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Lagrangian scale of particle dispersion
in turbulence
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Transport of mass, heat and momentum in turbulent flows by far exceeds that in stable

laminar fluid motions. As turbulence is a state of a flow dominated by a hierarchy of scales, it

is not clear which of these scales mostly affects particle dispersion. Also, it is not uncommon

that turbulence coexists with coherent vortices. Here we report on Lagrangian statistics in

laboratory two-dimensional turbulence. Our results provide direct experimental evidence that

fluid particle dispersion is determined by a single measurable Lagrangian scale related to the

forcing scale. These experiments offer a new way of predicting dispersion in turbulent flows in

which one of the low energy scales possesses temporal coherency. The results are applicable

to oceanographic and atmospheric data, such as those obtained from trajectories of free-

drifting instruments in the ocean.
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I
n problems such as spreading of plankton in the ocean,
transport of pollutants in the atmosphere, mixing of fluids or
rain initiation in clouds, the understanding of statistical

properties of Lagrangian trajectories in turbulence is crucial.
The relationship between descriptions of turbulence from the point
of view of a still observer (Eulerian description) and that of a
particle moving with the flow (Lagrangian description) remains
unresolved in the theory of turbulence1. Recent advances in
numerical modelling and experimental particle tracking in
turbulence2 greatly improved our understanding of Lagrangian
trajectories3–5. The most basic property of Lagrangian trajectories
is a single-particle dispersion, or mean-squared displacement,
hdr2i¼ h j~rðtÞ�~rð0Þ j 2i of a particle moving along the
trajectory ~rðtÞ from its initial position ~rð0Þ. Einstein predicted
ballistic and diffusive transport at short and large times, respectively,
for Brownian particles6. In turbulence, single-particle dispersion is
governed by the stochastic equation, and, as has been shown by
Taylor7, it is similar to the Einstein’s theory of Brownian motion:

hdr2i � hu2it2; at t � TL ð1Þ

hdr2i � 2hu2iTLt; at t � TL ð2Þ
Here u is the particle velocity, TL ¼

R1
0 rðtÞdt is the

Lagrangian integral time, which can be obtained from the
Lagrangian velocity autocorrelation function,

rðtÞ¼ huðt0 þ tÞuðt0Þi=~u2; ð3Þ
where ~u2 is the velocity variance.

To estimate the diffusion coefficient Dexp¼/u2STL at large
times, one needs to compute, or to measure, the Lagrangian
velocity correlation function. The problem however is that r(t) and
TL cannot be theoretically predicted and their relationship with
their Eulerian counterparts is still debated. For example, some
authors expect that the Lagrangian correlation time should be
larger than the Eulerian time, TL/TE41 (ref. 8), as in fact has been
found in some atmospheric measurements9, while the theoretical
analysis by Middleton10 gave a different result, TL/TEo1.

In addition to the Lagrangian integral time TL, it is common to
use the Lagrangian integral scale LL, and it is often assumed (for
example, Lumpkin et al.11) that as the Lagrangian particle moves
at a characteristic speed ~u¼

ffiffiffiffiffiffiffiffiffi
hu2i

p
, the Lagrangian integral time

and space are related as

LL ¼ ~uTL: ð4Þ
We will show that LL can be used to determine the diffusivity:

Dexp ¼ ~uLL: ð5Þ
This diffusivity, equation (5), is often estimated using a typical

magnitude of the horizontal eddy velocity, and the mixing length
L. It is usually expected that larger and more energetic eddies will
be dominant contributors to the eddy diffusivity12.

We report on the measurements of Lagrangian characteristics
in two-dimensional (2D) turbulence. Experiments have been
conducted in both underdeveloped (chaotic) and in fully
developed turbulent flows to measure dispersion in a broad
range of the flow kinetic energies, driven at different forcing
scales. To investigate particle dispersion in both ballistic regime,
equation (1), and in diffusive regime, equation (2), floating tracer
particles in the flow are tracked with high-resolution for
sufficiently long time. In the reported experiments we show that
it is the most coherent scale, rather than the energy-containing
scale, which determines LL.

Results
Characteristics of turbulent flows. Experiments are performed
by using two very different methods of turbulence generation. In

the first, turbulence is excited electromagnetically13,14

(electromagnetically driven turbulence (EMT)). In the second
set of experiments, 2D turbulence is driven by Faraday waves on
the surface of a vertically vibrated fluid container (Faraday wave
driven turbulence (FWT)), a method which just recently has been
discovered in von Kameke et al.15 and further investigated in
Francois et al.16 The tracer particles on the water surface are
accelerated in the wave field and move chaotically in the
horizontal plane. Though the vertical motion is also present on
the rippled surface, statistics of the horizontal velocity
fluctuations are fully consistent with those in 2D turbulence.

Both experiments have distinct advantages. FWT can be
produced in a broad range of forcing levels (vertical accelerations)
and forcing scales (by changing the vibration frequency), while
the electromagnetically driven scheme produces both regular and
turbulent flows (Fig. 1a–d).

Regardless of the method of turbulence generation, spectra
show the inverse energy cascade range17 Ek¼CE2/3k� 5/3 at wave
numbers kokf, where kf is the forcing wave number, and E is the
energy dissipation rate. At larger wave numbers, k4kf, in the
direct enstrophy cascade, the spectrum should scale as Ek � k� 3.
In fact, spectra in Fig. 1d,f are steeper, Ek � k� 4, due to higher
damping at large wave numbers16,18; however, when turbulence is
forced at lower wave numbers, for example, at f0¼ 30Hz in FWT,
a theoretically predicted k� 3 spectrum is observed in the
enstrophy cascade range. The kink in the spectrum marks the
forcing scale Lf¼ 2p/kf.

Temporal Lagrangian velocity autocorrelation. The mean-
squared dispersion of a tracer particle from the initial point on its
trajectory is computed by averaging over two to three thousands
of trajectories obtained using particle tracking velocimetry, such as
those in Fig. 1. The dispersion is shown as a function of time in
Fig. 2a for the Faraday wave driven turbulence (the forcing scale of
LfE4.4mm). At shorter times, less than the Lagrangian integral
time, toTL, a clear ballistic regime is observed, hdr2i � t2, in
agreement with Equation (1), while at larger times, we find a
diffusive regime /dr2SE2Dexpt, similar to recent observa-
tions15,19. Here we confirm these two regimes for a broad range of
forcing levels, including the ‘underdeveloped’ turbulence, like for
example, the one shown in Fig. 1a,b. The diffusion coefficient Dexp,
given by half the slope of the dispersion curve, increases when the
forcing level is increased (Fig. 2b). This is true in both the Faraday
wave driven and in EMT. However, when the mean-squared
dispersions are plotted versus normalized time, t/TL (Fig. 2c), all
dispersion curves of the Faraday wave driven turbulence for a
given forcing scale collapse onto one. This suggests that the
quantity ~u2T2

L is independent of the turbulence kinetic energy,
where ~u¼huirms. It has a dimension of L2 and this result points to
the existence of a universal spatial scale of particle dispersion
related to the forcing scale.

We performed over 30 experiments at different forcing levels
(over three orders of magnitude in kinetic energy) and different
forcing scales Lf¼ (3.6–9)mm. In all conditions the ratio of the
experimental diffusion coefficient Dexp over the product ~u2TL is
close to 1, Fig. 2d, confirming equation (2).

Spatial Lagrangian velocity autocorrelation. To detect this dis-
tinct Lagrangian scale we compute the spatial Lagrangian velocity
autocorrelation function, which can be constructed similarly to
the temporal autocorrelation function, equation (3):

rðLÞ¼ huðr0 þ LÞuðr0Þi=~u2: ð6Þ

The Lagrangian integral scale is given by LL ¼
R1
0 rðLÞdL.

Moving along a trajectory, we simultaneously record a particle’s
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velocity ~uðtÞ and its displacement dr(t) from the initial position
r0. By excluding time, we first interpolate measured velocity
increments ~uðdrÞ onto a regular array ~uðLÞ, and then compute
the spatial autocorrelation function r(L).

The Lagrangian velocity autocorrelation time TL decreases with
the increase in the energy input, Fig. 3a, however, the Lagrangian
integral scale LL is very weakly dependent on the forcing. For a
given forcing scale in fully developed turbulence, spatial
Lagrangian velocity autocorrelation functions r(L) approximately
collapse onto each other, as illustrated in Fig. 3b. In all
experiments, particle dispersion in 2D turbulence is determined

by the Lagrangian autocorrelation scale and the r.m.s.
velocity, Dexp ¼ ~uLL, Fig. 3c. Turbulence accumulates energy in
the inertial range and determines ~u, while the Lagrangian scale
LL determines the mean free path between the particle’s memory
loss events.

The main error in the determination of either the ratio
Dexp=ð~u2TLÞ in Fig. 2d, or the ratio Dexp=ð~uLLÞ in Fig. 3c, comes
from the integration of the autocorrelation functions r(t) or r(L)
over the inevitably limited temporal or spatial domain. The error
bar for LL and TL is B10%. The error analysis of TL has been
discussed in detail in Lumpkin et al.11
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Figure 1 | Particle trajectories and kinetic energy spectra in different flows. (a) If the flow is weakly forced electromagnetically (the current density of

0.2� 103Am� 2 here), the forcing scale vortices interact rather weakly, yet particles travel randomly in the box. (b) The spectral energy is localized in a

narrow wave number range at about kf. (c) At higher forcing levels (the current density here is 1� 103Am� 2) particle trajectories are no longer dominated

by the forcing scale vortices. (d) The energy spectrum spreads towards larger scales forming a continuous Kolmogorov–Kraichnan spectrum via the inverse

energy cascade17 Ek¼Ce2/3k� 5/3 at kokf. (e) Particles moving horizontally on the surface of parametrically driven Faraday waves show many

characteristics of 2D turbulence, such as kinetic energy spectra, energy flux and particle dispersion. (f) A spectrum is shown for the value of the vertical

acceleration of a¼ 1.6 g.
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In experiments at different forcing scales, the Lagrangian
integral scale LL roughly follows the scale of forcing, Fig. 3d. The
analysis of all experiments shows that the ratio of the Lagrangian
integral scale and the scale of forcing, LL/Lf, varies in the range
from 0.4 to 1 in a broad range of conditions. This scale is shorter
than any of the energy-containing scales in the inertial interval
and it is determined by the most persistent scale in the flow, the
scale of forcing.

Discussion
The above conclusion about the dominance in the diffusivity of
one scale, which is close to the forcing scale, is at odds with results
obtained in several studies, which find that the diffusivity is
determined by the energy-containing eddy scales20–23. In 2D
turbulence, in the presence of the inverse energy cascade, these
scales are in the lower-k part of the Eulerian spectrum. The most
likely reason for such discrepancy is the fact that in most models
of turbulence (for example, Klocker et al.23; Boffetta and
Musacchio24), forcing is defined as spatially periodic (localized
in k), but random in time (white noise). In these experiments,
both in electromagnetically driven and in the Faraday waves
driven turbulence, forcing scale vortices are substantially more

coherent than turbulent eddies at any other scales. As discussed
by Middleton10, the Lagrangian correlation function is related to
the Eulerian spectrum via the modal correlation D(k, t) as
rðtÞ¼

R1
0 EðkÞDðk; tÞ expð� k2 / r2S =2Þdk. Here D(k, t)

specifies the rate at which the motions of eddies of size k
decorrelate with themselves. It is usually assumed that smaller
scales decorrelate more rapidly (see for example, Middleton10).
This, however, is not true in these experiments where forcing is
represented by a relatively narrow peak in the Lagrangian
frequency spectrum shown in Fig. 4a. The spectrum FL(f) is
computed as the ensemble averaged power spectrum of the
Lagrangian velocity ~uðtÞ along the trajectory. A spectral peak
around f¼ 30Hz is related to the forcing frequency, which in the
case of the FWT is close to the Faraday frequency. The low
frequency part of the spectrum, fo15Hz corresponds to the
Fourier transform of the temporal Lagrangian autocorrelation
function r(t).

Though Fig. 4a illustrates the coherency of forcing in these
experiments, there can be other, perhaps more rigorous measures
of the presence of persistent scales in a flow. For example, the
persistence can be derived from the analysis of Lagrangian
coherent structures using finite-time Lyapunov exponent field
(see for example, Farazmand and Haller25 and Ouellette26 for
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Figure 2 | Particle dispersion in 2D turbulence. (a) Statistically averaged mean-squared displacement of particles away from the initial position shows a

ballistic regime hdr2i � t 2 at short time shifts, and diffusive regime hdr2i � t at large times, in agreement with Einstein’s and Taylor’s results (equations 1, 2).

Such particle dispersion is observed in all experiments presented in the paper. (b) Large time mean-squared displacements in the FWT. Turbulence is

driven by vertically shaking the fluid cell at the frequency of 60Hz at different vertical accelerations, from 0.9 to 2 g. The forcing scale is Lf¼4.4mm.

Increasing slopes of the curves are indicative of increasing diffusivity with forcing. (c) Mean-squared displacement curves at different forcing levels are

plotted versus time shift normalized by the Lagrangian integral time, t/TL. These are shown for two sets of experiments, Lf¼4.4mm and Lf¼ 7.7mm. This

reveals constancy of ~u2T2
L , indicating that particle dispersion in turbulence universally depends on one characteristic scale, L¼

ffiffiffiffiffiffiffiffiffiffi
~u2T2

L

q
. (d) Particle

diffusivities obtained from the slopes of hdr2i � t curves are normalized by the product of the velocity variance and the corresponding integral time scale.

Data points obtained in all experiments are plotted versus corresponding flow energies. All points converge to a value of Dexp=ð~u2TLÞ � 1. The shaded box

shows the s.d. of the measurements.
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additional comments on this). The lifetime of a persistent
structure t0 can be determined by varying time interval of the
Lyapunov exponent computation and comparing it with the
turnover time of the turbulent eddy of size r in the Kolmogorov
spectrum, tr¼ E� 1/3r2/3. A ratio t0/tr could be a measure of
persistence of the scale r. A similar persistence parameter has
been introduced in Sokolov27 in the context of effects of coherent
scales on the pair dispersion.

It is possible that in some areas in the ocean forcing is
correlated in time. This can be the case when small scale but
coherent eddies are present (for example, Straneo et al.28). In this
case D(k, t) may be large for particular scales, which will greatly
accentuate their role in the diffusivity.

It is also useful to compute the Eulerian scale LE, defined as the
integral of the Eulerian autocorrelation function of the velocity:

rEðLÞ¼
hux;yðr0 þ LÞux;yðr0Þi

~u2x;y
: ð7Þ

Here the velocity is taken on a grid obtained from the particle
image velocimetry (PIV) measurements rather than along the
trajectories, and r0 is taken in both the x and y directions. The
Eulerian integral scale is determined as LE ¼

R1
0 rEðLÞdL, or, if

the autocorrelation function is approximately exponential,

rEðLÞ � e� L=LE , it can be determined from the decay at short
distances L.

The Eulerian integral scale in the FWT is close to half the
forcing scale, LEE(1/2)Lf for different excitation frequencies
(different Lf). A similar relation has also been mentioned in von
Kameke et al.15

This relation, together with the result of Fig. 3d, indicates that
the Lagrangian correlation scale (or time) is not necessarily
smaller than its Eulerian counterpart, LLrLE, as it has been
concluded from the theoretical analysis of Middleton10. In our
case LL4LE, because the modal correlation D(k, t) in these
experiments is different from those considered in Middleton10.

Summarizing, the above results of laboratory studies of the
tracer dispersion in 2D turbulence confirm that the diffusivity is
determined as a product of the r.m.s. fluid particle velocity and
the integral Lagrangian scale Dexp ¼ ~uLL. This scale, which can be
determined directly from the spatial Lagrangian velocity auto-
correlation, equation (6), is related to the Lagrangian integral
time, equation (4). The r.m.s. velocity depends on the kinetic
energy accumulated in the turbulence inertial interval, and as
such it is mostly determined by the energy-containing large
scales. However, the scale LL that determines the diffusivity is not
the energy-containing scale, but it is a smaller and less energetic,
yet persistent scale determining the fluid particle’s memory loss.
In these experiments LL is related to the forcing scale. These

c

0

0.5

1

1.5

~

2

2.5

3

10–6 10–5 10–4 10–3

FWT 60 Hz
EMT
FWT 30 Hz
FWT 45 Hz
FWT 110 Hz

D
ex

p/
[u

L L
]

<u2> (m2 s–2) <u2> (m2 s–2)

a

0.1

1

0 0.1 0.2 0.3 0.4 0.5 0.6

0.9 g
1 g
1.4 g
1.6 g
1.8 g
2 g

t (s)

b

0.1

1

0 0.002 0.004 0.006 0.008 0.01

0.9 g
1 g
1.4 g
1.6 g
1.8 g
2 g

L (m)

Lf = 0.0044 m
�(

t)

� (
L)

d

0

0.2

0.4

0.6

0.8

1

1.2

1.4

10–6 10–5 10–4 10–3

FWT 60 Hz
EMT
FWT 30 Hz
FWT 45 Hz
FWT 110 Hz

L L
/L

f

Figure 3 | Lagrangian characteristics of turbulent flows. (a) Temporal Lagrangian autocorrelation function rðtÞ¼ huðt0 þ tÞuðt0Þi=~u2, computed for a

range of forcing levels in the FWT. This function is decaying approximately exponentially, rðtÞ � e� t=TL , where TL is Lagrangian integral time. (b) Spatial
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integral length remains roughly constant in the broad range of forcing levels. (c) Fluid particle diffusivities normalized by the product of the square root of
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results highlight the importance of coherent eddies in governing
the diffusivity in turbulent flows and may appear useful in the
analysis of the oceanic Lagrangian observations29.

Methods
Turbulence generation. To generate 2D turbulence, one needs to inject energy
into the horizontal fluid motion at some intermediate range of scales, much smaller
than the size of the container, and to ensure that this forcing is localized in the
wave number domain to a relatively narrow band. Here turbulence is generated
using two methods. In the first, EMT is produced in layers of electrolytes (here in
Na2SO4 water solution, specific gravity of SG¼ 1.03) by running electric current J
across the fluid cell18. A matrix of magnetic dipoles placed underneath the cell
produces spatially varying magnetic field B. In these experiments 900 magnets were
used (30� 30 matrix, 10mm between magnets). The Lorenz J�B force produces
vortices, which drive turbulent flows. This corresponds to the forcing wave number
of kf E 630m� 1. To reduce the bottom drag and to avoid the influence of the
bottom boundary layer, a layer of electrolyte is placed on top of heavier (SG¼ 1.8)
non-conducting fluid (FC-3283 by 3M) immiscible with water. Magnetic field at
the interface between two layers is about B¼ 0.3 T, while electric current density is
changed in the range of J¼ (0.1–1.2) � 103Am� 2. Green data points for EMT in
Figs 2d and 3c,d correspond to the current densities of J¼ (0.1, 0.2, 0.4, 0.6, 0.8, 1.2) �
103Am� 2 from low to high ou24, respectively.

In the second method, the horizontal motion of fluid particles is forced by the
parametrically excited Faraday waves on the surface of a vertically vibrated liquid
(water)15,16. The floaters motion on the surface resembles the motion of fluid in 2D
turbulence. This phenomenon is not restricted to thin layer of fluids, as was initially
thought15, but it is also observed in deep (compared with Faraday wavelength)
layers. The main advantage of generating turbulence using Faraday surface waves is
the ability to change the forcing scale by simply changing the frequency of the
vertical vibration. This method also allows a broader range of horizontal kinetic
energies to be achieved16. In these experiments turbulence is generated in a circular
container (180mm diameter). In the wave number spectrum of kinetic energy,
Fig. 1f, obtained at the vertical forcing frequency of 60Hz, Kolmogorov k� 5/3

spectrum is restricted at low k by the dissipation scale of about 200m� 1. The
dissipation prevents spectral condensation, or accumulation of spectral energy at
the system scale. Measurements of single-particle dispersion have also been
performed in a large square container (0.4� 0.4m2) revealing no difference with
the results reported here. However, at lower frequency excitation (30Hz) in a
smaller square container (0.1� 0.1m2) spectral energy condenses into large
coherent vortices16. Modifications to the fluid dispersion in this case will be
reported elsewhere.

Flow visualization and particle tracking. The fluid motion is characterized using
both PIV and particle tracking velocimetry techniques. In the EMT experiments,
50mm diameter white polyamid particles (SG¼ 1.03) are used. In the FWT
experiments, black carbon glass particles are used to visualize fluid motion on the
water surface. These particles have a diameter within a range of 150–300 mm
(300 mm is the mesh size of the coarser sieve). The particles are plasma treated to
reduce their intrinsic hydrophobicity. The use of surfactant and plasma treatment
makes the particle wettability almost neutral, which prevents their clustering and
insures homogeneous spreading on the fluid surface. Black particles are used in
experiments where simultaneous visualization of Faraday waves (using diffusive
light imaging) and floaters motion is needed, as described in Francois et al.16 To
test if the particle size (up to 300 mm) affects singe-particle dispersion, additional
measurements are performed using 50 mm diameter white polyamid particles. No
effect of the particle size is detected. This is consistent with observations15 where
46mm particles were used for PIV measurements and 300mm particles were used
for tracking Lagrangian trajectories. No differences were detected between the
absolute dispersion derived from the 300mm particle trajectories and the one
computed using virtual tracers following the PIV velocity field. Previous studies of
the finite particle size effects on transport in 2D flows demonstrated some inertial
effects when the Stokes number St¼ (2/9)(rp/rf)(a/L)2 Re is relatively large, St Z
0.01 (ref. 30). Here rp and rf are the particle and fluid densities respectively, a is the
particle radius and L is the characteristic flow length scale, and Re is the Reynolds
number. In our experiments for the largest particles used (a¼ 0.15mm) and the
smallest forcing scale of L¼ 3mm, the Stokes number does not exceed
St¼ 5� 10� 4. In these conditions, finite particle size effects on single-particle
dispersion can be neglected.

The particle motion is captured using high-resolution fast camera
(Andor Neo sCMOS). An example of a single-particle trajectory filmed in the
FWT at the shaker excitation frequency of f0¼ 60Hz using camera’s frame
rate of 120 fps is shown in Fig. 4b. The trajectory is tracked using a nearest
neighbour algorithm31. A maximum distance for the nearest neighbour search is
set to be smaller than the minimal particle displacement between consecutive
frames. A particle’s position in Fig. 4b is recorded four times per period
of the Faraday wave (TF¼ 2/f0). Orbital motion of a particle in the 3D surface
ripple leads to the wiggles, or non-smoothness of the x–y trajectory (black).
However, smoothing this trajectory over four points, or over TF restores
smooth trajectory (red).

Experimental data on particle dispersion. Figure 5 shows the evolution
of the diffusion coefficient Dexp, Lagrangian integral time TL, and Lagrangian
integral scale LL versus velocity variance in the Faraday waves driven
turbulence at three different shaker frequencies. This data is used in the analysis of
Figs 2, 3.
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