was retrieved from the DBTSS,

and a gene was considered TATA if the TATA-box (TATAA with up to 1 mismatch) is present 20–35 nucleotides upstream of the TSS.
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miR-22 promoter by altering the nucleotide sequence at positions
� 35 to � 28, relative to the TSS by direct mutagenesis. The
mutation was introduced into the three types of reporter genes:
the promoter-luciferase reporter, the MG without the pre-miRNA
(Dpre) and the intact MG. As expected, the addition of a TATA
box enhanced the luciferase activity directed by the miR-22
promoter by approximately threefold, both in the promoter-
luciferase and in the Dpre-MG context (Fig. 3a,b). A similar
enhancement in promoter activity was also measured at the
mRNA level transcribed from the Dpre-MG using a northern blot
of luciferase mRNA (Fig. 3c), confirming that the luciferase assay
is a faithful measure of promoter activity, and that the TATA-box
effect on transcription is independent of splicing. To assess the
efficiency of miRNA synthesis directed by the TATA-less and
TATA versions of the miR-22 promoter, cells were transfected
with the intact miR-22 MGs and 48 h later miRNA levels were
determined by northern blot analysis of small RNAs. We
normalized for transfection efficiency and sample preparation
by co-transfecting into the cells an expression plasmid directing
the synthesis of a 42-nucleotide-long small RNA of a randomly
chosen sequence, under the control of the H1 PolIII promoter. As
shown in Fig. 3d, the three- to fourfold enhancement in promoter
strength conferred by the TATA box is reduced to only a 1.4-fold
enhancement of miRNA expression, suggesting that the efficiency
of miRNA synthesis is reduced when transcription initiation is
directed by a TATA box. We examined the effect of miR-22
expressed from the MGs on its known target PTEN24–28 and
found the reduction in PTEN reflects the level of expression of the
miRNA (Supplementary Fig. S1). One possibility to explain this
phenomenon may be inefficient recruitment of miRNA-
processing factors to the TATA-driven gene. According to this
possibility, the cleavage of the primary transcript by Drosha
would be less efficient and consequently expression of the
downstream luciferase should increase. However, we found
that the luciferase expression (read-through) directed by the
TATA promoter from the intact MGs is inhibited to an
even greater extent compared with the TATA-less counterpart
(Fig. 3f, compare left and middle columns), rendering this
possibility unlikely. In fact the read-through luciferase activity
reflect the level of the miRNA.

Many miRNA genes are embedded within introns, whereas the
miR-22 gene is exonic. The differential effect of TATA-less and
TATA promoter on miRNA synthesis may be linked to the
location from which it is processed. To address the influence of

the miRNA location, and whether it is associated with the
differential effect of core promoter type, we constructed another
set of MGs in which the pre-miR-22 and its flanking sequences
were removed from the exon and placed in the middle of the
intron. The exonic and intronic miRNA-expressing plasmids
were transfected into cells and the miRNA levels monitored by
northern blot. Expression from the intronic site is less efficient
than from the exonic site (Fig. 3e), however the relative activities
of the TATA and TATA-less promoters on miRNA expression
was similar in both locations, indicating that reduced efficiency of
miRNA processing associated with the TATA-box is not linked to
its location. Analysis of the luciferase activity (read-through)
expressed from the intronic constructs revealed reduction in
luciferase levels compared with the Dpre constructs, but higher
levels relative to the exonic constructs (Fig. 3f), suggesting that in
this specific arrangement of the MG splicing and miRNA
synthesis are competitive.

To determine whether the reduction in productive expression of
the miRNA as well as the read-through luciferase, are a
consequence of the nuclear processing of the miRNA, cells were
transfected with siRNA against Drosha, the initiating miRNA-
processing enzyme. At 48 h after transfection, the cells were
transfected again with the intact MGs described above. Analysis of
Drosha mRNA levels by RT–qPCR confirms its partial depletion by
the specific but not the control siRNA (Fig. 3g, left panel). As
Drosha is expected to affect miRNA synthesis, we examined the
levels of the read-through luciferase, which reflect the efficiency of
miRNA synthesis. Downregulation of Drosha partially restored the
correlation between promoter strength and the read-through
luciferase levels (Fig. 3g, right panel), suggesting that the processing
of the miRNA by Drosha is involved in this phenomenon.

The TATA box is more susceptible to slow PolII. Considering
that the effect of a slow elongating PolII on endogenous miRNAs
and mRNA genes is correlated with the presence of a TATA box
(Figs 1 and 2), we next wished to examine more directly the
interplay between core promoter type and elongation dynamics.
For this purpose, cells were transfected with the plasmids
encoding the a-amanitin-resistant variants of PolII together with
the miR-22 MGs under the control of the wild-type miR-22
promoter or the TATA-box version. Following a-amanitin
selection, the miRNA levels were analysed by northern blot. As
the internal control RNA is transcribed by PolIII, it is not
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expected to be affected by the a-amanitin dose used here. The
results revealed that following a-amanitin treatment, there was a
similar B80% recovery of miRNA expression by the a-amanitin-
resistant PolII from the two promoters, as compared with
untreated cells (Fig. 4a, compare lanes 7 and 9 with 4 and 5). The
slow elongating PolII, on the other hand, had differential effect; it
restored B40% of the miRNA expression directed by the WT
miR-22 (Fig. 4a, compare lanes 5 and 10 and Fig. 4b), but only
13% of miRNA directed by the TATA-box promoter (Fig. 4a,
compare lanes 4 and 8 and Fig. 4b). In fact with the slow elon-
gating PolII, the activity of the native miR-22 promoter is even
twofold higher than that of the TATA promoter, which is the

opposite from the relative activity with the WT PolII or untreated
cells (Fig. 4b). These results suggest that transcription directed by
the TATA box is indeed more sensitive to interruptions during
elongation, which is in line with the effect of the slow PolII on
endogenous miRNAs driven by a TATA box.

We also measured the influence of the slow PolII on the read-
through luciferase activity and found that the a-amanitin-
resistant PolII failed to effectively restore the luciferase activity
in both constructs (Supplementary Fig. S2A), which differ from
the effect on the miRNA expression (Fig. 4). We therefore
examined whether the miRNA synthesis is involved by analysing
the constructs lacking the miRNA (Dpre). The same effect was
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apparent with the Dpre constructs, as the a-amanitin-resistant
PolII variants did not efficiently rescued the luciferase expression
(Supplementary Fig. S2B). These findings suggest that the a-
amanitin-resistant mutants have also post-transcriptional effects.

Notably, the expression of the exogenous miR-22 appears to be
more dramatically affected by the a-amanitin-resistant PolII
variants than the endogenous miR-22 (Fig. 2). This difference
likely reflects the fact that only a portion of the endogenous miR-
22 that we measured is actually transcribed by the transfected
polymerases during course of the a-amanitin treatment (24 h), as
the half lives of miRNAs is very long29–31. In contrast, most of the
exogenous miR-22 is being newly synthesized during the
experiment.

Productive miRNA synthesis is restored by lower initiation
rate. Transcription directed by TATA-box promoters, but not
through TATA-less promoters, is produced through re-initia-
tion32 or bursts33. This raises the possibility that a high frequency
of transcription initiation is incompatible with efficient miRNA
expression. To test this prediction, we first examined whether the
introduction of a TATA box in the miR-22 promoter enhanced
the rate of re-initiation by using in vitro transcription assays. The
WT and the TATA version of the miR-22 promoter were each
incubated with nuclear extract together with a GFP reporter
plasmid that served as internal control. After 30min incubation
that allowed the formation of the PIC, transcription was initiated
by the addition of NTPs and the reaction proceeded for 10min.
Subsequently, the correctly initiated transcript was analysed by a
modified 50RACE (see Methods). To examine the occurrence of
transcription re-initiation, we used the detergent Sarkosyl, which

is known to inhibit initiation but not elongation34. If Sarkosyl is
added soon after initiation, it allows completion of the already
initiated transcripts but prevents subsequent transcription
initiation cycles. Figure 5a shows the correctly initiated
transcripts directed by the WT and the TATA versions of the
miR-22 promoters. The 50RACE products directed by the WT
and the TATA promoters differ slightly in their size, as the TSS
directed by the TATA is located 7 nucleotides upstream relative
to the WT TSS. The activity of the miR-22-TATA promoter is
clearly sensitive to inhibition by Sarkosyl, while the WT TATA-
less promoter is not (Fig. 5a), confirming that during the course
of the experiment the TATA-box promoter directed several
rounds of initiations.

Next, we set out to examine how modulation of transcription
initiation affects productive miRNA synthesis. We have identified
a regulatory element within the miR-22 promoter located
between þ 23 and þ 31 relative to the TSS that we named
downstream transcription initiation element (DTIE). This
element consists of a novel sequence and influences both
transcription level and TSS location, reminiscent of a transcrip-
tion initiation element (Marbach-Bar et al., manuscript in
preparation). We therefore used DTIE to modulate the
transcription initiation rate of the MGs. We created DTIE
deletions both in the WT and TATA miR-22 promoters either in
the Dpre or in the intact MG contexts (Fig. 5b and c). Deletion of
DTIE reduced the luciferase activity of the Dpre MGs directed by
both the WT and the TATA promoters by B50% (Fig. 5b). Note
that the strength of the TATA promoter without DTIE is 1.4-fold
higher than the native promoter. Next, we determined the level of
miRNA synthesis and found that the amount directed by the
native miR-22 promoter was reduced by 50% upon DTIE deletion
(Fig. 5c), similar to the effect on the luciferase levels. As before,
the relative amount of the miRNA driven by the TATA-box
promoter is only 1.4, which is a reduction compared with the 2.8
measured in the luciferase assay. Interestingly, the miRNA level
driven by the miR-22-TATA without DTIE is also 1.4, and this
level exactly matches the relative promoter strength measured in
Fig. 5b. Thus, reducing the initiation rate in the TATA promoter
through deletion of DTIE restored the correlation between
promoter strength and miRNA expression, which is an indication
that miRNA synthesis becomes productive.

miRNA synthesis is sensitive to high rate of re-initiation. If
high transcription initiation rate reduces the efficiency of miRNA
expression, we expect that raising the initiation rate would
diminish the efficiency of miRNA production regardless of core
promoter type. To gain evidence for this notion, we utilized the
TATA-less A20 promoter, which is a direct target for the indu-
cible transcription factor NF-kB. We have previously shown that
one of the effects of NF-kB on A20 gene transcription is stimu-
lation of re-initiation35. To validate these findings, we performed
in vitro transcription assays with nuclear extracts prepared from
control cells or cells treated with the cytokine TNFa, a potent NF-
kB inducer. As shown in Supplementary Fig. S2, the basal activity
of A20 promoter is resistant to inhibition by Sarkosyl, whereas
the TNFa-induced transcription is sensitive to Sarkosyl,
confirming that activation of the A20 promoter by NF-kB
involves enhancement of re-initiation. To examine the effect of
NF-kB on miRNA expression, the A20 promoter was inserted
upstream to the Dpre or the intact MGs described above. Cells
were transfected with either the Dpre or the intact MG under the
control of the A20 and miR-22 promoters and then NF-kB
activity was induced by TNFa. The miR-22 promoter is stronger
than the A20 promoter, and upon NF-kB activation by TNFa, the
luciferase activity driven by the A20 promoter was enhanced by
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approximately twofold, while that of miR-22 was almost
unchanged (Fig. 6a). Under basal conditions, the level of the
miRNA expression directed by the A20 promoter relative to the
miR-22 promoter is maintained, however the NF-kB-induced
activity of A20 is totally lost upon transcribing the miRNA
(Fig. 6b), suggesting that miRNA synthesis is particularly
sensitive to transcription occurring through re-initiation.

To investigate further the influence of transcription initiation
rate directed by the A20 promoter on productive miRNA
synthesis, we utilized a previously characterized TATA-box
version of this promoter (A20-TATA)19. The A20-TATA is
more active than the native A20 and the miR-22 promoters
(Fig. 6c, black bars). We next assessed the efficiency of miRNA
synthesis under the control of the different promoters by
northern blot (Fig. 6c, grey bars). While the relative level of
miRNA expression directed by miR-22 and A20 promoters
correlates well to that of the luciferase activity, the A20-TATA
promoter, which is 3.5- and 1.5-fold stronger than the A20 and

miR-22 promoters, respectively, directs only slightly higher levels
than the A20 promoter and 2.5-fold lower miRNA levels
compared with miR-22 promoter (Fig. 6c). This finding further
confirms that miRNA synthesis is not compatible with
transcription occurring through re-initiation. Similar findings
were observed with the TATA box containing miR-375 promoter
(Supplementary Fig. S4).

Influence of initiation rate on miR-146 induction by NF-jB.
The failure to efficiently induce exogenous miRNA by NF-kB
may have implications on productive expression of native miRNA
targets of NF-kB. To investigate this possibility, we monitored the
expression of the NF-kB-dependent miR-146a, which is expressed
in a subset of cell types, and is part of a negative feedback
mechanism controlling NF-kB in these cells36,37. THP-1
monocytic cells were challenged with lipopolysaccharide (LPS)
and harvested at various time points after induction to detect the
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emergence of the primary transcript. We designed gene-specific
primers for reverse transcription and qPCR amplification from
the first exon, which reflects NF-kB induction level and promoter
strength, and three sets from the second exon: one from the 50-
end of the exon, the second immediately downstream, from the
stem and loop region and the third corresponds to the processed
pre-miRNA38, as shown schematically in Fig. 7a. The second
exon is located B16 kb from the beginning of the gene. If
elongation is not interrupted the induction fold at the first and
the second exon should be similar but in case of premature
termination a decrease in induction rate is expected. As shown in
Fig. 7b, induction of the primary transcript derived from the first
exon (a product) is initially detected 60min after LPS addition,
and is further increased after 2 h. The induction of the primary
transcript from the beginning of the second exon (b product) is
highly similar to the a product, indicating normal progress of
transcription between these positions. Interestingly, the induction
of the c and d segments located few nucleotides downstream from
the b product and encoding the miR-146a, is delayed and starts to
appear only 120min after LPS treatment. Moreover, their
induction fold is lower compared with that seen from the same
exon just upstream, reminiscent of an elongation defect (Fig. 7b).

The observed elongation interference near the miRNA site may
be even more pronounced if we take into account that pri-
miRNA, represented by the a, b and c segments, is the first to be
cleaved during miRNA biogenesis and has a shorter half-life
compared with the mature miRNA29–31. The delay in the
induction is also reflected in the levels of the mature miR-146a
(Fig. 7b, upper graph) in spite of its remarkable long half-life of
B200 h (ref. 39).

The lower level of stimulation seen for the pre-miRNA
segments 60 and 120min after induction can be explained by
premature termination, which may lead to loss of some initiation
events. According to this possibility, reducing the rate of
initiation by NF-kB is expected to increase the efficiency of
miRNA synthesis as observed for the miR-22 (Fig. 6a). To test
this idea, we utilized a mutant of the NF-kB protein p65, S472A,
which was identified in a screen of mutants within the p65
activation region. This mutant displays reduced activation
potential compared with the wild-type protein in reporter gene
assay (Fig. 7c). THP-1 cells were transfected with the wild type
and the S472A mutant of p65 and the influence of these variants
on the levels of the endogenous miR-146a was monitored. The
transcript level measured from the first exon, which reflects the
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initiation rate, is induced by both p65 variants but the activation
by the S472A mutant is reduced to same extent as in the reporter
assay (Fig. 7d, pink columns). Remarkably, the induced levels of
the pre-miR-146a as well as the mature miR-146a are comparable
(Fig. 7d, blue and grey columns). These results suggest that the
efficiency of miRNA synthesis conferred by the S472A mutant is
higher than the wild-type p65. Together, the results with the
exogenous and endogenous miRNA induction by NF-kB support
the idea that transcription elongation through an obstruction in
the form of a miRNA is less productive when the rate of
transcription initiation is high. As miR-146a is part of a negative
feedback mechanism controlling NF-kB activation36,37, the
postponement of its induction along with its slower
accumulation is likely to allow a time frame for NF-kB to
function before its activity is terminated by high levels of
miR-146a.

Transcriptional pausing at miRNA sites. A possible explanation
for the incompatibility of high initiation frequency with pro-
ductive miRNA synthesis is strong pausing of PolII at the miRNA
site. High initiation frequency is likely to result in crowding of

PolII near the pause site, which may lead to collision. To test
whether the region encoding the miRNA is a pause site, we used
chromatin inmmunoprecipitation assay to examine PolII occu-
pancy along the miR-146a gene, in untreated and LPS-induced
THP-1 cells and along miR-22 gene in HeLa cells (Fig. 7e). As
PolII stays longer at pause sites, we expect its levels to be higher at
these sites. In both miR-146a and miR-22 genes, the level of PolII
near the promoter is relatively high and is gradually decreased in
the body of the gene, including the positions located very close to
the pre-miRNA site. The levels of PolII at the miRNA site
however, are remarkably high compared with all other upstream
and downstream regions (Fig. 7e). These findings confirm the
prediction that the regions encoding the miRNA compose a
strong pause site for PolII.

Discussion
RNA synthesis is a multi-step process that starts with transcrip-
tion initiation, proceeds with transcription elongation, and ends
with processing of the primary transcript. While the connections
between transcription elongation and mRNA processing are well
established, much less is known about the links between
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transcription initiation and elongation. We demonstrate here that
an important determinant that influences the efficiency of
miRNA expression is the mechanism of transcription initiation.
By modulating the transcription initiation rate up and down for
exogenous and endogenous miRNAs, we found that miRNA
synthesis is less efficient when the initiation rate is increased
through a TATA box or NF-kB, but becomes more productive
when the frequency of initiation is reduced. Combining the
observations that TATA box and NF-kB allow efficient re-
initiation (Fig. 5, Supplementary Fig. S3 and Yean and Gralla32

and Ainbinder et al.35) and that the miRNA is a strong pause site
for PolII (Fig. 7), we propose that transcription re-initiation
causes crowding of PolII at the miRNA site, leading to collision of
PolII molecules and premature termination (Fig. 8). While the
data accumulated in this study are consistent with this model,
other mechanisms may also contribute to this phenomenon.

We provide two lines of evidence that a high initiation rate is
associated with premature termination in miRNA gene. Reduced
miRNA production directed by TATA box is not accompanied
with read-through and enhancement of expression of the
downstream luciferase (Fig. 3f), which was expected if premature
termination had not occurred. The second is a decrease in
primary miR-146a transcript induction at exactly the pri- and the
pre-miRNA boundary (Fig. 7b).

Transcription elongation rate appears to have differential effect
on productive miRNA synthesis as well as on a subset of protein-
coding genes in a manner closely correlated with the mechanism
of transcription initiation. Through the introduction of a slow
elongating form of RNA PolII, we observed a dramatic reduction
in productive expression of endogenous and exogenous miRNAs
controlled by TATA promoters, supporting the idea that a high
rate of transcription initiation, possibly in bursts leads to the
observed inefficient production of miRNA. Previous studies
reported that high elongation rate is less compatible with
alternative splicing, as a slow elongating PolII increased the
utilization of weak splicing signals and alternative splicing23. In
the event that rapid elongation rates are responsible for the
inefficient miRNA production, we would have expected the
efficiency of the miRNA synthesis to increase with the slow

PolII, while it was actually decreased. Our findings are also
inconsistent with reduced recruitment of miRNA-processing
factors, as we would have expected a different outcome if
cleavage of the primary transcript had not occurred (Fig. 3f). In
addition, the slow PolII, by staying for a longer time at pause
sites such as the miRNA region, was expected to increase the
efficiency of recruitment of miRNA-processing factors.
However, the outcome of the slow polymerase was an even
greater decrease in miRNA synthesis. It is therefore anticipated
that under certain physiological conditions in which PolII
processivity is altered40,41 or transcription re-initiation rate
is regulated,42 the effect on miRNA expression would be
differential.

Pausing during elongation is not expected to significantly affect
miRNA production if the spacing between re-initiation events is
longer than the time that PolII stays at pause sites. However,
when the waiting time of PolII at pause site(s) is longer than the
interval between initiation events, collision between PolII
molecules will destroy a fraction of the initiation events
(Fig. 8). The average time lapse between re-initiation events
in vitro for various TATA promoters and for NF-kB-driven
transcription was calculated to be B2–10min32,35,42. RNA
counting in single living bacterial and eukaryotic cells revealed
that individual initiation events in vivo are similarly spaced apart
in a range of few minutes43–45. We therefore infer that the
duration of pausing at the miRNA sites, has to be longer than the
rate of re-initiation directed by a TATA box, and can be
estimated to last several minutes. This is a surprisingly prolonged
pausing for PolII, but in most cases this delay is not expected to
affect the steady-state levels of miRNAs, as the promoters driving
them usually direct dispersed initiation events. The lengthy
pausing calculated here is consistent with the reported slow
kinetics of co-transcriptional miRNA processing by the
microprocessor5. Pausing at the pre-miRNA may be important
for its appropriate folding, reminiscent of the pausing at
riboswitches of bacteria, which was proposed to provide a time
window for the RNA to fold without interference of competing
sequences present downstream46,47.

The findings reported here are likely to have implications that
extend beyond miRNA genes, in particular for those genes
containing a TATA-box promoter along with transcriptional
pause site(s). A prime candidate for this class is the gene set
identified here that have short length but was nevertheless
downregulated when transcription elongation rate was reduced. It
is possible, that the effect of the slow polymerase on their
expression is similar to that observed with the miRNAs. The
results of this study may also be the basis to explain why TATA-
box genes tend to be short and more sensitive in their expression
to gene length14. This also may be related to the high frequency of
transcription initiation and the increased probability that PolII
will encounter an obstacle during elongation with increased gene
length. In contrast, when initiation is less frequent the distance
between each PolII molecule allows sufficient time for PolII to
deal with the block, and to avoid collision with the succeeding
PolII molecules.

In summary, the transcriptional features of miRNA genes
presented here suggest that miRNAs are remarkable strong pause
sites that challenge the robustness of PolII, which generally can
transcribe very long genes without dissociation. When the flow of
polymerases on a miRNA gene is very high, collision between PolII
molecules is inevitable, resulting in premature termination (Fig. 8).

Methods
Plasmid construction. The promoters of miR-22, A20 WT, A20 TATA, miR-375
WT and miR-375 TATA mutant were previously described19,24,48. For generation
of miR-22-TATA promoter mutant, a PCR fragment bearing the TATA-box
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which causes some of the following PolII molecules to abort. Consequently,

the efficiency of miRNA synthesis is reduced. According to this model,
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decrease of miRNA synthesis. On the other hand, reducing initiation rate

increases productive miRNA synthesis.
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mutation was cloned between PvuII and HindIII sites of the promoter. The primers
used are shown in Supplementary Table S2.

To construct the MG, we first amplified a genomic fragment containing 487 bp
upstream and 150 bp downstream to the miR-22 TSS and inserted it into pGL2
basic (Promega) between SmaI and HindIII sites. This fragment contains the miR-
22 promoter, the first exon and the 50-end of the first intron. This construct was
then used as a backbone for insertion of a second fragment from the 30-end of the
miR-22 first intron up to the end of the second exon. The second fragment was
inserted between XhoI and HindIII sites. The MG was then amplified and cloned in
front of the miR-22-TATA, A20 WT and A20 TATA promoters using cleavage and
fill-in to create a blunt end downstream to the promoter, and an EcoRI site from
the luciferase gene. The MG constructs were cleaved with HindIII and self-ligated
to create the MG Dpre constructs. The primers used for these constructions are
shown in Supplementary Table S2.

To generate the MG under the miR-375 WT and TATA-mutant promoters, the
miR-375 promoter variants were amplified by PCR and then replaced the miR-22
promoter through SmaI and EagI restriction sites. Primers used to amplify the
miR-375 WT and miR-375 TATA-mutant promoters are shown in Supplementary
Table S2.

Internal control for the small RNA northern blots was created by insertion of
double-stranded oligonucleotide (Supplementary Table S2) into the pSUPER
plasmid between the BglII and SalI sites.

The a-amanitin-resistant PolII constructs were previously described23 and
generously provided by A.R. Kornblihtt (University of Buenos Aires, Argentina).

To create the DTIE deletion, we used the full MG as a template. PCR was used
to amplify the fragment just downstream to the DTIE up to the lucifearse gene (see
Supplementary Table S2 for primers). This fragment was then inserted between the
EagI and EcoRI sites.

The S472A mutant of p65 was generated through the RF-cloning technique49

using the primers shown in Supplementary Table S2.

Cells and transfections. HEK293T and hamster pancreatic HIT cell lines were
maintained in DMEM supplemented with 10% fetal calf serum. THP-1 cells were
maintained in RPMI-1640 and 10% fetal calf serum. Transfection into HEK293T
cells was done using the CaPO4 method19. For reporter gene assay, cells were
harvested 24 h after transfection. For northern blot assays, RNA was extracted 48 h
after transfection. For the slow polymerase experiments, cell medium was changed
24 h after transfection with fresh medium containing 10 mgml� 1 a-amanitin
(Apollo Scientific). HIT and THP-1 cells were transfected using Jet-PEI reagent
(Polyplus Transfection).

Chromatin immunoprecipitation. THP-1 cells that were induced by LPS for 2 h
and HeLa cells (B1.5� 106 for each IP) were crosslinked with 1% formaldehyde
for 10min at room temperature. Then chromatin extract was prepared followed by
immunoprecipitations with either general Pol II antibody (S-20 from Santa Cruz
Biotechnology) or control serum. DNA samples were analysed by qPCR in an ABI
7300 Real-Time PCR system using Power SYBR PCR reaction mix (ABI). Primer
sequences are shown in Supplementary Table S2.

RNA analyses. For gene expression profiling, we used the GeneChip human Gene
1.0 ST Array (Affymetrix). Hybridizations were performed at the Microarray unit
at the Weizmann Institute of Science. One microgram of total RNA from each
sample (Rpb1-amr and R749H-amr), from three independent experiments, was
labelled. Microarray data analysis was performed by the Bioinformatics unit at the
Weizmann Institute of Science. Data were first normalized using GC-RNA. Results
are expressed as a log2 of the ratio between Rpb1-amr and R749H-amr. Genes with
intensity greater than 4.5 and a fold change greater than 1.2 in all three replicates
were considered significant.

For northern blot assay of small RNA, total RNA was extracted from HEK293T
or HIT cells with Tri-reagent (MRC Inc.). Total RNA (5–10 mg) was loaded onto a
15% acrylamide gel and run at 180V for 90min, in 1� TBE. RNA was then
transferred from the gel to a GeneScreen-Plus membrane (NEN), at 200mA for
2 h, in 0.5� TBE. Next, the RNA was crosslinked to the membrane with UV
irradiation. Pre-hybridization was carried out at 42 �C for 2 h in hybridization
buffer (5� SSC, 20mM Na2HPO4 (pH 7.2), 7% SDS and 2� Denhardt’s
solution), after which the 32P-labelled probe (Supplementary Table S2) was added.
Hybridization was carried out 16–24 h at 42 �C. The membrane was then washed
three times at 42 �C with 3� SSC, 25mM NaH2PO4 (pH 7.5), 5% SDS and 10�
Denhardt’s solution. Hybridization products were visualized using phosphoimager
(Fuji, BAS 2500).

For northern blot analysis of mRNA, total RNA (15mg) was loaded onto a 1%
agarose gel containing 1� MOPS and 1% formaldehyde, and run at 90V for 3 h,
in 1� MOPS. The gel was subjected to capillary transfer to a GeneScreen-Plus
membrane (NEN). RNA was crosslinked to the membrane by UV irradiation. Pre-
hybridization was carried out at 42 �C for 2–4 h in hybridization buffer (2� SSC,
50% formamide, 1% SDS, and 5� Denhardt’s solution and 100 mgml� 1 salmon
sperm DNA), after which the 32P-labelled GFP or luciferase probes were added for
16–24 h hybridization at 42 �C. The membrane was then washed five times with
2� SSC and 0.1% SDS solution and once with 0.2� SSC and 0.1% SDS, at 42 �C.

For quantitative RT–PCR of miR-146a primary transcript,THP-1 cells were
treated with LPS (100 ngml� 1) for 0, 10, 30, 60 or 120min followed by total RNA
preparation. Gene-specific cDNA was then prepared from 5 mg of total RNA, using
SuperScript II reverse transcriptase (Invitrogene). The real-time PCR was
performed with 20ml tubes in the ABI 7300 Real-Time PCR system and analysed
by the manufacturer provided System Software and normalized with GAPDH.
Analysis of genes affected by the slow PolII shown in Fig. 1 was done in a similar
way. Primer sequences are shown in Supplementary Table S2.

For quantitative analysis of endogenous miRNAs, the RNA extracted from a-
amanitin-selected cells was used to create complementary DNA using the miScript
reverse transcription kit (Qiagen). miRNA levels were measured by qPCR with the
U6 gene as an internal control. The primer sequences are shown in Supplementary
Table S2.

In vitro transcription assays and 50RACE. Nuclear extract used for in vitro
transcription assays was prepared using the salt extraction method35. Assembly of
in vitro transcription reaction was conducted in a total volume of 18 ml containing
9 ml of nuclear extract in a buffer consisting of 100mM KCl, 20mM HEPES (pH
7.9), 2mM MgCl2, 20% glycerol and 1mM dithiothreitol, 200 ng of plasmid
carrying either WT or TATA-box containing miR-22 promoter and 100 ng of GFP
plasmid directed by the CMV promoter. The mixture was incubated at 30 �C for
30min to allow PIC formation. Transcription was initiated by the addition of 2 ml
of nucleotide solution containing 5mM ATP, GTP, CTP and UTP. The reaction
was terminated after 10min by the addition of 100ml of stop solution (0.2M NaCl,
20mM EDTA, 1% sodium dodecyl sulphate, 0.25mgml� 1 yeast tRNA,
50 mgml� 1 proteinase K) and incubation at room temperature for 2min. To
inhibit re-initiation, Sarkosyl was added to the reaction mixture 2.5min after
initiation. The RNA was extracted with phenol-chloroform (1:1) and then with
chloroform and then precipitated with ethanol. The RNA products were then used
as a template to create cDNA with superscript II (Invitrogen) according to the
manufacturer’s instructions, using Luciferase and GFP-specific primers (see
Supplementary Table S2). The cDNA was purified using PCR purification kit
(Qiagen), followed by addition of polyG to the 50-end using TdT enzyme
(Promega) for 1 h at 37 �C. The reaction was terminated by heat inactivation for
15min at 65 �C, and the products were purified with the PCR purification kit
(Qiagen). The modified cDNA was used as a template for PCR using nested reverse
primers from the luciferase and GFP genes, and primers spanning the exact TSS of
each template as forward primers (Supplementary Table S2). PCR products were
run on 6% polyacrylamide gel.
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