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Clusterin and LRP2 are critical components of
the hypothalamic feeding regulatory pathway
So Young Gil1, Byung-Soo Youn2, Kyunghee Byun3,4, Hu Huang5, Churl Namkoong1, Pil-Geum Jang1,

Joo-Yong Lee1, Young-Hwan Jo6, Gil Myoung Kang1, Hyun-Kyong Kim1, Mi-Seon Shin7, Claus U. Pietrzik8,

Bonghee Lee3,4, Young-Bum Kim3,5 & Min-Seon Kim1,7

Hypothalamic feeding circuits are essential for the maintenance of energy balance. There

have been intensive efforts to discover new biological molecules involved in these pathways.

Here we report that central administration of clusterin, also called apolipoprotein J,

causes anorexia, weight loss and activation of hypothalamic signal transduction-activated

transcript-3 in mice. In contrast, inhibition of hypothalamic clusterin action results in

increased food intake and body weight, leading to adiposity. These effects are likely mediated

through the mutual actions of the low-density lipoprotein receptor-related protein-2, a

potential receptor for clusterin, and the long-form leptin receptor. In response to clusterin, the

low-density lipoprotein receptor-related protein-2 binding to long-form leptin receptor is

greatly enhanced in cultured neuronal cells. Furthermore, long-form leptin receptor deficiency

or hypothalamic low-density lipoprotein receptor-related protein-2 suppression in mice leads

to impaired hypothalamic clusterin signalling and actions. Our study identifies the hypotha-

lamic clusterin–low-density lipoprotein receptor-related protein-2 axis as a novel anorexigenic

signalling pathway that is tightly coupled with long-form leptin receptor-mediated signalling.
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O
besity has become one of the most common metabolic
disorders worldwide1. Obesity results from chronic
excess energy intake over energy expenditure.

The hypothalamus, located at the base of brain, has a key role
in the physiologic regulation of energy intake and expenditure2.
An important component of this regulation is the ability of the
hypothalamus to sense metabolic signals originating from
peripheral organs, such as adipose tissue and the
gastrointestinal tract2. Leptin is a canonical weight-regulatory
hormone that transduces adiposity signals to the hypothalamus3.
By binding the long-form leptin receptor (LepRb) on
hypothalamic neurons, leptin activates the Janus kinase 2—the
signal transduction-activated transcript-3 (Stat3) signalling
cascade4,5. Through this signalling pathway, leptin causes
decreased energy intake and increased energy expenditure.
In contrast to leptin, stomach-derived hormone ghrelin relays a
hunger signal to the hypothalamus, which is partly achieved by
counteracting hypothalamic leptin signalling6.

Numerous hypothalamic intrinsic factors (melanocortins,
Agouti-related protein, neuropeptide Y, melanin-concentrating
hormone, endocannabinoids, serotonin, and so on) also have an
important role in central regulation of energy metabolism2,5.
Leptin and ghrelin exert their hypothalamic actions through
modulation of these intrinsic factors2. Previous studies have
demonstrated an involvement of apolipoproteins in hypothalamic
appetite-regulatory pathways. Apolipoprotein AIV, D and E are
produced in the hypothalamus and their expression levels
are controlled by leptin7–10. Moreover, central administration
of these apolipoproteins causes anorexia and weight loss in
rodents7,9,10, indicating that hypothalamic apolipoproteins
function as an intrinsic anorexigenic factor. However, the
receptors and signalling pathways mediating these actions are
entirely unknown.

Clusterin, also known as apolipoprotein J (Apo-J), is a
sulphated glycoprotein that is widely distributed in tissues,
body fluids and fluid–tissue interfaces11,12. Clusterin has been
implicated in a number of biological processes, such as immune
modulation, sperm maturation, lipid transportation,
neurodegeneration and cancer cell survival13–17. Interestingly,
clusterin has been identified as a plasma leptin-binding partner
and has been shown to modulate leptin signalling in LepRb-
expressing cell lines18. Moreover, clusterin mRNA is highly
expressed in the hypothalamic areas19 that have a central role in
the regulation of body weight and energy metabolism. However,
no data are available about clusterin action on hypothalamic
control of energy metabolism.

LRP2 (low-density lipoprotein receptor-related protein-2, also
called glycoprotein 330/megalin) is a multiligand endocytic
receptor that belongs to the LRP family proteins20. LRP2 binds
leptin to mediate leptin reuptake in renal tubules and to promote
leptin transport across the choroid plexus21–23, suggesting a
molecular link between LRP2 and leptin. LRP2 was also identified
as an endocytic receptor for clusterin24,25 and our preliminary
data confirmed the mRNA expression of LRP2 in rodent
hypothalamus. In this study we investigated the potential roles
for hypothalamic clusterin and LRP2 in the regulation of energy
homeostasis. Here we demonstrate clusterin and LRP2 are critical
nodes in hypothalamic control of energy metabolism and may
offer a novel target for the treatment of obesity-related metabolic
diseases.

Results
Anorexigenic action of secretory clusterin. Clusterin exists as
two isoforms: a long (70–80 kDa) secretory isoform11 and a short
(B45 kDa) nuclear isoform26. To investigate the effect of

clusterin on food intake and body weight we prepared a
recombinant form of human secretory clusterin, which was
disulphide-linked and glycosylated, similar to endogenous human
plasma clusterin (Supplementary Fig. S1). When administered
into the third cerebroventricle adjacent to the hypothalamus,
clusterin caused potent and prolonged inhibition of fasting-
induced hyperphagia and weight gain (Fig. 1a). Pretreatment by
intracerebroventricular (ICV) injection of clusterin suppressed
hyperphagia induced by orexigenic neuropeptide Y (NPY) and
Agouti-related peptide (AgRP) in freely fed mice (Fig. 1b).
Consistently, continuous ICV infusion of clusterin (2 mg per day)
using an osmotic pump resulted in chronic reduction of food
intake, body weight and epididymal fat mass (Fig. 1c). In contrast,
continuous ICV infusion of a neutralizing anticlusterin antibody
increased food intake and body weight (Fig. 1d), suggesting that
endogenous clusterin may exert anorexigenic and weight-
reducing effects by acting in the hypothalamus.

To exclude the possibility that clusterin-induced anorexia may
be caused by general adverse effects or systemic toxicity, mice
were subjected to a conditioned taste aversion (CTA) test. In
contrast to intraperitoneal (i.p.) injection of lithium chloride, a
well-known CTA inducer, which decreased saccharine
consumption, ICV injection of clusterin had no effect on
saccharine consumption, which indicated that clusterin did not
induce CTA (Fig. 1e). Post brain-injury neuronal death is
reduced in clusterin-deficient mice16; thus, we tested whether
ICV clusterin injection resulted in neuronal cell death in the
hypothalamus. Clusterin treatment did not increase cell apoptosis
in the hypothalamic area (Supplementary Fig. S2), indicating that
clusterin-induced anorexia and weight loss were unlikely due to
neuronal cell death in the hypothalamus.

Metabolic effect of altered hypothalamic clusterin expression.
We next investigated whether modulation of hypothalamic
clusterin expression alters food intake and body weight. To
increase hypothalamic clusterin expression, we administered
adenoviruses expressing rat clusterin–green fluorescent protein
(GFP) recombinant protein (Clu-Ad, 1 ml of 1� 1011 plaque-
forming unit (p.f.u.)) into the bilateral mediobasal hypothalamus.
We also injected the same amount of adenoviruses expressing
GFP as a control and confirmed the proper injection of adeno-
viruses by examining GFP expression in the hypothalamus at the
end of the study (Supplementary Fig. S3). About 30B35% of the
animals were excluded from the data analysis because of failure to
target the mediobasal hypothalamus. Increased hypothalamic
clusterin expression resulted in a decrease in food intake,
body weight and abdominal fat mass (Fig. 2a–c and
Supplementary Fig. S4a).

To suppress hypothalamic clusterin expression, we generated
adenoviruses that expressed small-hairpin RNA specific to mouse
clusterin(Clu-shRNA-Ad). Bilateral injection of Clu-shRNA-Ad
into the mediobasal hypothalamus decreased clusterin expression
by B70% (Supplementary Fig. S4b). In these mice, food intake,
body weight and abdominal fat weight were higher than those in
mice injected with the same dose of adenoviruses expressing GFP
(Fig. 2d–f). Taken together, these findings indicate that changes
in hypothalamic clusterin expression could lead to altered body
weight homeostasis.

Metabolic regulation of hypothalamic clusterin expression.
Given the current evidence for an involvement of endogenous
clusterin in hypothalamic control of energy balance, we examined
clusterin expression levels under different feeding conditions
or in response to metabolic hormones. In normal rats, food
deprivation for 6–24 h resulted in a significant decrease in
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hypothalamic clusterin protein levels, whereas reestablishment
of food intake after a 24-h fast correlated with an increase in
hypothalamic clusterin protein (Fig. 3a,b), suggesting that
increased hypothalamic clusterin in a postprandial state may
contribute to the generation of satiety. Interestingly, the opposite
dynamic was observed for clusterin concentrations in plasma and
cerebrospinal fluid (CSF) in response to feeding/fasting
(Fig. 3a,b). Similar to food intake, ICV administration of leptin
(1 mg) in 24-h-fasted mice increased hypothalamic clusterin
protein levels (Fig. 3c). In contrast, enhanced hypothalamic
clusterin expression in a satiated condition was significantly
decreased by ICV injection of the orexigenic hormone ghrelin
(2 mg; Fig. 3d), suggesting that hypothalamic clusterin expression
levels are under the control of peripheral appetite-regulating
hormones.

Clusterin activates hypothalamic Stat3 signalling. Clusterin–
leptin complexes activate Stat3 signalling in vitro18. To elucidate
the signalling pathway involved in transduction of clusterin
signals in the hypothalamus, immunohistochemical analysis of
activated tyrosine (Tyr705)-phosphorylated Stat3 (phospho-Stat3)
in the hypothalamus of mice was performed 30min after ICV
injection of leptin or clusterin (1 mg each). In agreement with
previous reports4, ICV injection of leptin stimulated phospho-
Stat3 expression in multiple areas of the hypothalamus, including
the arcuate nucleus (ARC) and ventromedial nucleus (Fig. 4a,b).
By comparison, ICV injection of clusterin resulted in strong Stat3
activation that was confined to the hypothalamic ARC (Fig. 4a,b).
Double immunohistochemical staining for phospho-Stat3 and
proopiomelanocortin (POMC) showed that similar to leptin,
clusterin activated Stat3 signalling in POMC neurons (Fig. 4c).
Dual assessment of fluorescence in situ hybridization (FISH)
analysis of LepRb expression, followed with assessment of
phospho-Stat3 by fluorescence immunohistochemistry, revealed

that ICV administration of clusterin induced Stat3 activation in
LepRb-expressing hypothalamic neurons, similar to leptin
(Fig. 4c). The ability of clusterin to induce hypothalamic Stat3
activation was completely blocked by prior administration of its
neutralizing antibody (Fig. 4d), suggesting that clusterin-induced
Stat3 activation was not due to non-specific effects.

Hypothalamic LRP2 mediates metabolic effects of clusterin.
Previous studies have shown that clusterin binds to LRP2
(refs 24,25). As LRP2 was expressed in the mouse hypothalamus
and SH-SY5Y neuronal cells (Supplementary Fig. S5), we hypo-
thesized that neuronal LRP2 may function as a receptor of clus-
terin in feeding regulation. The specific binding affinity (Kd) of
clusterin to SH-SY5Y cells was 3.0� 10� 10M (Supplementary
Fig. S6). Clusterin binding was profoundly decreased when
endogenous LRP2 expression was inhibited, suggesting that LRP2
mediates clusterin binding in these neuronal cells. Receptor-
associated protein (RAP) inhibits the binding of ligands to LRP
family proteins27. To investigate whether the hypothalamic
actions of clusterin were mediated by LRP family proteins, RAP
(3 mg) was administered into the cerebroventricle of overnight-
fasted mice 30min before injection of clusterin (1 mg). ICV
injection of RAP alone did not significantly alter food intake.
However, pretreatment with RAP inhibited the effects of
exogenous clusterin on food intake and body weight by more
than 80% when measured 24 h post injection (Fig. 5a,b). This
inhibitory effect of RAP was sustained at 48 h post injection.
Pretreatment with RAP also attenuated hypothalamic Stat3
activation induced by ICV injection of clusterin (Fig. 5c). To
confirm that this inhibitory effect was specific for LRP2, a small
interfering RNA specific to murine LRP2 (1 mmol; Dharmacon)
was injected bilaterally into the mediobasal hypothalamus.
Reduction of hypothalamic LRP2 expression significantly
blunted the effects of ICV injection of clusterin (1 mg) on food
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treatment day. (d) Effects of ICV infusion of an anticlusterin neutralizing antibody (2 mg per day; n¼ 5). *Po0.05 versus IgG on each treatment day.
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significance among the groups was tested using one-way analysis of variance (ANOVA) followed by a post-hoc least significant difference test

(a,b,e). Statistical tests for chronic studies were conducted using repeated ANOVA (c,d). Data represent means±s.e.m.
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intake and Stat3 activation (Fig. 5d,e and Supplementary Fig.
S7a). These findings support a critical role for LRP2 in mediating
the hypothalamic action of clusterin. As a recent study has
demonstrated an involvement of hypothalamic LRP1 in central
leptin signalling and body weight homeostasis28, we examined the
effects of LRP1 inhibition on clusterin-mediated regulation of
feeding behaviour. Hypothalamic LRP1 inhibition significantly

impaired clusterin-induced anorexia and Stat3 activation
(Supplementary Figs S7b and S8). These results indicated that
both LRP1 and LRP2 may have similar functions in hypothalamic
clusterin signalling.

The LRP family proteins have been identified as endocytic
receptors20,24. Traditionally, endocytosis has been viewed as a
mechanism for receptor downregulation, thereby desensitizing
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cells to signalling molecules. However, recent work has shown
that endocytosis is also an essential process in signal transduction
by hormones, growth factors and other cell modulators29.
Intrahypothalamic injection of the clathrin-dependent
endocytosis inhibitor dansylcadaverine (25 pmol) attenuated
anorexia and Stat3 phosphorylation in response to clusterin
(0.5mg; Fig. 5f,g). These findings suggested that endocytosis may
be a pivotal step during the course of clusterin-induced anorexia
and Stat3 activation in the hypothalamus.

Clusterin induces interactions of LRP2 and LepRb. A recent
paper demonstrated a direct interaction between LRP1 and
LepRb (ref. 28). We therefore studied the in vivo dynamics of
LepRb and LRP2 in response to clusterin treatment by using
fluorescence cross-correlation spectroscopy30, wherein interac-
tion strength was measured as a cross-correlation function [G(t)].
In primary cultures of human neuronal cells transiently
transfected with expression vectors for fluorescent fusion
proteins of LepRb (LepRb–EGFP) and LRP2 (LRP2–tagRFP),
treatment with clusterin (1 nM) significantly increased the cross-
correlation coefficient for EGFP and tagRFP compared with the
saline-treated control, suggesting that LRP2 and LepRb physically

interact upon binding to clusterin (Fig. 6a). These data were
further confirmed by a proximity ligation assay showing that
clusterin could rapidly induce the colocalization of LepRb and
LRP2 (Fig. 6b). These findings raised the question as to whether
LepRb could be involved in hypothalamic clusterin signalling
pathway. In LepRb-deficient db/db mice, the effects of clusterin to
decrease food intake and body weight, and to increase Stat3
phosphorylation were abolished (Fig. 6c–e), indicating that LepRb
is required for clusterin action and signalling.

Hypothalamic clusterin expression and action in obesity.
A defect in the ability to generate appropriate satiety signals in the
hypothalamus is believed to be a major cause of obesity in
humans and animals. We further tested the possibility that dys-
regulation of hypothalamic clusterin may contribute to defective
satiety signalling in obese mice. Unlike lean mice, diet-induced
obese (DIO) mice displayed no sizable change in hypothalamic
clusterin expression in response to food intake or leptin
(Fig. 7a,b). In these DIO mice, repeated ICV injection of clusterin
(1 mg per day) caused a significant reduction in food intake, body
weight and fasting blood glucose (Fig. 7c–e). These data suggest
that the inability to increase anorexigenic clusterin in the
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hypothalamus may lead to overeating in the obese condition and
further implicate that treatment with clusterin supplementation
may provide significant benefits in obese individuals.

Discussion
The current study provides new evidence of a physiological role
of clusterin in the hypothalamic regulation of energy balance.
Central administration of clusterin suppressed fasting-, NPY- and
AgRP-induced feeding and weight gain, whereas inhibition of
hypothalamic clusterin action promoted food intake and weight
gain. Furthermore, hypothalamic clusterin levels were greatly
increased by the satiety hormone leptin, but deceased by the
hunger hormone ghrelin, suggesting that endogenous hypotha-
lamic clusterin may serve as a novel anorexigenic molecule.

Our data demonstrate that clusterin activated Stat3 signalling
in hypothalamic neurons, including POMC- and LepRb-expres-
sing neurons, raising the possibility that clusterin signalling could
be related to leptin signalling. Indeed, we found that treatment of
cultured neuron cells with clusterin rapidly induced the physical
interaction of functional leptin receptor LepRb and LRP2.
Moreover, clusterin-induced anorexia and hypothalamic Stat3
activation were dependent on LepRb and LRP2. Along with this,
it has been reported that LRP1 forms the molecular complex with
leptin–LepRb in hypothalamic neurons, and neuronal deletion of
LRP1 results in leptin resistance and obesity28. Collectively, these
findings indicate a significant role for LRP family proteins in
hypothalamic leptin and clusterin signalling.

It is evident that in addition to clusterin (Apo-J), other types of
apolipoprotein are involved in hypothalamic control of energy
homeostasis. Apolipoprotein E is expressed in hypothalamic
astrocytes and neurons10. Expression of Apo-AIV, known as a

gastrointestinal satiety protein, is also found in hypothalamic
neurons7,8. Apolipoprotein D, a lipocalin highly expressed in the
brain, is coexpressed with LepRb in hypothalamic neurons9.
Hypothalamic expression levels of these apolipoproteins are
increased by leptin administration and reduced in several mice
models of obesity7,9,10. Furthermore, ICV administration of those
apolipoproteins induces a significant anorexia7,9,10. Despite
apparent appetite-regulating effects of these apolipoproteins, their
receptors and signalling pathways in the hypothalamus remain
elusive. Given that clusterin (Apo-J) regulates food intake via LRP2,
it will be important to test if other apolipoproteins may regulate
feeding behaviour through LRP2 and other LRP family proteins.

Clusterin is highly expressed in the central nervous system and
in systemic circulation19,31. Notably, food ingestion induced
reciprocal changes in central and peripheral clusterin expression,
that is, increased levels in the hypothalamus, but decreased levels
in plasma and CSF. Feeding-related changes in hypothalamic
clusterin levels fit well with its anorexigenic effects. Consistently,
we found that manipulation of clusterin expression in the
hypothalamus altered food intake and body weight. As 125I-Apo-
AIV was barely detectable in the brain when systemically
administered8, it is conceivable that most of hypothalamic
apolipoproteins may be synthesized in the brain. These data
support a critical role for brain-derived apolipoproteins,
including clusterin, in the context of energy homeostasis.

Interestingly, clusterin specifically stimulated Stat3 phosphor-
ylation in the mediobasal hypothalamus. Clusterin expression
levels in this area were increased by leptin, but this response was
abolished in DIO mice. It is therefore likely that failure to increase
hypothalamic clusterin in response to leptin may confer impaired
Stat3 activation in the mediobasal hypothalamus of obese mice,
which is a key feature of obesity-associated central leptin
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resistance32. This study also revealed that supplement of clusterin
in leptin-resistant obese mice was able to suppress food intake
and weight gain, indicating that clusterin can be used to treat
central leptin resistance and obesity. However, it was noted that
chronic treatment of clusterin caused a modest decrease in food
intake and body weight. The reason for this is unclear at this time.
Chronic elevation of clusterin levels by continuous infusion in the
hypothalamic extracellular fluid may induce internalization
of clusterin–LRP2 complexes in hypothalamic neurons,
resulting in reduced LRP2 expression on the plasma membrane
and desensitization of hypothalamic neurons to exogenous
clusterin. It is also possible that chronic administration of
clusterin activates negative feedback signalling pathways or as yet
unidentified neuronal population that counteracts anorexigenic
effects of clusterin. Thus, the validity of antiobesity treatment
using clusterin needs to be further tested.

From the results of the current study, we propose a new model
of the hypothalamic feeding regulatory circuit (Fig. 7f). Hypotha-
lamic clusterin contents are increased during the postprandial
period. Clusterin interacts with LRP2 and LepRb on the plasma
membrane of hypothalamic neurons, leading to colocalization of
LepRb and LRP2. This ligand–receptor complex may be subjected
to endocytosis and may interact with signalling molecules, such as
Stat3, to further activate downstream signalling. As a result,
clusterin may generate a satiety signal in hypothalamic neurons.
Emergence of clusterin and LRP2 as novel appetite regulators
could lead to new therapeutic options for obese individuals
with leptin resistance.

Methods
Synthesis of secretory clusterin. A complementary DNA for the secretory
isoform of human clusterin was amplified from a commercially obtained human
transcriptome (Stratagene, CA) using the following primers: 50-gcgcaagcttggagg-
catgatgaagactctgct-30 and 50-gcgcgtcgaccaccacccggtgctttttgcggta-30. The amplified
fragment was cloned into pAGCF and then the vector was transfected into HEK293
cells. Serum-free culture supernatants were collected, concentrated by ultrafiltra-
tion and then applied to an anti-FLAG (M2) column (Sigma). Recombinant
secretory clusterin (AdipoGen AG-40A-0050; Incheon, Korea) was eluted with
buffer containing FLAG peptide (DYKDDDDK) and then dialysed against PBS.

Cell culture. SH-SY5Y neuroblastoma cells (ATCC, CRL-2266) were maintained in
DMEM containing 10% FCS, penicillin and streptomycin (100 units per ml each).
Human brain tissue used for primary cultures of human neuronal cells was
obtained from the Brain Bank of Seoul National University Hospital (Seoul, Korea).

Animals. Male C57BL/6 mice and Sprague–Dawley rats, 8–12 weeks of age were
obtained from Orient Bio (Seoul, Korea). The male db/db mice were purchased
from SLC (Hamamatsu, Japan). Animals were fed a standard chow diet (Samyang,
Seoul, Korea) ad libitum, unless otherwise indicated, housed in a controlled
temperature environment (22±1 �C) and subjected to a 12 h light–dark cycle
(light from 0700 to 1900 h). DIO mice were obtained by feeding mice a high-fat
diet (60% fat; Research Diet Co., New Brunswick, NJ) for 8–10 weeks. Lean
controls were fed a low-fat diet (10% fat) for the same period. Plasma glucose
concentrations were measured using a glucose analyser (YSI 2300, Yellow Springs,
OH). All of the animal procedures were approved by the Institutional Animal Care
and Use Committee of the Asan Institute for Life Sciences (Seoul, Korea).

Cannulation and injection. Permanent 26-gauge stainless steel cannulae were
implanted into the third ventricle (1.8mm caudal to bregma and 5.0mm ventral to
the sagittal sinus) or into the mediobasal hypothalamus (1.8mm caudal to bregma,
0.25mm lateral and 5.5mm ventral to the sagittal sinus) of mice. After a 1-week
recovery period, mice were handled daily for 3 days to acclimatize them to the
injection procedure. Clusterin, leptin, ghrelin (Phoenix Pharmaceuticals, Belmont,
CA), RAP (Molecular Innovations, Southfield, MI), dissolved in 0.9% (w/v) saline
and dansylcadaverine (Sigma), dissolved in 10% dimethylsulphoxide, were admi-
nistered in a total volume of 3 ml for ICV injections and 1 ml for intrahypothalamic
injections. To assess the feeding response to anticlusterin antibodies, mice received
a continuous ICV infusion of anticlusterin–a/b antibody (2mg per day; Santa Cruz,
H-330) or anti-rabbit IgG (2mg per day, Amersham) as a control, via an Alzet
osmotic mini-pump placed subcutaneously in the interscapular area. Most
experiments were performed early in the light phase (between 0900 and 1100 h) in
overnight-fasted mice, unless indicated. NPY and AgRP (Phoenix Pharmaceuticals)

were administered to mice that had free access to food. Food intake and body
weight were monitored for 2 days post injection.

Adenovirus and siRNA experiments. Adenovirus vectors encoding GFP,
recombinant clusterin or a clusterin-specific shRNA (target nucleotides 444–462)
conjugated to GFP were purified by CsCl gradient centrifugation and filtered to a
concentration ofB10� 11 p.f.u. ml� 1. Adenoviruses were injected into the bilateral
ARC (5.7mm depth, 1.8mm caudal to bregma, 0.25mm lateral from the sagittal
suture) via a syringe pump (Harvard Apparatus, Holliston, MA) at a rate of
100 nlmin� 1 for 5min (0.5ml per injection site). Food intake and body weight
were monitored daily after adenovirus injection, and then animals were killed
on the fifth day after a 5-h fast. The brain and epididymal fat were collected.
Correct injection of adenovirus was verified by monitoring green fluorescence in
the hypothalamus by confocal microscopy at the end of the experiment. Only
animals in which correct injection was confirmed were included in the analysis
(Supplementary Fig. S3). In a separate experiment, we determined hypothalamic
clusterin expression using immunoblottings following adenovirus treatment.
Injection of a clusterin-expressing adenovirus increased hypothalamic clusterin
levels B2.8-fold, whereas injection with a clusterin shRNA-expressing adenovirus
decreased hypothalamic clusterin levels by 65% (Supplementary Fig. S4).

The siRNA particles targeting murine LRP2 and LRP1 (Dharmacon, Chicago,
IL) were resuspended in RNase-free water, mixed with Lipofectamine (9:1 v/v;
Invitrogen, Carlsbad, CA) to a final concentration of 1mM, and were then injected
bilaterally into the mediobasal hypothalamus (0.5 ml each side) as described above.
The same amount of an untargeted scrambled control siRNA (Dharmacon) was
administered to the control group. Gene knockdown was considered successful
when hypothalamic LRP1 and LRP2 expression levels were less than 30% of the
average expression level in the control group (Supplementary Fig. S7). Only ani-
mals in which gene knockdown was confirmed were included in the data analysis.

Conditioned taste aversion test. Mice were habituated to 1 h daily access to water
for 7 days. Immediately following the 1-h exposure of two bottles containing 0.15%
saccharin, mice received sequential injections of i.p. saline followed by ICV saline,
i.p. lithium chloride (127mg kg� 1; Sigma) followed by ICV saline, or i.p. saline
followed by ICV clusterin (1 mg). For 3 consecutive days thereafter, a two-bottle
choice test was conducted. The preference ratio was calculated as the intake of
saccharine solution/total intake of water and saccharine solution.

Immunoblot analysis. Hypothalamic tissue lysates (30 mg protein) were subjected
to immunoblot analysis using antibodies against the clusterin b-chain (1:1,000;
Santa Cruz) or phospho- and total Stat3 (1:1,000; Cell Signaling). Rat plasma
(diluted to 1:250) and non-diluted CSF were used for clusterin immunoblotting.
Protein band density was quantitated using a densitometer (VersaDoc Multi
Imaging Analyzer System; Bio-Rad). Results were normalized to b-actin
(for clusterin) or total Stat3 (for phospho-Stat3). Please see Supplementary
Fig. S9 for complete gel data.

Immunohistochemistry and immunofluorescence staining. Thirty minutes
after ICV injection of leptin and clusterin, mice under anaesthesia were perfused
through the heart with 10% formalin for 15min, using a peristaltic pump. To verify
Stat3 phosphorylation in the hypothalamus, hypothalamic tissue slices were
incubated overnight with a rabbit anti-phospho-Stat3 antibody (1:100; Cell Sig-
naling) at 4 �C. Tissue sections were rinsed with PBS and then incubated for 1 h at
room temperature with goat anti-rabbit IgG (1:100; Vector Laboratories). Immu-
noreactive proteins were visualized by incubation with 3,30-diaminobenzidine
tetrahydrochloride in 0.1M Tris-HCl buffer (pH 7.2). For double immunostaining
of POMC and phospo-Stat3, tissue sections were first subjected to phospho-Stat3
immunostaining as described above and then incubated overnight at 4 �C with a
rabbit anti-POMC antibody (1:150; Phoenix Pharmaceuticals). Tissues were rinsed
with PBS and then incubated for 1 h at room temperature with Alexa Fluor
488-conjugated anti-rabbit IgG (1:500; Invitrogen). After washing with PBS, tissue
slices were mounted using Vectashield mounting media (Vector Laboratories)
and viewed using an LSM 700 confocal microscope (Carl Zeiss).

Fluorescence in situ hybridization. FISH analysis was performed using a FISH
Tag RNA Red Kit with Alexa Fluor 594 dye (Invitrogen). RNA probes were
prepared by in vitro transcription using a LepRb cDNA as a template, followed by
denaturation for 2min at 55 �C in hybridization buffer, after which the probes were
kept on ice. Hypothalamic slices were incubated for 20 h at 55 �C with denatured
fluorescent dye-labelled RNA. After sequential rinsing with hybridization buffer
and PBS, tissues were incubated overnight at 4 �C with a rabbit anti-phospho-Stat3
antibody (1:100; Cell Signaling). Finally, tissue slices were rinsed with PBS and
incubated for 1 h at room temperature with Alexa Fluor 488-conjugated anti-rabbit
IgG (1:500).

Fluorescence cross-correlation spectroscopy. Fluorescence cross-correlation
spectroscopy was used to measure the molecular interaction between LepRb and
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LRP2 (ref. 30). In brief, primary cultured human neurons were transfected with
very low amounts (0.005 mg each) of LepRb–EGFP and/or LRP2–tagRFP by using
Lipopectamine (Invitrogen) to minimize perturbation of the cells. Forty-eight
hours after transfection, cells were serum-starved for 2 h and then treated with
clusterin (1 nM) for 1min. Fluorescence cross-correlation spectroscopy was
performed in live neurons at 25 �C, using an inverted confocal laser scanning
microscope (LSM710-ConfoCor3, Carl Zeiss). For each sample, the measurement
was taken ten times for 15–20 s each time. Data were analysed using the ConfoCor3
software and represent average values.

Proximity ligation assay. To visualize the physical interaction between LepRb and
LRP2, primary cultured human neurons were treated with clusterin (1 nM) for
1min and then fixed with 100% methanol for 20min at room temperature. Cells
were incubated with a mouse anti-LepRb (1:100; Alpha Diagnostics, catalogue
number OBR130A; San Antonio, TX) and rabbit anti-LRP2 (1:200; Santa Cruz)
primary antibodies at 4 �C overnight. The proximity ligation assay (PLA) was
performed using a Duolink in situ PLA kit (Olink Bioscience, Uppsala, Sweden)
with PLA plus and minus probes for rabbit and mouse antiserum. Cell nuclei were
visualized using Hoechst 33342 (Olink Bioscience). Specimens were examined by
confocal microscopy. The number of in situ PLA signals per cell was counted by
semiautomated image analysis using BlobFinder software (Olink Bioscience). For
each experiment, three fields were measured and the data represent three inde-
pendent experiments.

Analysis of mRNA expression. Total RNA was extracted using Trizol reagents
(Invitrogen). The mRNA expression levels of clusterin, LepRb, LRP2, LRP1, VLDL-
R and ApoER2 were determined by real-time PCR or semiquantitative reverse
transcriptase–PCR using the primers listed in Supplementary Table S1. The
expression of each mRNA was normalized to that of glyceraldehyde 3-phosphate
dehydrogenase.

Statistical analysis. Data represent means±s.e.m. Statistical analysis was per-
formed using SPSS-PC14 (Chicago, IL). Statistical significance among the groups
was tested using one-way or repeated analysis of variance, followed by a post-hoc
least significant difference test or an unpaired Student’s t-test, when appropriate. A
two-way analysis of variance was used to study the effects of ICV injection of
clusterin in db/db mice and siRNAs. Statistical significance was defined as Po0.05.
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Corrigendum: Clusterin and LRP2 are critical
components of the hypothalamic feeding
regulatory pathway
So Young Gil, Byung-Soo Youn, Kyunghee Byun, Hu Huang, Churl Namkoong, Pil-Geum Jang,

Joo-Yong Lee, Young-Hwan Jo, Gil Myoung Kang, Hyun-Kyong Kim, Mi-Seon Shin, Claus U. Pietrzik,

Bonghee Lee, Young-Bum Kim & Min-Seon Kim

Nature Communications 4:1862 doi: 10.1038/ncomms2896 (2013); Published 14 May 2013; Updated 11 Dec 2013

In Supplementary Fig. S3 of this Article, images corresponding to animals injected with adenoviruses expressing GFP–Angplt3 fusion
protein from another study were inadvertently used to represent animals injected with adenoviruses expressing GFP and clusterin. The
correct images for GFP-Ad-4, GFP-Ad-5 and Clu-Ad-2 now appear in the revised Supplementary Fig. S3, below.
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