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The importance of stress percolation patterns
in rocks and other polycrystalline materials
P.C. Burnley1

A new framework for thinking about the deformation behavior of rocks and other

heterogeneous polycrystalline materials is proposed, based on understanding the patterns of

stress transmission through these materials. Here, using finite element models, I show that

stress percolates through polycrystalline materials that have heterogeneous elastic and

plastic properties of the same order as those found in rocks. The pattern of stress percolation

is related to the degree of heterogeneity in and statistical distribution of the elastic and plastic

properties of the constituent grains in the aggregate. The development of these stress

patterns leads directly to shear localization, and their existence provides insight into the

formation of rhythmic features such as compositional banding and foliation in rocks that are

reacting or dissolving while being deformed. In addition, this framework provides a foundation

for understanding and predicting the macroscopic rheology of polycrystalline materials based

on single-crystal elastic and plastic mechanical properties.
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O
ne of the hallmark features of deformed rocks is the
presence of patterns; for example, patterns created by
shear localization, patterns associated with preferential

dissolution like stylolites and slatey cleavage or patterns such as
compositional banding that are created by mineral segregation.
Even rocks that appear initially homogeneous like shale or
randomly patterned like granites develop patterned features when
deformed in the Earth’s interior. A question that has puzzled
many geologists is: how and why do these patterns arise? The role
of stress in governing the orientation of features has long been
recognized—stylolites, foliation and compositional banding form
perpendicular to compression, fractures form at 30� to compres-
sion and shear zones at 45�. But what governs their spacing?
What causes them to arise from an unpatterned material? Much
research has been done on each type of feature separately
but there is no overarching theory for pattern formation in
deformed rocks.

The behavior of any given crystal within a polycrystalline
material is governed by its intrinsic response to the boundary
conditions imposed upon it; lattice scale processes that are easily
observed and relatively well understood (for example, fracture,
dislocation slip and climb/cross slip, twinning and diffusion
creep). What is not easily understood is how the boundary
conditions applied to each crystal relate to the boundary
conditions placed upon the aggregate. If the grains in a rock or
polycrystalline aggregate have identical responses to loading then
there is no reason to suspect that local boundary conditions
should differ from those at the exterior boundary. However, for
aggregates with elastic and plastic anisotropy, various grain
populations will respond to stress differently. Thus, the boundary
conditions imposed upon any given grain are moderated by the
responses of its neighbors and in turn by its neighbors’ neighbors.
Researchers have attempted to understand the effect of a grain’s
neighborhood by modeling small ensembles of grains and
examining the impact of changing the properties of a grain’s
neighbors1–5. However, especially for highly anisotropic materials
like minerals, there is little to guide us in determining how large
the ensemble or so-called ‘representative volume element’ (RVE)
needs to be to capture the full variety of mechanical situations
that arise within the aggregate.

This study was motivated by a desire to understand how bulk
rheology relates to the mechanical behavior of a material’s
constituent crystals, but the results serve as a framework for
thinking about all pattern formation in deformed rocks. In order
to determine if long-range or short-range interactions are
important for stress heterogeneity, I have used two-dimensional
(2D) plane-strain finite element models of a large ensemble of
grains in a hypothetical elastic–plastic polycrystalline material.
The grains are divided into 25 subsets to which mechanical
properties are assigned. No motion between the grains is
permitted on the grain boundaries, thus grain boundaries are
demarcated only by a change in elastic and plastic properties.
When the models are compressed, large-scale patterns in the local
stress tensor arise. The density of the patterning is dictated by the
degree of heterogeneity in and statistical distribution of the elastic
and plastic properties of the grains. The stress patterning and the
patterns of shear localization that arise once plastic deformation
initiates are described below.

Results
Results of finite element models. All models with heterogeneities
in the mechanical properties show large-scale patterns of stress
maxima and minima when they are compressed. The arrange-
ment of grains in the models is illustrated in Fig. 1. The nature of
the patterns in stress and how the patterns are impacted by elastic

heterogeneity is illustrated in Fig. 2, which shows the equivalent
von Mises stress for four of the models. In all models illustrated
here, compression is in the vertical direction. In Fig. 2a the
Young’s moduli of the grains varies from 0 to 500GPa. Although
this degree of variation in elastic properties is unrealistic, I use
this model as an extreme end-member. In Fig. 2d the Young’s
moduli of the grains varies from 100 to 120GPa, which is similar
to the degree of variation seen in high-symmetry minerals like
beta quartz or halite. The other models have variations in elastic
properties that are intermediate (Table 1). Although the patterns
occur on a scale much larger than the grain-scale, they do not
reflect the pattern of grain boundaries because individual grains
contain significant stress gradients. In Fig. 2d the pattern can be
described as isolated islands of low equivalent stress, but in
Fig. 2a,b one can see braided ‘streams’ of high equivalent stress

Figure 1 | Finite element model used in this study. The inset shows an

enlarged region of the mesh. The hexagonal grains are color-coded by grain

set. Rheological properties are assigned to each grain set.
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Figure 2 | Equivalent von Mises stress patterns. Equivalent von Mises

stress patterns for models with a variety of elastic properties. Dark shades

are higher values and light shades are for lower values. A compressional

load of 0.1 GPa in the vertical direction was used. (a) Grains with E¼ 500 to

0GPa and v¼0.1 to 0.4 (model hex20), (b) grains with E¼ 500 to 0GPa

and v¼0.3 (model hex16), (c) grains with E¼ 200 to 20GPa and v¼0.3

(Model hex9) and (d) grains with E¼ 120 to 100GPa and v¼0.3 (Model

hex18). The maximum value of the equivalent stress in hex20 is 10 times

that found in hex18.
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running vertically through the models. The change in patterning
from the most heterogeneous model to the least is in the spacing
of the ‘streams’ and the intensity of the stress concentration in the
‘streams’. The vertically oriented patterns originate from varia-
tions in the magnitude and direction of the maximum com-
pressive stress (s3). A subordinate horizontal pattern (best seen in
Fig. 2a), results from variations in s1. Figure 3 shows a portion of
a model with the full stress tensor plotted. With the exception of
the softest grains, the patterns of stress magnitude and orientation
largely ignore the identity of the grains. The orientation of the
maximum compressive stress can deviate substantially away from
the macroscopic compression direction and the stress state can

even become tensile. These variations are produced by the
difference in elastic properties of neighboring grains even before
plastic flow in the weakest grains initiates. The patterns in stress
are established in the first displacement increment and change
only in numerical value until the first yielding occurs. As yielding
initiates, the patterning in s3 deteriorates, while the patterning in
s1 intensifies (Fig. 4). All of the models produce strain localiza-
tion in the form of shear bands (Fig. 5), and the spacing of the
shear bands is coupled to the stress patterning; denser patterning
produces more closely spaced shear bands concentrating smaller
degrees of stain. Shear localization develops at very low strains
and intensifies between locations where yielding initiates.
Therefore, the location of shear bands is dictated by the spatial
distribution of locations where yielding first occurs (Fig. 6). The
degree to which shear bands grow and intensify or not as a
function of global strain depends on the level of work hardening
included in the plasticity model.

Discussion
The FEM models presented here make predictions about the
heterogeneity and spatial distribution of elastic and plastic strain
in polycrystalline materials that are consistent with experimental
observations as well as results from other numerical studies.
Many microstructural studies of plastically deformed polycrystals
observe intragranular heterogeneity of plastic strain ranging from
those conducted on highly anisotropic materials like olivine and
ice6,7 to metals, which generally have more isotropic single-crystal
rheological properties2,8–11. The degree of strain heterogeneity is
thought to be a function of the anisotropy of the material1,7.
The development of shear-strain localization at very low degrees
of strain has been observed in a number of materials7,8,11,12. The
development of tensile elastic strain during compression has been
observed in ice7 and zirconium11. Large variations in stress states
within single grains and plastic features that span many grains
have been observed in three-dimensional (3D) finite element
models of polycrystalline FCC metals1. However, consistent with
what is observed in synchrotron and neutron diffraction studies
of deforming materials, elastically stiffer grains on average strain
less than more compliant grains (see, for example, the study
by Turner and Tome13, or diffraction data within the study by
Burnley and Zhang14) (Fig. 7).

Large-scale patterning of stress in granular materials is well
known15–19. Referred to as force chains, the patterns are
produced by stress percolation20 and consist of semi-linear
subsets of particles arranged parallel to compression that bear the
applied load through the so-called ‘strong’ contacts between
them. Granular materials are most obviously distinct from fully
dense polycrystalline materials in that the constituent grains have
limited or no cohesion. Both shear tractions and tensile forces are
strongly or entirely dissipated on grain boundaries. In granular
materials there are extreme variations in the mechanical
properties of the constituent structural components (grain
boundaries and grain interiors), whereas in fully dense
polycrystalline materials variations between structural
components, which may or may not include rheologically
distinct grain boundaries21, are comparatively muted. Thus,
granular materials and fully dense polycrystalline materials fall on
a continuum of variation in component properties. The value in
making this connection is that it suggests new ways of thinking
about deformation of polycrystalline materials. For example, force
chains are understood to be the underlying mechanism of shear
localization in granular materials (see Discussion in the study by
Tordesilla and Muthuswamy22 and references therein). Therefore,
examining the role of stress patterning in shear localization in
polycrystalline materials may prove fruitful. The magnitude of

Table 1 | Mechanical properties of grain sets in models used
for illustrations.

hex9 hex16 hex18 hex20

Material
Number of
elements

Number
of grains E v E v E v E v

1 3,158 65.79 50 0.3 500 0.3 100 0.3 450 0.4
2 2,491 51.90 150 0.3 400 0.3 100 0.3 400 0.4
3 5,150 107.29 160 0.3 300 0.3 101 0.3 10� 10 0.5
4 4,263 88.81 150 0.3 350 0.3 102 0.3 350 0.4
5 3,692 76.92 130 0.3 100 0.3 103 0.3 300 0.4
6 4,470 93.12 110 0.3 150 0.3 104 0.3 250 0.1
7 2,299 47.90 90 0.3 250 0.3 105 0.3 200 0.4
8 2,913 60.69 70 0.3 350 0.3 105 0.3 150 0.1
9 4,441 92.52 50 0.3 75 0.3 106 0.3 100 0.4
10 2,343 48.81 30 0.3 125 0.3 107 0.3 50 0.4
11 5,727 119.31 30 0.3 425 0.3 108 0.3 25 0.1
12 3,463 72.15 20 0.3 175 0.3 109 0.3 10 0.1
13 7,653 159.44 40 0.3 275 0.3 110 0.3 5 0.4
14 5,802 120.88 60 0.3 375 0.3 111 0.3 1 0.4
15 4,377 91.19 80 0.3 10� 10 0.5 112 0.3 100 0.2
16 3,180 66.25 100 0.3 475 0.3 113 0.3 300 0.2
17 5,575 116.16 120 0.3 50 0.3 114 0.3 200 0.2
18 8,435 175.73 140 0.3 25 0.3 115 0.3 10 0.2
19 8,255 171.98 170 0.3 450 0.3 116 0.3 50 0.2
20 5,692 118.58 180 0.3 100 0.3 117 0.3 100 0.2
21 7,244 150.92 190 0.3 200 0.3 118 0.3 300 0.2
22 6,415 133.65 200 0.3 400 0.3 119 0.3 200 0.2
23 4,204 87.58 20 0.3 500 0.3 120 0.3 500 0.2
24 5,598 116.63 200 0.3 225 0.3 103 0.3 300 0.1
25 5,479 114.15 200 0.3 325 0.3 109 0.3 100 0.1
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Figure 3 | Local variations in the stress tensor within model hex16.

Orientation and magnitude of minimum (s3) and maximum (s1)
components of the stress tensor in a portion of model hex16. Compression

(which is negative), is depicted in orange to blue; tensile stresses are

yellow. The arrows point in the direction of the principal components of the

tensor. The position and size of three grains is outlined in gray for scale.
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stress concentrations in the stress patterns and the regularity
with which they occur may well yield to statistical descriptions,
as they do in granular materials23 and should lead to a
better understanding of phenomena that are tied to stress
concentrations, such as the development of stylolites, slatey
cleavage and compositional banding in rocks24,25, as well as help
explain how these rhythmic features initially arise from
unpatterened rocks such as shale and granite.

The recognition of stress patterning will have a number of
important implications for experimental characterization and
modeling of rheological properties. In experimental studies, the
scale of stress patterning dictates the size of the RVE needed for
testing. Experimental samples whose size allows only a portion of
the stress pattern to be captured, may present difficulties for

obtaining reproducible results; a phenomena that would be most
noticeable in high-pressure studies where sample sizes are
restricted. Changing the grain size or overall size of experimental
samples can be cumbersome, but numerically it should be
comparatively painless to predict the appropriate RVE by
increasing the size of the grain ensemble being modeled until
the tails of the stress distribution are fully described.

Another important implication of stress patterning is that it
provides a framework for modeling aggregate behavior over
multiple-length scales based on single-crystal properties. Robust
predictive models of the mechanical behavior of rocks are needed
for understanding the mechanical behavior of the interior of the
Earth and other planets because extrapolations in both length
scale and strain rate will always be required26. The need
for reliable predictive rheological models is not confined to the
geosciences but extends to engineering and materials science
problems that present a variety of challenges for direct
observation; for example, shock loading of nuclear weapon
components or detonation of plastic-bonded explosives. These
extrapolations can be made with more confidence if they are
generated by models that are based on the physics of
deformation: capturing the behavior of the crystal lattice as well
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Figure 4 | Changes in stress tensor patterns during yielding. Patterns in s1 and equivalent von Mises stress (svm) for model hex9 prior to (0.47% strain),

during (0.81% strain) and after (2.33% strain) yielding initiates. This model has no work hardening. The patterns in s1 intensify as grains in the model begin

to deform plastically, which causes the patterns in svm to become less coherent.
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Figure 5 | Patterns in equivalent plastic strain. Patterns in equivalent

plastic strain for models shown in Fig. 2. Dark shades are higher values and

light shades are lower values of equivalent plastic strain. Models are shown

at a strain increment between 0.2–0.5% global strain beyond initial yielding.

(a) hex20, (b) hex16, (c) hex9 and (d) hex18.

�= 0.61% �= 0.81%

Figure 6 | Changes in equivalent plastic strain during shear localization.

Plot of equivalent plastic strain for a portion of model hex9. Scale bar is

equivalent to the width of two grains. Most grains exhibit no plastic strain

(purple). Grains where yielding initiates (deep purple to orange) develop

‘fins’ that extend outwards at 45� (green stars). Fins connect between

grains when yielding grains are sufficiently close (yellow arrows).
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as the short- and long-range interaction between grains within
the polycrystal. So, for example, elastic–plastic and viscoplastic
self-consistent models describe single-crystal plasticity but
assume that a single set of average boundary conditions apply
to each grain. These models could be modified such that the
boundary conditions applied to each grain are allowed to vary
over a range suitable to the elastic and plastic heterogeneity of the
structural components of the material.

Perhaps the most important impact that the recognition of
stress patterning can have is if it, as a simple and intuitive
paradigm, can replace the default assumption of a Reuss state
(isostate) of stress in the minds of those who work on stress-
related phenomena. Although it has been long recognized that the
Reuss state of stress is an oversimplification, the assumption
still pervades our thinking on everything from the attenuation of
seismic waves to the development of paleopiezometers. By
providing a means of leaving the Reuss stress state assumption
behind, the recognition of patterning in stress should lead to new
insights in a number of disciplines.

Methods
Finite element models. The finite element models were constructed using MSC.
MARC/Mentat, a commercial finite element analysis package. Each grain was
modeled as a hexagon containing 48 six-noded triangular elements (Fig. 1);
this type of element uses a parabolic interpolation function along each edge. The
models were calculated assuming a 2D plane-strain geometry utilizing full inte-
gration. The nodes on the boundaries of each grain are shared with the elements
along the edge of the neighboring grain, thus grain boundaries are demarcated only
by a change in elastic and plastic properties. As there can be no offset along a grain
boundary in the model, the grain boundaries do not have separate mechanical
properties. The model consists of 2,574 hexagonal grains that have been assigned
randomly into 25 subsets. All materials used in the model assumed an isotropic
linear elastic response. The constitutive equation used for linear elastic solids is:

sij ¼ ldijekk þ 2Geij ð1Þ
where sij is the stress tensor, dij is the Kronecker delta, eij is the strain tensor, l is
the Lame constant, and G is the shear modulus. l can be expressed as:

l¼ vE=ðð1þ vÞð1� 2vÞÞ ð2Þ
and G can be expressed as:

G¼E=ð2ð1þ vÞÞ ð3Þ
where v is the Poisson’s ratio and E is the Young’s modulus. MARC accepts E and v
as inputs to define a material’s elastic properties. Plastic behavior initiates when the
equivalent von Mises stress (svm), which is calculated as follows:

svm ¼ ðs1 � s2Þ2 þðs2 � s3Þ2 þðs3 � s1Þ2
� �

=2
� �1=2 ð4Þ

equals the specified yield strength. Post-yielding behavior was either perfectly
plastic or included a work-hardening slope. The Young’s modulus and Poisson’s
ratio assigned to each grain set for the models presented in the illustrations are
given in Table 1. For all materials shown in the figures, the yield strength was set to
1/100th of the Young’s modulus and no work hardening was included. Boundary
conditions were applied along three edges of the models. Nodes along the bottom
edge were not allowed to move in y (the vertical axis). Nodes along the left edge
were not allowed to move in x (the horizontal axis). Depending on the goal of the
experiment, either a constant edge load was placed on the top edge of the model
or a constant displacement was applied to each node on the top of the model.
The right edge of each model was allowed to move freely.
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