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Realistic control of network dynamics
Sean P. Cornelius1, William L. Kath2,3 & Adilson E. Motter1,3

The control of complex networks is of paramount importance in areas as diverse as

ecosystem management, emergency response and cell reprogramming. A fundamental

property of networks is that perturbations to one node can affect other nodes, potentially

causing the entire system to change behaviour or fail. Here we show that it is possible to

exploit the same principle to control network behaviour. Our approach accounts for the

nonlinear dynamics inherent to real systems, and allows bringing the system to a desired

target state even when this state is not directly accessible due to constraints that limit the

allowed interventions. Applications show that this framework permits reprogramming a

network to a desired task, as well as rescuing networks from the brink of failure—which we

illustrate through the mitigation of cascading failures in a power-grid network and the

identification of potential drug targets in a signalling network of human cancer.
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C
omplex systems such as power grids, cellular networks and
food webs are often modelled as networks of dynamical
units. In such complex networks, a certain incidence of

perturbations and the consequent impairment of the function of
individual units—whether power stations, genes or species—are
largely unavoidable in realistic situations. While local pertur-
bations may only rarely disrupt a complex system, they can
propagate through the network as the system accommodates to a
new equilibrium. This in turn often leads to system-wide
reconfigurations that can manifest themselves as genetic dis-
eases1,2, power outages3,4, extinction cascades5,6, traffic
congestions7,8 and other forms of large-scale failures9,10.

A fundamental characteristic of most large complex networks,
both natural and man-made, is that they operate in a
decentralized way. On the other hand, such networks have
generally either evolved or been engineered to inhabit stable states
in which they perform their functions efficiently. The existence of
stable states indicates that arbitrary initial conditions converge to
a relatively small number of persistent states, which are generally
not unique and can change in the presence of large perturbations.
Because complex networks are decentralized, upon perturbation
the system can spontaneously go to a state that is less efficient
than others available. For example, a damaged power-grid
undergoing a large blackout may still have other stable states in
which no blackout would occur, but the perturbed system may
not be able to reach those states spontaneously. We suggest that
many large-scale failures are determined by the convergence of
the network to a ‘bad’ state rather than by the unavailability of
‘good’ states.

Here we explore the hypothesis that one can design physically
admissible compensatory perturbations that can be used to direct
a network to a desirable state even when it would spontaneously
go to an undesirable (‘bad’) state. An important precedent comes
from the study of metabolic networks of single-cell organisms,
where perturbations caused by genetic or epigenetic defects can
lead to non-viable strains. The knockdown or knockout of
specific genes has been predicted to mitigate the consequences of
such defects and often recover the ability of the strains to grow11.
Another precedent comes from the study of food-web networks,
where perturbations caused by human or natural forces can lead
to the subsequent extinction of multiple species. Recent research
predicts that a significant fraction of these extinctions can
be prevented by the targeted suppression of specific species in
the system12. These findings have analogues in power grids,
where perturbations caused by equipment malfunction/damage
or operational errors can lead to large blackouts, but appropriate
shedding of power can substantially reduce subsequent
failures13,14. Therefore, the concept underlying our hypothesis
is supported by recent research on physical15,16, biological11,17

and ecological networks12. The question we pose is whether
compensatory perturbations can be systematically identified for a
general network of dynamical units.

Results
Control strategy for networks. Our solution to this problem is
based on the insight that associated with each desirable state
there is a region of initial conditions whose trajectories converge
to it—the so-called ‘basin of attraction’ of that state. Given a
network that is at (or will approach) an undesirable state, the
conceptual problem is thus equivalent to identifying a perturba-
tion to the state of the system that can bring it to the attraction
basin of the desired stable state (the target state). Once there, the
system will evolve spontaneously to the target. However, such
perturbations must be physically admissible and are, therefore,
subject to constraints—in the examples above, certain genes can

be downregulated but not overexpressed, the populations of
certain species can only be reduced, and changes in power flow
are limited by capacity and the ability to modify the physical state
of the components. Under such constraints, the identification of a
point within the target’s basin of attraction is a highly non-trivial
task.

Figure 1a–c illustrates the problem that we intend to address.
The dynamics of a network is best studied in the state space,
where we can follow the time evolution of individual trajectories
and characterize the stable states of the whole system. Figure 1a
represents a network that would spontaneously go to an
undesirable state, possibly due to an external perturbation, and
that we would like to bring to a desired stable state by
intentionally perturbing at most three of its nodes (highlighted).
Figure 1b shows how this perturbation, changing the state of the
system from x0 to x00, would lead to an orbit that asymptotically
goes to the target state. As an additional constraint, suppose that
the activity of the nodes is non-negative and can only be reduced
(not increased) by this perturbation. Then, in the subspace
corresponding to the nodes that can be perturbed, the set of
points S that can be reached by eligible perturbations forms a
cubic region, as shown in Fig. 1c. The target state itself is outside
this region (and, in fact, assumed to be outside the subspace of
the three accessible nodes), meaning that it cannot be directly
reached by any eligible perturbation. However, its basin of
attraction may have points inside the region of eligible
perturbations (Fig. 1c), in which case the target state can be
reached by bringing the system to one of these points; once there,
the system will spontaneously evolve towards the target state.
This scenario leads to a very clear conclusion: a compensatory
perturbation exists if and only if the region formed by eligible
perturbations overlaps with the basin of attraction of the target.

However, there is no general method to identify basins of
attraction (or this possible overlap) in the high-dimensional state
spaces typical of complex networks (even though the desired
stable states themselves are usually straightforward to identify).
Despite significant advances, existing numerical techniques are
computationally prohibitive and analytical methods, such as
those based on Lyapunov stability theorems, offer only rather
conservative estimates and are not yet sufficiently developed to be
used in this context18–20. Accordingly, our approach does not
assume any information about the location of the attraction
basins and addresses a problem that cannot be solved by existing
methods from control theory, optimization or network theory
(Supplementary Discussion).

Systematic identification of compensatory perturbations. The
dynamics of a complex network can often be represented by a set
of coupled ordinary differential equations. We thus consider
an N-node network whose n-dimensional dynamical state x is
governed by

dx
dt

¼ FðxÞ: ð1Þ

We focus on models of this form because of their widespread use
and availability in modelling real complex networks. However,
with minor modification, the approach we develop remains
effective in situations that, due to stochasticity and/or parameter
uncertainty, depart from idealized deterministic models
(Supplementary Discussion, Supplementary Figs S1–S3).

The example scenario we envision is the one in which the
network has been perturbed at a time before t0, bringing it to a
state x0¼ x(t0) in the attraction basin O(xu) of an undesirable
state xu. We seek to identify a judiciously chosen perturbation
x0-x00 to be implemented at time t0 so that x00 belongs to the
basin of attraction O(x*) of a desired state x*. For simplicity, we
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assume that xu and x* are fixed points, although the approach we
develop extends to other types of attractors. In the absence of any
constraints, it is always possible to perturb x0 such that x00 � x*.
However, as discussed above, usually only constrained compen-
satory perturbations are allowed in real networks. These
constraints encode practical considerations and often take the
form of mandating no modification to certain nodes, while
limiting the extent and direction of the changes in others. The
latter is a consequence of the relative ease of removing versus
adding resources to real systems. We thus assume that the
constraints on the eligible perturbations can be represented by
vector expressions of the form

gðx0; x00Þ � 0 and hðx0; x00Þ¼ 0; ð2Þ
where the equality and inequality are interpreted to apply
component-wise. We propose to construct compensatory pertur-
bations iteratively from small perturbations, as shown in Fig. 1d,e.
Given a dynamical system in the form (1) and an initial state x0 at
time t0, a small perturbation dx0 evolves in time according to
dx(t)¼M(x0, t) � dx0. The matrix M(x0, t) is the solution of the
variational equation dM/dt¼DF(x) �M subject to the initial

condition M(x0, t0)¼ 1. We can use this transformation to
determine the perturbation dx0 to the initial condition x0 (at
time t0) that, among the admissible perturbations, will render
x(tc)þ dx(tc) closest to x* (Fig. 1d), where tc is the time of closest
approach to the target along the orbit. Large perturbations can
then be built up by iterating the process: every time dx0 is
calculated, the current initial state, x00, is updated to x00 þ dx0,
and a new dx0 is calculated starting from the new initial
state (Fig. 1e). A visualization of this iterative procedure
in two dimensions can be found in the Supplementary
Information (Supplementary Discussion, Supplementary Fig. S4,
Supplementary Movie). Before proceeding, we stress that the
compensatory perturbation—the only intervention to be actually
implemented in the network—is defined by the sum of all dx0.

After each iteration, we test whether the new state reaches the
target (Methods). If so, a compensatory perturbation has been
found and is given by x00 � x0. Now, it may be the case that no
compensatory perturbation can be found, for example, if the
feasible region S does not intersect the target basin O(x*). To
account for this, we automatically terminate our search if the
system is not controlled within a sufficiently large number of
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Figure 1 | Schematic illustration of the network control problem. (a) Network portrait. The goal is to drive the network to a desired state by perturbing

nodes in a control set—a set consisting of one or more nodes accessible to compensatory perturbations. (b) State space portrait. In the absence of control,

the network at an initial state x0 evolves to an undesirable equilibrium xu in the n-dimensional state space (red curve). By perturbing the initial state

(orange arrow), the network reaches a new state x00 that evolves to the desired target state x* (blue curve). (c) Constraints. In general, there will be

constraints on the types of compensatory perturbations that one can make. In this example, one can only perturb three out of n dimensions (equality

constraints), which we assume to correspond to a thee-node control set, and the dynamical variable along each of these three dimensions can only be

reduced (inequality constraints). This results in a set of eligible perturbations, which in this case forms a cube within the three-dimensional subspace of the

control set. The network is controllable if and only if the corresponding slice of the target’s basin of attraction (blue volume) intersects this region of eligible

perturbations (grey volume). (d, e) Iterative construction of compensatory perturbations. (d) A perturbation to a given initial condition (magenta arrow)

results in a perturbation of its orbit (green arrow) at the point of closest approach to the target. At every step, we seek to identify a perturbation to the

initial condition that brings the closest-approach point of the orbit closer to the target. (e) This process generates orbits that are increasingly closer to the

target (dashed curves), and is repeated until a perturbed state x00 is identified that evolves to the target. The resulting compensatory perturbation x0-x00
(orange arrow) brings the system to the attraction basin of the target without any a priori information about its location, and allows directing the network to

a state that is not directly accessible by any eligible perturbation.
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iterations (Methods). We have, however, benchmarked our
approach using randomly generated networks in which compen-
satory perturbations are known to exist under the given
constraints (Supplementary Discussion). Our method succeeds
in identifying them in 100% of cases, thus providing confidence
that the approach introduced here can indeed be used to control a
network when it is theoretically possible to do so. We note that
our approach is effective even when it has to cross multiple
attraction basins (Supplementary Fig. S4b) and when the
basin boundaries are complex (Supplementary Discussion,
Supplementary Figs S5 and S6).

The above benchmark also confirms the efficiency of our
algorithm (Supplementary Figs S7 and S8), for which the
theoretical running time is O(n2.5), where n is the number of
dynamical variables in the network (Supplementary Discussion).
Computationally, this is not onerous, especially since the control
of a network requires the identification of only one compensatory
perturbation. This should be contrasted with the OðexpðnÞÞ time
that would be required to determine the basin of attraction at
fixed resolution by direct sampling of the state space.

Application to the identification of therapeutic interventions.
We apply our approach to the identification of potential ther-
apeutic targets in a form of human blood cancer (large granular
lymphocytic leukaemia) caused by the abnormal survival of cer-
tain white blood cells (cytotoxic T cells). These T cells are part of
the immune system and are produced to attack infected or dys-
functional cells. Under normal conditions, once the compromised
cells have been removed, a significant portion of the T cells

undergo programmed cell death (apoptosis). The disease, T-LGL
leukaemia, results precisely from the failure of T cells to undergo
apoptosis, and the consequent negative impact they have on
normal cells of the body21. The identification of potential
therapeutic interventions is important as, at present, there is no
curative treatment for this disease.

To formulate the problem, we use the 60-node survival
signalling network model of T cells reconstructed and validated in
Zhang et al.22, where nodes correspond to proteins, transcripts,
inputs (for example, external stimuli), and cellular concepts (for
example, apoptosis). The state of each node is represented by a
continuous variable between 0 and 1 (Methods). According to
this model, normal and cancer states correspond to two different
types of stable steady states. Potential curative interventions are
those that can bring the system from a cancerous or precancerous
state (those in the attraction basin of a cancer state) to the
attraction basin of the normal state, which leads to apoptosis.
Previous experimental and computational studies have identified
19 nodes in this network as promising targets for curative
interventions based on single, permanent reversals of the
corresponding (binary) gene or protein activity in the cancer
state23. The question we pose is whether novel interventions exist
among the remaining nodes in the network (potentially involving
multiple nodes), and furthermore, whether they can be effective
with only the temporary, one-time perturbations considered here.
Figure 2 shows the 19 previously characterized targets (grey), 10
nodes representing static inputs (blue) or concepts (green), and
the remaining 31 nodes (yellow–red) that we use to search for
novel interventions.
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Figure 2 | T-cell survival signalling network governing the development of T-LGL leukemia. Conceptual nodes, input nodes and previously identified

potential therapeutic targets are shown in green, blue and grey, respectively. The edges represent interactions, with the arrowheads and diamonds

corresponding to activation and inhibition, respectively. The inhibitory edges that exist between Apoptosis and all non-input nodes are not shown for clarity.

The 31 nodes coloured yellow–red represent proteins and transcripts considered in our search for novel therapeutic targets, and are colour-coded based on

the frequency with which they appear (participation rate) in the smallest control sets that we identify to successfully direct the network from a

precancerous state to the attraction basin of the normal cell state. Given a compensatory perturbation x0-x00 (such that x0 is a precancerous state and x00
lies in the basin of attraction of the normal cell state), we find small control sets by first sorting the 31 nodes under consideration in decreasing order based

on the amount they were perturbed, and then searching for a new compensatory perturbation involving only the first k nodes in this list. Through bisection

on the number k, we are able to quickly converge to the ‘minimal’ control set (with respect to this ordering) that can be used to rescue the given

precancerous state. This procedure is remarkably effective at producing small control sets—the average size is 3.4 (with s.d. 3.7).
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We first allowed all of these 31 accessible nodes to be
perturbed, under the constraints that their state variables are kept
within 0 and 1, and that the other nodes are not perturbed.
Because it is important to consider intermediary cell states that
lead to the cancer state, we sought to identify compensatory
perturbations for 10,000 such states selected from a uniform
sampling of the state space. Of these, 67% are successfully rescued
using our approach. As shown in Fig. 3, a number of striking
patterns emerge in the interventions we found. Most nodes are
consistently suppressed, which may in part be attributed to the
fact that all nodes other than Apoptosis are inactive in the target
state, but this is also true for nodes that are inactive in the cancer
state. In addition, there are several nodes whose activity is
consistently enhanced, despite the fact that they are active in the
cancer state. These counterintuitive interventions are unlikely to
be identified by simple inspection of the network or its stable
states.

We can reduce the number of nodes that are perturbed by
taking advantage of the reasonable expectation that the nodes that
have been perturbed by the largest amount should dominate the
membership of the smallest successful control sets (Fig. 2).
Specifically, we find that we can rescue the same precancerous
states above with an average (standard deviation) of only 3.4 (3.7)
nodes. These interventions involve a small number of genes but at
the same time are multi-target, which is desirable given that the
cure for currently incurable diseases is believed to reside in the
coordinated modulation of multiple cellular components24. Such
interventions are prohibitively difficult to identify experimentally
by exhaustive search in the absence of computational predictions
such as ours. Moreover, there is a high degree of overlap between
these reduced control sets (Fig. 2), with nodes GZMB and FasT
participating in nearly half of them. These nodes, and other
frequently occurring nodes such as IAP and Fas, are attractive
candidates for experimental verification. Some of these genes
work in tandem, with control sets formed by FasT and Fas alone
predicted to rescue over 13% of all cases. Our analysis suggests
that interventions can be effective even if they are temporary,
which, because they can be more easily implemented
pharmacologically, are preferable to potential therapies based
on permanent changes to a node state.

Reprogramming in associative memory networks. In an asso-
ciative memory network, each memorized pattern is encoded as
an attractor. An important problem in this context concerns the
identification of constrained perturbations that cause the network
to transition from a given pattern to a different specific pattern.
To illustrate this problem, we consider a model of associative
memory consisting of N identical coupled oscillators25,

dyi
dt

¼
XN

j¼ 1

Cij sinðyj � yiÞþ
e
N

XN

j¼ 1

sin 2ðyj � yiÞ; ð3Þ

where yi is the phase variable of oscillator i, Cij are the elements of
the interaction matrix, and e4 0 is the strength of the second-
order coupling term. Up to translation of all oscillators by a
constant phase, system (3) has 2N fixed points, corresponding to
the phase-locked solutions in which |yj� yi|¼ 0 or |yj� yi|¼ p
for every i and j. The attractors in this system consist of all such
fixed points that are stable25. This way, each asymptotic state of
the network is identified uniquely with a binary pattern. In order
to preferentially stabilize the desired states, the network is wired
according to Hebb’s learning rule Cij ¼ 1

N

Pp
m¼ 1 xmi x

m
j , where

nm ¼ðxm1 ; :::; x
m
NÞ with xmi ¼ � 1 (i¼ 1,...,N, m¼ 1,...,p) is the set

of p binary input patterns of length N to be stored26. As an
example, we consider a network of size N¼ 64, for e¼ 0.8, storing
p¼ 7 patterns that represent the letters of the word ‘NETWORK’.
The resulting network is depicted in Fig. 4a.

We seek to identify perturbations that induce transitions
between the memorized patterns while only changing oscillators
representing ‘off ’ pixels, thereby requiring the existing pattern
to be preserved. Figure 4b shows the results for initial/target
state pairs corresponding to consecutive letters of ‘NETWORK’.
In every case, the constraints on the eligible perturbations forbid
reaching the target state directly. Nonetheless, in every case, the
control procedure succeeds in identifying a perturbed initial state
(bottom row) that spontaneously evolves to the target or to a
similar pattern with a small number of binary errors (grey)—and
which is expected to become smaller in larger networks (Fig. 4c).
Thus, even if the basin of attraction of the target state cannot be
reached by any eligible perturbation, it may nonetheless be
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Figure 3 | Size and orientation of compensatory perturbations in the T-cell survival signalling network. Each column corresponds to one of the 31 nodes

under consideration as potential therapeutic targets, which are ordered according to their predicted activity in the cancer state. The data represent a sample

of 10,000 precancerous network states, 6,731 of which are successfully rescued through compensatory perturbations identified by our approach. The top

panel shows the relative fraction of the successful interventions in which the activity of each individual node is increased (green) versus decreased (red).

The corresponding colours in the bottom panel represent the average preperturbation activity and the orientation and size of the compensatory

perturbation. Nodes are marked as either OFF or ON in the cancer state when their activity isE 0 orE 1 in that state, respectively (the only exceptions are

the nodes CTLA4 and TCR, whose activity is E 0.5 in the cancer state). Remarkably, the interventions are such that a number of nodes are consistently

perturbed toward, rather than away from, their activity levels in the undesirable (cancer) state.
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possible to drive the network to a similar state using our control
procedure.

Control of desynchronization instabilities in power-grid
networks. In the design and operation of power-grid net-
works, an important consideration is the ability of the power
generators to maintain synchrony following perturbations27,28.
Desynchronization instabilities have in fact been implicated in
cascading failures underlying major recent blackouts29. The state of
the system is assumed to be determined by the swing equation,

2Hi

os

doi

dt
¼Pmi � Pei;

ddi
dt

¼oi; i¼ 1; . . . ;N; ð4Þ

where N is the number of generators in the network and di and oi are
the phase and angular frequency of generator i, respectively. The
constant Hi is the inertia parameter of the generator, Pmi is the
mechanical input power from the generator, and
Pei ¼ �Di oi þ

PN
j¼ 1½D0

ij sinðdj � diÞþD00
ij cosðdj � diÞ� is the

power demanded of the generator by the network30. The network
structure and impedance parameters are incorporated into the
matrices D0 ¼ (D0

ij) and D00 ¼ (D00
ij), and the damping is accounted

for by the coefficient Di. In equilibrium, Pmi ¼ Pei and all generators
operate in a synchronous state, characterized by o1¼o2¼y¼oN.
We illustrate our control procedure on the New England power-grid
model31, which operates at the nominal synchronization frequency
os¼ 2p� 60 rad s� 1 and consists of 10 generator nodes, 39 load
nodes, and 46 transmission lines (Fig. 5a). We implement this simple
model for the parameter values given in Susuki et al.30.

For an initially steady-state solution determined by power
flow calculations, we simulate single-line faults caused by

short circuits to the ground for a period of 0.6 s, during
which the corresponding impedance is assumed to be very small
(z¼ 10� 9j) and at the end of which the fault is cleared by
disconnecting the line. Figure 5 shows one such fault on the line
connecting nodes 16 and 17 (Fig. 5a) and the corresponding time
evolution of the di and oi for all generators in the network
(Fig. 5b–d). By the time the fault is cleared, the generators have
lost synchrony, and in the absence of any intervention, they
continue accelerating away from one another (Fig. 5b). None-
theless, the perturbed network admits a stable steady-state
synchronous solution characterized by a new set of generator
phases and a synchronization frequency only slightly different
from os. In asking whether loss of synchrony can be averted by
an appropriate compensatory perturbation following the fault, for
illustrative purposes we assume that direct modification of the
generator phases di is prohibited and only perturbations to the
generator frequencies oi are allowed.

A naive approach would be to reset the generator frequencies
to the corresponding values at the target state after the fault,
but, for not accounting for the full 2N dimensions of the state
space, this approach fails and the system still loses synchrony,
albeit at a later time (Fig. 5c). Using our iterative network control
procedure, however, one can identify a post-fault intervention
that maintains bounded generator oscillations in the short term
(Fig. 5d, left), and eventually causes the perturbed network to
evolve to the desired target state (Fig. 5d, right). Out of the 92
possible single-line fault perturbations of the type described
above, 43 cause the perturbed network to evolve to an undesirable
final state in which the generators have lost synchrony. Of these,
27 cases can be controlled under the constraints described above.
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Figure 4 | Control in an associative memory network. (a) Wiring diagram of a network of N¼ 64 oscillators storing patterns representing the seven

letters in the word ‘NETWORK’, where red (blue) lines denote connections of positive (negative) weight. (b) Examples of transitions between memorized

patterns induced by compensatory perturbations. Taking an initial state h0 corresponding to a letter in the word ‘NETWORK’, we attempt to find a

perturbation h0 ! h00 (downward arrows) that then causes the network to spontaneously transition to the next letter under time evolution (diagonal

arrows). Each oscillator is colour-coded based on its angular distance from oscillator 1 (a, upper left), while the errors between the final state that is actually

reached and the state that was targeted are indicated in grey. In each of the six cases, the control procedure successfully brings the system to the target or

to a visually similar stable state with few such errors. (c) Similar analysis shows that these errors become negligible as the size of the network is increased

relative to the number of stored patterns. The curves indicate the average error (measured as the fraction of mismatched pixels) between the target state

and the final stable state actually reached using our control procedure. This average error is shown as a function of the network size N, for networks storing

2 (blue), 5 (green) and 10 (red) random patterns, with each of the N pixels having equal probability of being ±1. The coupling strength e is 0.2, 0.4 and

0.8, respectively. Every point represents a set of 1,000 independent network realizations, each sampled once, where the initial and target states are taken at

random among the stored patterns.
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In each of the cases in which our method fails to find a
compensatory perturbation, naive heuristic interventions—
specifically, resetting the generators identically to either the
nominal frequency or the synchronization frequency at the target
state—also fail, suggesting that these perturbed networks may be
impossible to control under the given constraints.

Discussion
The dynamics of large natural and man-made networks are
usually highly nonlinear, making them complex not only with
respect to their structure but also with respect to their dynamics.
Nonlinearity has been the main obstacle to the control
of such systems, and this is well reflected in the state of the art
in the field32,33. Progress has been made in the development of
algorithms for decentralized communication and coordination34,
in the manipulation of Boolean networks35, in network queue
control problems36, and in other complementary areas. Methods
have been developed for the control of networks hypothetically
governed by linear dynamics37. However, although linear
dynamics may approximate an orbit locally, control trajectories
are inherently nonlocal38; moreover, linear dynamics does not
permit the existence of the different stable states observed in
real networks and does not account for basins of attraction and
other global properties of the state space. These global properties
are crucial because they underlie network failures and, as shown
here, provide a mechanism for network control. This can be

achieved under rather general conditions by systematically
designing compensatory perturbations that take advantage of
the full basin of attraction of the desired state, thus capitalizing on
(rather than being obstructed by) the nonlinear nature of the
dynamics.

Applications show that our approach is effective even when
compensatory perturbations are limited to a small subset of all
nodes in the network, and when constraints forbid bringing the
network directly to the target state. From a network perspective,
this frequently leads to counterintuitive situations in which the
compensatory perturbations are in an opposite direction from
that towards the target state—for example, suppressing nodes that
are already less active than at the target. These results are
surprising in light of the usual interpretation that nodes represent
‘resources’ of the network, to which we then intentionally (albeit
temporarily) inflict damage with a compensatory perturbation.
The same holds true for the converse, as demonstrated in the
T-cell survival signalling network. There the goal is to induce cell
death, which, counterintuitively, is often achieved through
perturbation towards the (active) cancer state. From the state
space perspective, the reason for the existence of such locally
deleterious (beneficial) perturbations that have globally beneficial
(deleterious) effects is that the basin of attraction, being nonlocal,
can extend to the region of feasible perturbations even when the
target itself does not.

We have motivated our problem assuming that the network is
away from its desired equilibrium due to an external
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Figure 5 | Control of the New England power-grid test system following a fault. (a) Schematic diagram of the network. The generators (the N¼ 10

dynamical nodes in the network) are highlighted in blue, and the non-generator nodes appear in grey. The simulated fault is on the line connecting nodes 16

and 17 (red). It consists of short-circuiting the end 16 of the line with the ground for the period 1.0–1.6 s and subsequently removing the affected line from

the network. (b–d) Dynamics of the generators, characterized by the phases di (upper panels) and angular frequencies oi (lower panels): (b) without any

control perturbation, (c) with a naive intervention based on resetting the generators’ frequencies to the frequency of the target state, and (d) with a

compensatory perturbation identified by our control procedure. The fault induces a desynchronization (b), which is not remediated by the naive

intervention (c), but the iterative control procedure identifies a configuration of generator frequencies that maintains bounded swings in the short term

(d, left), and ultimately causes the system to evolve to the new synchronous (target) state (d, right). This simplified example was chosen to have very large

frequency deviations and transient period to facilitate visualization. In a realistic setting, the interventions can be implemented by tuning the damping of the

generators.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms2939 ARTICLE

NATURE COMMUNICATIONS | 4:1942 |DOI: 10.1038/ncomms2939 | www.nature.com/naturecommunications 7

& 2013 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


perturbation. In particular, as shown in our example of
desynchronization failures in a power-grid, our approach can
be used for the real-time rescue of a network, bringing it to a
desirable state before it reaches a state that can be temporarily or
permanently irreversible. We suggest that this can be important
for the conservation of ecological systems and for the creation of
self-healing infrastructure systems. On the other hand, as
illustrated in our associative memory example, our approach
also applies to move the network from one stable state to another,
thus providing a mechanism for ‘network reprogramming’.

As a broader context to interpret the significance of this
application, consider the reprogramming of differentiated
(somatic) cells from a given tissue into a pluripotent stem cell
state, which can then differentiate into cells of a different type of
tissue. The seminal experiments demonstrating this possibility
involved continuous overexpression of specific genes39, which is
conceivable even under the hypothesis that cell differentiation is
governed by the loss of stability of the stem cell state40. However,
the recent demonstration that the same can be achieved by
the temporary expression of few proteins41 or transient
administration of messenger RNA42 indicates that the stem cell
state may have remained stable (or metastable) after
differentiation, allowing interpretation of the reprogramming
process in the context of the interventions considered here. While
induced pluripotency is an example par excellence of network
reprogramming, the same concept extends far beyond this
particular system. Taken together, our results provide a new
foundation for the control and rescue of network dynamics and,
as such, are expected to have implications for the development of
smart traffic and power-grid networks, of ecosystems and
Internet management strategies, and of new interventions to
control the fate of living cells.

Methods
Identification of compensatory perturbations. We identify compensatory per-
turbations iteratively as follows. Given the current initial state of the network, x00,
we integrate the system dynamics over a time window t0 r tr t0þT to identify
the time of the orbit’s closest approach to the target, tc� arg min | x*� x(t)|. We
then integrate the variational equation up to this time to obtain the corresponding
variational matrix, M(tc), which maps a small change dx0 to the initial state of the
network to a change dx(tc) in the resulting perturbed orbit at tc according to
dx(tc)¼M(tc) � dx0. This mapping is used to select an incremental perturbation dx0
to the current initial state that minimizes the distance between the perturbed orbit
and the target at time tc, subject to the constraints (2) on the eligible perturbations,
as well as additional constraints on dx0 to ensure the validity of the variational
approximation (Constraints on incremental perturbations, below). This selection is
performed via a nonlinear optimization (Nonlinear optimization, below). The
initial condition is then updated according to x00-x00 þ dx0, and we test whether
the new initial state lies in the target’s basin of attraction by integrating the system
dynamics over a long time t. If the system’s orbit reaches a small ball of radius k
around x* within this time, we declare success and recognize x0� x00 as a com-
pensatory perturbation (for the updated x00). If not, we calculate the time of closest
approach of the new orbit and repeat the procedure, up to a maximum number I of
iterations.

Constraints on incremental perturbations. The incremental perturbation at the
point of closest approach, dx(tc), selected under constraints (2) alone will generally
have a non-zero component along a stable subspace of the orbit x(t), which will
result in dx0 larger than dx(tc) by a factor of up to Oðexp jltcs ðtc � t0ÞjÞ, where ltcs is
the finite-time Lyapunov exponent of the eigendirection corresponding to the
eigenvalue ofM(x0, tc) with smallest-magnitude real part. In a naive implementation
of this algorithm, to keep dx0 small for the linear transformation to be valid, the size
of dx(tc) would be negligible, leading to negligible progress. This problem is avoided
by optimizing the choice of dx(tc) under the constraint that the size of dx0 is
bounded above. Another potential problem is when the perturbation causes the orbit
to cross an intermediate basin boundary before reaching the final basin of attraction.
All such events can be detected by monitoring the difference between the linear
approximation and the full numerical integration of the orbit, without requiring any
prior information about the basin boundaries. Boundary crossing is actually not a
problem because the closest approach point is reset at each iteration and, in parti-
cular, on the new side of the basin boundary. To assure that the method will make
satisfactory progress at each iteration, we solve the optimization problem under the

constraint that the size of dx0 is also bounded below, which means that we accept
increments dx0 that may temporarily increase the distance from the target. These
upper and lower bounds can be expressed as

E0 � j dx0 j � E1: ð5Þ
This can lead to jdxðtcÞ j	 E1 due to components along the unstable subspace, but
in such cases the vectors can be rescaled after the optimization. At each iteration, the
problem of identifying a perturbation dx0 that incrementally moves the orbit toward
the target under constraints (2) and (5) is then solved as a constrained optimization
problem. To avoid back-and-forth oscillations, we require the inner product between
the two consecutive increments dx0 to be positive. The resulting iterative procedure
behaves well as long as j~dxðtcÞ�Mðx0; tcÞ � dx0 j ¼Oðj dx0 j2Þ, which can be
assured by properly choosing E0 and E1, where ~dxðtcÞ is the actual change in the orbit
at tc measured when the orbit is integrated anew at the subsequent iteration. In
practice, the approach does not depend critically on very accurate forecasting of
dx(tc) at any single iteration so long as it moves the orbit closer to the target, and it is
observed to be effective for a rather wide range of parameters E0 and E1.

Nonlinear optimization. The optimization step of the iterative control
procedure consists of finding the small perturbation dx0 that minimizes the
remaining distance between the target, x*, and the system orbit x(t) at its time
of closest approach, tc. Constraints are used to define the admissible perturbations
(2) and also, as described in the previous paragraph, to limit the magnitude of dx0
(5). The optimization problem to identify dx0 can then be succinctly written as:

min jx
 � ðxðtcÞþMðx00; tcÞ � dx0Þ j ð6Þ

s:t: gðx0; x00 þ dx0Þ � 0 ð7Þ

hðx0; x00 þ dx0Þ¼ 0 ð8Þ

E0 �jdx0 j � E1 ð9Þ

dx0 � dxp0 � 0; ð10Þ
where (10) is enforced starting from the second iteration, and dxp0 denotes the
incremental perturbation from the previous iteration. Formally, this is a nonlinear
programming problem, the solution of which is complicated by the non-convexity
of the constraint (9) (and possibly (7) and (8)). Nonetheless, a number of algo-
rithms have been developed for the efficient solution of nonlinear programming
problems, among them sequential quadratic programming43. This algorithm solves
(6) subject to (7)–(10) as the limit of a sequence of quadratic programming
subproblems, in which the constraints are linearized in each substep. For all
calculations, we use the sequential quadratic programming algorithm44

implemented in the SciPy scientific programming package (http://www.scipy.org/).
In all systems, we use dimensionless distances. In the case of the power-grid
network, this is implemented by normalizing frequency by the target frequency,
which further avoids disparate scales between the frequency and phase variables.
More generally, while the norm in (6) may denote the usual Euclidean norm for
most systems, there is nothing in our formulation of the control procedure that
prohibits optimizing closeness according to a different metric in a particular
network, especially if the dynamical variables represent different quantities or are
otherwise not of the same order.

Values of parameters. For the values of the parameters k, t, I, E0, E1 and T used in
the example applications of this paper, as well as criteria for choosing their values
in the general case, we refer the reader to the Supplementary Methods and
Supplementary Table S1.

T-cell survival signalling network. The network consists of 60 nodes, 54 of which
are equipped with dynamics and represent the state of the network, while 6 are
static input nodes (Stimuli, TAX, CD45, PDGF, Stimuli2 and IL15)22,23. Following
Zhang et al.22 and Saadatpour et al.23, we set Stimuli, IL15 and PDGF at ON (one)
and set TAX, CD45 and Stimuli2 at OFF (zero) for all simulations. We translate the
Boolean network dynamics given in Saadatpour et al.23 into an equivalent
continuous form using the method described in Wittmann et al.45 The state
variable xi representing the activity of each node is thus allowed to assume values in
the range [0,1]. The associated dynamics follows

_xi ¼Biðf ðx1Þ; . . . ; f ðxN ÞÞ� xi: ð11Þ
Here Bi is a continuous analogue of the discrete Boolean update rule for node i,
which would take the current state (ON or OFF) of all nodes as an input and
output the state of node i at the next time step. The function Bi is obtained via
multilinear interpolation of the associated logical function between the ‘corners’ of
the N-dimensional unit cube (in which the value of each node is either 0 or 1). To
capture the switch-like behaviour observed in signalling circuits, the state of each
node is passed through a sigmoidal (Hill-type) function f(x)¼ x4/(x4þ k4) before it
is used as an input to the continuous logical gates Bi. Nodes are considered to be
ON (OFF) if the associated xi is significantly above (below) the threshold k, which
we take to be 0.5. The generation of the continuous model dynamics was done
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automatically with the software package Odefy46. We observe three stable fixed
points in the network. One fixed point corresponds to the normal cell state
(the target state in our simulations), in which the node representing apoptosis is
ON and all other dynamical nodes are OFF. The two other fixed points are
biologically equivalent (differing only by node P2, which can be either ON
or OFF) and correspond to the cancer state. The three attractors, as defined by the
associated ON/OFF states of the individual nodes, are identical to those found in
Saadatpour et al.23.
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