
ARTICLE

Received 4 May 2012 | Accepted 17 Apr 2013 | Published 21 May 2013

Depleting the methyltransferase Suv39h1
improves DNA repair and extends lifespan
in a progeria mouse model
Baohua Liu1,2, Zimei Wang1, Le Zhang1, Shrestha Ghosh1, Huiling Zheng1,3 & Zhongjun Zhou1,2

A de novo G608G mutation in LMNA gene leads to Hutchinson–Gilford progeria syndrome.

Mice lacking the prelamin A-processing metalloprotease, Zmpste24, recapitulate many of the

progeroid features of Hutchinson–Gilford progeria syndrome. Here we show that A-type

lamins interact with SUV39H1, and prelamin A/progerin exhibits enhanced binding capacity

to SUV39H1, protecting it from proteasomal degradation and, consequently, increasing

H3K9me3 levels. Depletion of Suv39h1 reduces H3K9me3 levels, restores DNA repair

capacity and delays senescence in progeroid cells. Remarkably, loss of Suv39h1 in

Zmpste24� /� mice delays body weight loss, increases bone mineral density and extends

lifespan by B60%. Thus, increased H3K9me3 levels, possibly mediated by enhanced

Suv39h1 stability in the presence of prelamin A/progerin, compromise genome maintenance,

which in turn contributes to accelerated senescence in laminopathy-based premature aging.

Our study provides an explanation for epigenetic alterations in Hutchinson–Gilford progeria

syndrome and a potential strategy for intervention by targeting SUV39H1-mediated hetero-

chromatin remodelling.
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A
de novo G608G mutation in LMNA gene is the

predominant cause of Hutchinson–Gilford progeria
syndrome (HGPS), an early-onset premature aging

disorder1,2. Lamin A, encoded by the LMNA locus, belongs to
type V intermediate filament proteins and is one of the major
components of nuclear lamina and nuclear matrix3. Lamin A is
firstly synthesized as prelamin A with a C-terminal CaaX motif,
which dictates a series of processing events including transient
isoprenylation, methylation and proteolytic cleavages4.
ZMPSTE24, a metalloprotease, is required for the second
proteolytic cleavage. The G608G mutation activates a cryptic
splicing signal, giving rise to a truncated prelamin A termed
progerin, which lacks the second proteolytic cleavage site of
ZMPSTE24. Loss of Zmpste24 causes accumulation of partially
processed prelamin A in mouse embryonic fibroblasts (MEFs), and
many of the progeroid features found in HGPS patients are
recapitulated in Zmpste24 null mice5. Altered nuclear shape is one

of the hallmarks of HGPS dermal fibroblasts and cells derived from
Zmpste24–/– embryos2,5,6. Accelerating autophagic degradation of
progerin through rapamycin or reducing prelamin A and progerin
accumulation on the nuclear envelope by farnesyl transferase
inhibitor (FTI) ameliorates senescence in HGPS cells7–10 and
progeroid features in progeria mouse models8,11,12. We and others
have previously shown that g-H2AX/53BP1 foci accumulate in
progeroid fibroblasts and normal senescent human cells,
which is now widely used as a cellular marker for HGPS and
senescence6,13–17. Upon g-irradiation, DNA lesions are successfully
repaired within 24h in wild-type cells, whereas a substantial
number of the g-H2AX/53BP1 foci, likely representing unrepaired/
irreparable DNA damages, remains in HGPS and Zmpste24� /�

cells6. Compromised recruitment of checkpoint response and
repair proteins is responsible for defective DNA repair in progeroid
cells6. However, the underlying molecular mechanism remains
largely unknown.
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Figure 1 | Defective heterochromatin repair in HGPS fibroblasts. (a) Representative photos of immunofluorescence staining of H3K9me3 and

g–H2AX in HGPS dermal fibroblast cell line HGADFN003 (HG003) at 24 h after g-irradiation (5Gy). Scale bar, 5 mm. (b) Line scans of H3K9me3, g–H2AX
and DAPI signal intensity in the cell shown in (a). Scale bar, 5 mm. (c) Representative photos of immunofluorescence staining of H3K9me3 and g-H2AX in

SUV39 siRNA or scramble-treated HG003 and healthy control cells (PH) at 24 h after g-irradiation (5Gy). Scale bar, 10mm. (d) Quantification of

g-H2AX foci in the experiment of c. At least 100 cells were counted. Data represent mean±s.e.m., *Po0.05, two-tailed t-test. (e) Representative immunoblots

showing levels of H3K9me3 and g-H2AX in PH and HG003 cells (passage 16) treated with SUV39 siRNA or scramble at 24h after g-irradiation (5Gy).
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Chromatin is highly dynamic and regulated by a variety of
binding proteins and complexes to meet the functional require-
ment in response to various stimuli and stress18. Upon DNA
damage, the compact chromatin, especially heterochromatin,
undergoes global nucleosomal remodelling modulated by ATM-
mediated KAP-1 (KRAB-associated protein 1, also known as
Trim28 or Tif1b) phosphorylation, resulting in a de-condensed
conformation of chromatin accessible to essential DNA repair
proteins19. Deficiency in ATM leads to accumulation of g-H2AX/
53BP1 foci associated with H3K9me3, a constitutive
heterochromatin mark. Knocking down Suv39h1/2, the main
methyltransferases responsible for H3K9me3, rescues the defects
in heterochromatin remodelling and DNA repair impeded by
ATM deficiency20. In this study, we investigated whether the
defective DNA repair in the presence of progerin/prelamin A is a
consequence of abnormal H3K9me3-mediated heterochromatin
remodelling. Our data suggest that lamin A interacts with
SUV39H1 and protects it from proteasomal degradation.
Compared with lamin A, prelamin A/progerin exhibits elevated
binding capacity to SUV39H1, leading to increased levels of
SUV39H1 and H3K9me3. Depleting Suv39h1 rescues DNA
repair and early senescence, ameliorates progeroid features and
extends lifespan in Zmpste24� /� mice. Our data not only
implicates a role for lamin A in regulating heterochromatin
marked with H3K9me3 but also provides a novel SUV39H1-
based therapeutic strategy for HGPS.

Results
Sustained DNA damage foci are associated with H3K9me3. To
investigate if the defective recruitment of DNA-damage

checkpoint response/repair proteins in the presence of
progerin/prelamin A is a consequence of abnormal hetero-
chromatin remodelling, we first examined whether the sustained
DNA damage foci in HGPS dermal fibroblast cell line
HGADFN003 (HG003) after g-irradiation are associated with
H3K9me3. By immunofluorescence staining and confocal
microscopy, we found that most of the sustained g-H2AX/53BP1
foci were associated with regions enriched with H3K9me3
staining at 24 h after g-irradiation in HG003 cells (Fig. 1a–c and
Supplementary Fig. S1), suggesting that condensed hetero-
chromatin marked by H3K9me3 might build up a barrier for the
effective DNA repair. To test this hypothesis, we knocked down
SUV39 (SUV39H1 and SUV39H2) via short interfering RNA
(siRNA) to examine whether this would impact the DNA damage
repair. Knocking down SUV39 not only decreased the level of
H3K9me3 but also significantly reduced the number of g-H2AX-
containing DNA damage foci in HG003 cells at 24 h after g-
irradiation (Fig. 1c–e; 7.67±2.03 g-H2AX-containing foci in
scramble-treated HG003 versus 2.35±1.21 in siSUV39-treated
HG003, mean±s.e.m., n4100, Po0.01, two-tailed t-test). The
global level of g-H2AX was also significantly downregulated
determined by western blotting (Fig. 1e). Knocking down
Suv39h1/2 by siRNA had a similar effect in Zmpste24� /� MEFs
on DNA damage foci accumulation at 24 h after g-irradiation
(Supplementary Fig. S2a–c); depleting Suv39h1 alone in
Zmpste24� /� MEFs is enough to downregulate the level of
H3K9me3 (Supplementary Fig. S2d) and reduce the number of
DNA damage foci at 24 h after g-irradiation (Supplementary
Fig. S2e; 5.4±0.6 53BP1 foci in Zmpste24� /� Suv39h1� /�

versus 8.1±1.0 in Zmpste24� /� MEFs, mean±s.e.m., Po0.05,
two-tailed t-test).
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Figure 2 | Increased levels of Suv39h1 and H3K9me3 in progeroid cells. (a) Representative immunoblots showing the level of SUV39H1 in HEK293

cells expressing ectopic lamin A or progerin. (b) Quantification of experiments in a. Data represent mean±s.e.m., n¼ 3. *Po0.05, two-tailed t-test.

(c) Representative western blotting showing the level of Suv39h1 in wild-type and Zmpste24� /� MEFs and in kidney from wild-type and Zmpste24� /�

mice. (d) Quantification of experiments in c. Data represent mean±s.e.m., n¼ 3. *Po0.05, two-tailed t-test. (e) Representative immunoblots showing

levels of different histone modifications in total cell lysate from wild-type and Zmpste24� /� MEFs and indicated wild-type and Zmpste24� /� tissues.

(f) Quantification of experiments in e. Data represent mean±s.e.m., n ¼ 3. *Po0.05, two-tailed t-test. (g) Representative photos of immunofluorescence

staining of H3K9me3 in wild-type and Zmpste24� /� MEFs. Scale bar, 20mm.
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Increased levels of Suv39h1 and H3K9me3 in progeroid cells.
To evaluate whether SUV39H1 directly contributes to the
defective DNA repair and delayed recruitment of checkpoint
response/repair proteins in progeria, we examined the levels of
Suv39h1 protein and mRNA in Zmpste24–/– MEFs and in cells
with ectopic progerin. Suv39h1 protein level was significantly
increased in MEFs and tissues isolated from Zmpste24–/– mice
and in HEK293 cells expressing ectopic progerin in comparison
with those isolated from littermate wild-type controls and cells
expressing ectopic lamin A (Fig. 2a–d). In contrast, levels of
Suv39h1 mRNA were hardly affected in MEFs and HEK293 cells
stably expressing different ectopic lamins analysed by real-time
PCR (Supplementary Fig. S3). These suggest that prelamin A and
progerin regulate Suv39h1 stability post-translationally.

Global level of trimethylated H3K9 is mainly catalysed by
Suv39h1/2 methyltransferases, of which Suv39h1 is ubiquitously
expressed, whereas Suv39h2 is mainly observed in testis21.
To investigate whether H3K9me3 is affected in Zmpste24–/–

MEFs, level of H3K9me3 was examined and compared between
Zmpste24–/– MEFs and wild-type littermates. As shown in Fig. 2e,f,
the level of H3K9me3 was significantly increased in Zmpste24–/–

MEFs and tissues (kidney and lung) compared with that in
littermate wild-type controls. In addition, the level of H4K20me3
was also significantly elevated in Zmpste24–/– MEFs compared with
wild-type controls, whereas H3K27me3 and H3K9me2 were hardly
affected (Fig. 2e, f). The elevated H3K9me3 in Zmpste24–/– MEFs
was further confirmed by immunofluorescence microscopy
(Fig. 2g). The increase in levels of H3K9me3 and H4K20me3 in
Zmpste24–/– MEFs was most likely attributable to unprocessed
prelamin A, as ectopic unprocessible prelamin A (hereafter,
prelamin A) led to similar upregulation in HEK293 cells (Fig. 3).
Therefore, the accumulation of prelamin A and progerin results in
increased H3K9me3.

The increased level of H3K9me3 in Zmpste24–/– MEFs and cells
with ectopic progerin seems discordant to previous reports on
HGPS fibroblasts mainly determined by immunofluorescence
staining22–24. It has been shown that the reduced H3K9me3 is a
late event24, suggesting that the downregulation of H3K9me3 in
HGPS cells might be secondary due to extensive in vitro passaging.
To test this possibility, we re-examined and compared the level of
H3K9me3 in six lines of fibroblasts isolated from 2- to 8-year-old
HGPS patients, fibroblasts isolated from a 7-month-old healthy
boy (PH) and a 3-month-old foetus (F2-S), at passage 12.
Compared with PH cells, three out of six HGPS fibroblast cell

lines, that is, HGADFN155, HGADFN164 and HGADFN188,
showed upregulation of H3K9me3, while HGADFN143 and
HGADFN169 showed obvious downregulation of H3K9me3;
meanwhile, HGADFN122, HGADFN155, HGADFN164 and
HGADFN188 showed an increase in H4K20me3 (Fig. 4a,b). The
level of H3K9me3 seemed negatively associated with the donor age
among healthy individuals or HGPS patients (Fig. 4b). This
prompted us to further compare PH with an age- and gender-
matched HGPS cell line HGADFN003 (HG003) derived from a
2-year-old male HGPS patient at different passages. As shown in
Fig. 4c,d, H3K9me2, which normally marks transcriptionally silent
euchromatic region25, didn’t exhibit significant alteration at
different passages or between PH and HG003 cells within the
passages examined. In contrast, levels of H3K9me3 and
H4K20me3 decreased significantly with passage in both PH and
HG003 cells. When compared with PH cells at the same passage,
relatively higher levels of H3K9me3 and H4K20me3 were observed
in HG003 cells (Fig. 4c,d). Similar to H3K9me3, an overall increase
in H4K20me3 staining was observed in HG003 when compared
with that in PH, whereas changes in the euchromatic H3K4me3
and H3K9ac were hardly observed (Fig. 4e and Supplementary
Fig. S4). H3K9me3 staining was found to be enriched in nuclear
compartments (Fig. 4e, arrows), wherein no typical DAPI staining
of senescence-associated heterochromatin foci (SAHF, a hallmark
of oncogene-induced senescence) were observed26–28. This is
consistent with a recent report showing lack of SAHF in HGPS
cells29. These data suggest opposing effects of prelamin A/progerin
and passages on the regulation of H3K9me3 in primary human
cells. Therefore, it is of particular importance to take passage into
consideration in addition to age, sex and location of the skin
sampling and so on, when determining heterochromatin marks in
progeria. ‘Perfectly’ matched samples are essential for a reliable
conclusion. To circumvent this problem, we examined levels of
these heterochromatic marks in HEK293 cells expressing ectopic
wild-type lamin A, prelamin A or progerin. As shown in Fig. 3a,b,
while levels of H3K9me2 and H3K27me3 were hardly affected by
different A-type lamins, levels of H3K9me3 and H4K20me3 were
significantly elevated in the presence of progerin or prelamin A,
compared with that expressing ectopic lamin A, suggesting that
prelamin A and progerin cause elevated H3K9me3.

Lamin A mediates Suv39h1 stability. To further understand the
regulatory role for lamin A in Suv39h1 and H3K9me3, we
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examined whether loss of lamin A affects Suv39h1 stability and
level of H3K9me3. As shown in Fig. 5a–c), H3K9me3 was con-
sistently and significantly decreased in 2 independent lines of
Lmna null MEFs compared with that from wild-type littermate
controls, while no significant changes in levels of H3K27me3,
H4K20me3, H3K9me, H3K9me2, H3K4me3, acetylated H4 or
acetylated H3 was observed. Immunofluorescence microscopy
further confirmed the specific downregulation of H3K9me3 in
Lmna–/– cells (Fig. 5d and Supplementary Fig. S5a–e). However,
both mRNA and protein levels of Suv39h1 were found to be
decreased in Lmna–/– cells (Fig. 5e,f and Supplementary Fig. S5f).
To distinguish effects of lamin A in the transcriptional and post-
translational regulation of Suv39h1, we knocked down LMNA by
siRNA in HEK293 cells where ectopic GFP-SUV39H1 driven by a
CMV promoter was expressed. The level of GFP-SUV39H1 was
examined by western blotting. As shown in Fig. 5g,h, levels of
GFP-SUV39H1 and H3K9me3 were both significantly reduced
when lamin A/C level was downregulated, indicating that lamin
A/C stabilizes GFP-SUV39H1 protein. This notion was further
confirmed by the increased degradation of Suv39h1 in Lmna–/–

cells when protein synthesis was inhibited by cycloheximide
(CHX). As shown in Fig. 5e,f, 450% of Suv39h1 was degraded in
Lmna–/– cells within 10 h upon CHX treatment compared with
o25% in wild-type cells. Further investigation demonstrated that
lamin A could stabilize Suv39h1 and thus prevent it from pro-
teasomal degradation, as incubation with proteasome inhibitor
MG-132 increased the level of Suv39h1 in Lmna–/– cells
(Supplementary Fig. S5h). This is in line with a recent report
showing proteasomal degradation of SUV39H1 (ref. 30).

Lamin A interacts with SUV39H1. Lamin A interacts with many
nuclear proteins, that is, Rb, 53BP1 and ING1 and so on, thus
preventing them from proteasomal degradation31–33. In addition,
a recent elegant work by Bruston et al.34 showed increased
binding affinities of progerin and prelamin A, compared with
lamin A, to histone H3 peptide trimethylated at K9. We reasoned
that similar to H3K9me3, A-type lamins might directly or
indirectly interact with SUV39H1, thus preventing it from
degradation. Prelamin A/progerin may have increased binding
capacity and protection on SUV39H1. To test this hypothesis, co-
immunoprecipitation was performed in HEK293 cells expressing
ectopic GFP-SUV39H1 and lamin A. Both GFP-SUV39H1 and
lamin A were detected by western blotting in the anti-GFP
immunoprecipitates (Fig. 6a). Endogenous SUV39H1 was
observed in the anti-GFP immunoprecipitates in HEK293 cells
where GFP-lamin A was ectopically expressed (Fig. 6b). The
interaction between endogenous SUV39H1 and lamin A was
confirmed in either anti-SUV39H1 or anti-lamin A/C
immunoprecipitates in HEK293 cells, where SUV39H1 pulled
down lamin A and vice versa (Fig. 6c). Confocal microscopy
revealed the colocalization of GFP-SUV39H1 with DsRed-lamin
A on the nuclear lamina as well as in the nucleoplasm (Fig. 6d),
confirming the interaction between SUV39H1 and lamin A.
Moreover, deletion of 89 amino acids (ND89) at the N-terminus
of SUV39H1 completely abolished the interaction between
GFP-lamin A and Myc-SUV39H1 in HEK293 cells (Fig. 6e). By
co-immunoprecipitation with anti-lamin A antibodies in the test
tube containing recombinant human lamin A (rhLamin A) and
recombinant human SUV39H1 (rhSUV39H1), we found that
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rhLamin A co-precipitated with full-length rhSUV39H1 (Fig. 6f).
Collectively, these results indicate that lamin A likely interacts
with SUV39H1 via its N-terminal domains, possibly the chromo
domain.

Prelamin A and progerin stabilize SUV39H1. To test whether
prelamin A and progerin have increased binding capacity to
SUV39H1, we compared the interactions between GFP-
SUV39H1 and different A-type lamins, that is, lamin A, prelamin
A and progerin by co-immunoprecipitation. Interestingly, sig-
nificantly more prelamin A and progerin were detected in the
anti-GFP immunoprecipitates though comparable level of lamin
A, prelamin A and progerin was found in the input and com-
parable GFP-SUV39H1 was pulled down (Fig. 7a), indicating
increased binding capacity of SUV39H1 to prelamin A and
progerin compared with lamin A. The different binding capacity
among lamin A, prelamin A and progerin to SUV39H1 was
further confirmed by a competitive co-immunoprecipitation
where either prelamin A or progerin together with lamin A and
GFP-SUV39H1 were co-transfected into HEK293 cells. The level
of A-type lamins was determined in GFP-SUV39H1 pull-down
by western blotting. The levels of lamin A and prelamin A/pro-
gerin were similar in the input. While pull-down RIPA buffer
containing 500mM NaCl completely abolished the interaction
between A-type lamin and SUV39H1, GFP pull-down with RIPA
containing 350mM NaCl showed significantly more prelamin A
or progerin than lamin A in the anti-GFP-SUV39H1 precipitates
(Fig. 7b,c).

To further confirm the increased binding capacity between
prelamin A/progerin and SUV39H1, we examined the mobility of

SUV39H1, as increased association of SUV39H1 with prelamin A
and progerin would decrease its mobility. Fluorescence recovery
after photobleaching (FRAP)35 was employed to compare the
mobility of GFP-SUV39H1 between Zmpste24� /� cells and
wild-type controls. As shown in Fig. 7d,e, the recovery rate of
GFP-SUV39H1 was significantly delayed in Zmpste24� /� cells
and HG003 cells compared with that in wild types or PH cells,
suggesting that prelamin A and progerin have an enhanced
association with SUV39H1 than lamin A, therefore the increased
immobilization of SUV39H1. To test if the association of
SUV39H1 with prelamin A/progerin protects it from
degradation, lamin A or prelamin A or progerin were
ectopically expressed in HEK293 cells stably expressing GFP-
SUV39H1. Level of GFP-SUV39H1 was determined by western
blotting after CHX treatment. While level of b-actin was quite
stable in the presence of CHX for as long as 30 h, degradation of
GFP-SUV39H1 is significantly faster in HEK293 cells transfected
with lamin A compared with that with prelamin A or progerin
(Fig. 7f,g and Supplementary Fig. S6). The half-life of GFP-
SUV39H1 in HEK293 cells transfected with empty vector, lamin
A, prelamin A and progerin are B12 h, 23 h, 41 h and 48 h,
respectively (Supplementary Fig. S6). Collectively, these data
implicated that prelamin A and progerin stabilize SUV39H1,
leading to elevated SUV39H1 and H3K9me3 in progeroid cells.

Depleting Suv39h1 ameliorates progeroid features in mice.
Given that either knocking down or depleting Suv39h1 rescued
defective DNA repair, which is one of the potential
underlying mechanisms of progeria, and critical roles for
Suv39h1 and H3K9me3 in regulating heterochromatin repair and
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Figure 5 | Reduced levels of H3K9me3 and Suv39h1 in Lmna null cells. (a) Representative immunoblots in MEFs isolated from two pairs of Lmna null and

wild-type embryos, showing reduced level of H3K9me3. (b) Representative western blotting showing comparable levels of H3K27me3, H4K20me3,

H3K9me1, H3K9me2 and acetyl H4 between Lmna null and wild-type cells. (c) Quantification of experiments in a and b. Data represent mean±s.e.m.,

n¼ 3. *Po0.05, two-tailed t-test. (d) Representative photos of immunofluorescence staining of H3K9me3 in wild-type and Lmna–/– cells. Scale bar, 5 mm.

(e) Representative immunoblots showing expression of Suv39h1 in wild-type and Lmna–/– MEFs treated with CHX (10 mgml� 1). (f) Quantification of

experiments in e. Left, per cent changes relative to wild-type cells; right, per cent changes relative to untreated (NT). Data represent mean±s.e.m., n¼ 3.

*Po0.05, **Po0.01, two-tailed t-test. (g) Representative western blotting in HEK293 cells stably expressing GFP-SUV39H1 treated with LMNA or

scramble siRNA. (h) Quantification of experiments in g. Data represent mean±s.e.m., n¼ 3. **Po0.01, two-tailed t-test.
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oncogene-induced senescence in mice36, we asked whether
depleting Suv39h1 in Zmpste24� /� mice could rescue
accelerated cellular senescence, ameliorate progeroid features
and extend lifespan. We crossed Zmpste24� /� mice with
Suv39h1� /� mice to obtain Zmpste24� /� Suv39h1� /�

compound mutant mice. Loss of Suv39h1 significantly rescued
the shortened replicative lifespan in Zmpste24� /� cells
determined by a continuous passaging assay (Fig. 8a), and early
senescence determined by senescence-associated b-galactosidase
assay (Fig. 8b; 32.1%±9.8% b-galactosidase-positive cells in
Zmpste24� /� Suv39h1� /� versus 65.7%±14.2% in
Zmpste24� /� MEFs, mean±s.e.m., Po0.05, two-tailed t-test).
Similarly, knocking down Suv39h1/2 also rescued early
senescence in Zmpste24� /� MEFs (Supplementary Fig. S7).

To examine whether loss of Suv39h1 ameliorates progeroid
phenotypes, the body size, bone mineral density and lifespan were
monitored accordingly. As shown, body size (Fig. 8c), bone
volume, bone mineral density (Fig. 8d,e) and body weight (Fig. 8f)
were significantly increased in Zmpste24� /� Suv39h1� / mice
compared with those in Zmpste24� /�mice. Remarkably, the
median survival was extended 460%, that is, from 23 weeks in
Zmpste24� /� mice to 37 weeks in Zmpste24� /� Suv39h1� /�

mice (Fig. 8g). By 31 weeks after birth, all examined
Zmpste24� /� mice died, whereas more than 90% of
Zmpste24� /� Suv39h1� /� mutants were still alive. The
maximal lifespan (average lifespan of the most long-lived 10%
of examined mice) was prolonged almost 40%, that is, 29
weeks in Zmpste24� /� mice versus 40 weeks in Zmpste24� /�
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Suv39h1� /� mutants (Fig. 8h). Collectively, reducing H3K9me3
by depleting Suv39h1 significantly delayed the onset of premature
aging in Zmpste24� /� mice. These data suggest a regulatory role
for heterochromatin regulation in senescence and premature
aging.

Discussion
In the current study, we examined levels of Suv39h1 and
H3K9me3 in HGPS dermal fibroblasts, Zmpste24� /� cells and
tissues and HEK293 cells expressing ectopic prelamin A and
progerin. In comparison with lamin A, prelamin A and progerin
exhibited elevated binding capacity to SUV39H1 thus increasing
levels of SUV39H1 and H3K9me3 in progeroid cells. Depleting

Suv39h1 specifically decreases the level of heterochromatic
H3K9me3, leading to the rescue of defective DNA repair, early
senescence and premature aging in Zmpste24� /� mice.

Our data for the first time demonstrated an interaction
between lamin A and SUV39H1, suggesting a regulatory role for
lamin A in the regulation of SUV39H1 methyltransferase and
H3K9me3-mediated heterochromatin remodelling. As lamin A
exists both on the nuclear periphery and in the nuclear interior, it
is unclear which part(s) interact(s) with and stabilize(s)
SUV39H1. On the other hand, lamin A directly interacts with
many other proteins, such as lamin B1, to constitute the nuclear
lamina and nuclear matrix, therefore the interaction between
lamin A and SUV39H1 could be alternatively bridged by other
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proteins. Indeed, we found that SUV39H1 also directly or
indirectly interacted with lamin B1 (Supplementary Fig. S8). It is
worth to mention that a direct interaction between recombinant
lamin A and SUV39H1 was found in test tubes, suggesting the
interaction between lamin A and SUV39H1 is most likely direct.
Nevertheless, prelamin A/progerin exhibits increased binding
capacity to SUV39H1; the C-terminus of prelamin A/progerin is
likely responsible for the increased stability of SUV39H1 and level
of H3K9me3 in progeria cells. Given that loss of Lmna in
MEFs does not completely abolish H3K9me3, we reason that
lamin A is not required for the initiation of H3K9me3. In
addition to Suv39h1, lamin A directly interacts with H3 peptide
containing trimethylated K9 (ref. 34); therefore, it is plausible to
speculate that initial H3K9me3 marks might facilitate
recruiting chromatin to nuclear compartments wherein the
lamin A-SUV39H1 complex resides and further trimethylates

H3K9 on adjacent nucleosomes, thus expanding heterochromatic
marks (Supplementary Fig. S9).

The increased H3K9me3 in progeria may seem discordant to
previous reports22–24, while the rapid decline in levels of
SUV39H1 and H3K9me3 along with passaging is in line with
previous reports24,37. Our data showed that prelamin A/progerin
and passage have opposing effects on the levels of Suv39h1 and
H3K9me3 in progeroid cells. While prelamin A and progerin
stabilize SUV39H1, thus increasing the level of H3K9me3
compared with lamin A, H3K9me3 decreases when passage
goes up. This is in line with the finding that SUV39H1/2
transcript goes down with passage24. Therefore, caution must be
taken when comparing HGPS cells with controls from healthy
individuals, as in vitro passaging could significantly affect the
results and the interpretation. In addition to H3K9me3, we found
the level of H4K20me3, another constitutive heterochromatin
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Figure 8 | Suv39h1 depletion ameliorates progeroid features and extends lifespan in Zmpste24� /� mice. (a) Continuous passaging assay in

MEFs showing extended replicative lifespan in Zmpste24� /� Suv39h1� /� MEFs. Data represent mean±s.e.m., n¼ 3. **Po0.01, two-tailed t-test,

Zmpste24� /� Suv39h1� /� versus Zmpste24� /� MEFs. (b) Representative photos of b-galactosidase staining in Zmpste24� /� Suv39h1� /� ,

Zmpste24� /� and wild-type MEFs. Percentages of b-galactosidase staining-positive cells were shown. Data represent mean±s.e.m., n4200. Compound

mutants exhibited significantly reduced percentages of b-galactosidase staining-positive cells (Zmpste24� /� Suv39h1� /� versus Zmpste24� /� MEFs,

Po0.05, two-tailed t-test). Scale bar, 200mm. (c) Representative photo of Zmpste24þ /þ , Zmpste24� /� and Zmpste24� /� Suv39h1� /� mice showing

the partial rescue of body size at 4 months of age. (d) Representative microCTphotos in Zmpste24� /� and Zmpste24� /�Suv39h1� /� mice at 4 months

of age. (e) Bone volume and bone mineral density of femurs from Zmpste24� /� Suv39h1� /� mice and Zmpste24� /� mice. Data represent

mean±s.e.m., n¼ 3. *Po0.05, two-tailed t-test. (f) Body weight of Zmpste24� /� and Zmpste24� /�Suv39h1� /� mice at 4 months of age. Data

represent mean±s.e.m., n¼ 12. *Po0.05, two-tailed t-test. (g) Survival rate of Zmpste24� /� and Zmpste24� /� Suv39h1� /� mice. Po0.0001.

(h) Maximal lifespan (10% most long-lived animals) in Zmpste24� /� and Zmpste24� /� Suv39h1� /� mice. **Po0.01, two-tailed t-test.
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mark, consistently upregulated in Zmpste24� /� cells, HGPS
dermal fibroblasts and HEK293 cells with ectopic prelamin A and
progerin. It has been reported that Suv39h1 and H3K9me3 are
required for the establishment of H4K20me3 and the recruitment
of its methyltransferase Suv4-20H2 (refs 38, 39). In this regard,
the upregulation of H4K20me3 supports the increased H3K9me3
in progeroid cells.

While accumulation of prelamin A in Zmpste24 null cells and
ectopic prelamin A in HEK293 cells hardly affect the mRNA level
of Suv39h1, loss of lamin A/C results in downregulation
of Lmna transcription, suggesting a critical role for lamin A/C
in regulating transcription. Meanwhile, it suggests that
prelamin A likely preserve the transcriptional regulation of lamin
A on SUV39H1, as only prelamin A exists in Zmpste24� /� cells.
Contrasting to Zmpste24� /� mice, the SUV39H1 transcription
has been shown downregulated in HGPS cells24. Given
that B40% of lamin A is replaced with progerin in
HGPS cells40, we speculate that while progerin exhibits similar
function as prelamin A does in stabilizing SUV39H1 protein due
to its abnormal carboxyl tail, it may loose parts of lamin A
functions in the transcriptional regulation of SUV39H1, owing to
the 50 amino-acid deletion. The level of SUV39H1 in HGPS
fibroblasts might be a combined consequence of both
transcriptional and post-translational regulations, for example,
reduced transcription but increased protein stability. Therefore,
the level of H3K9me3 in HGPS cells is a result of such
regulations. To this point, our data are in line with previous
report24. Supporting our findings and the gain-and-loss-of-
function hypothesis is a recent study showing that prelamin A
and progerin exhibited increased binding capacity to histone H3
peptide trimethylated at K9 in comparison with lamin A, while
progerin reduced its binding capacity to DNA and H3 peptide
containing either trimethylated or unmodified K27 compared
with prelamin A and lamin A34.

Deterioration of nuclear architecture is one of the hallmarks of
laminopathy-based progeria. It has been shown that FTI
treatment rescues the abnormal nuclear shape and thus alleviates
progeroid features in progeria mouse models8,11,12. The rationale
behind FTI treatment is largely based on the notion that the
farnesylated carboxyl tail tethers prelamin A or progerin onto the
nuclear lamina and thus jeopardizes the nuclear shape, and
removal of the farnesyl group releases prelamin A or progerin
from the nuclear lamina and thus rescues the nuclear shape and
premature aging. However, a series of mouse lines with various
mutation in Lmna have made things more complicated41. While
farnesylation has been considered critical for nuclear envelop
defects and progeroid phenotypes, mice with nonfarnesylated
progerin may or may not elicit progeria41–43. On the other hand,
expression of mature lamin A (18 amino acids deleted), bypassing
the complicated prelamin A processing, deteriorates the nuclear
shape but does not accelerate aging process in mice44. As different
single-residue mutations could elicit quite different consequences,
more stringent experimental design has been proposed to define
the exact role of farnesylation in the development of progeria43.
Nevertheless, our findings suggest an alternate mechanistic
explanation that is independent of or parallel to envelope
defect. It has been reported that defective DNA repair
contributes, at least partially, to accelerated senescence in HGPS
and progeroid mouse model6. In the current study, we have
demonstrated that modulating heterochromatic H3K9me3 level
by either deleting or knocking down Suv39h1 methyltransferase
could rescue the defective DNA repair and delays the onset of
premature aging in Zmpste24� /� mice. Given that loss of
Suv39h1 in mice does not result in any observable phenotype,
modulating heterochromatin through Suv39h1 may provide an
attractive additional approach for the intervention of HGPS.

Collectively, our data suggest a direct or indirect interaction
between lamin A and SUV39H1 and imply a role for lamin A in
regulating one of the constitutive heterochromatic marks,
H3K9me3. Our data also implicate a role for SUV39H1-
mediated heterochromatin in laminopathy-based progeria and
provide a potential therapeutic target for HGPS.

Methods
Cell lines. HEK293 cells, MEFs and human fibroblasts were maintained in DMEM
supplemented with 10% FBS. HGADFN003 (HG003), HGADFN122 (HG122),
HGADFN143 (HG143), HGADFN155 (HG155), HGADFN164 (HG164),
HGADFN169 (HG169) and HGADFN188 (HG188) human dermal fibroblasts
derived from HGPS patients were provided by Progeria Research Foundation
(PRF). The PRF Cell and Tissue Bank is ‘Institutional Review Board approved by
the Rhode Island Hospital Committee on the Protection of Human Subjects,
Federal Wide Assurance FWA00001230, study CMTT#0146-09’ (cited from PRF
official website: http://www.progeriaresearch.org/cell_tissue_bank.html). Human
PH dermal fibroblasts were from Professor Manfred Wehnert (Institute of Human
Genetics, University of Greifswald, Greifswald, Germany). F2-S human fibroblasts
were described previously6.

Plasmids and siRNA transfections. Plasmid and siRNA transfection was per-
formed with Lipofectamine2000 (Invitrogen, USA) according to the manufacturer’s
procedures. Sequences of siRNA oligonucleotides are as follows, SUV39 siRNA,
50-ACCUCUUUGACCUGGACUA-30 ; LMNA siRNA, 50-CUGGACUUCCAGAA
GAACA-30 . Lamin A, unprocessible prelamin A and progerin constructs were
generated by bacterial recombineering. GFP-SUV39H1 construct is a gift from Dr
CM Wong (Department of Pathology, The University of Hong Kong). Constructs
of full-length and mutated Myc-SUV39H1 were provided by Dr Danny Reinberg
(Howard Hughes Medical Institute; NYU School of Medicine Smilow Research
Center, New York, USA).

Antibodies. Rabbit anti-Suv39h1 (1:500 dilution) and histone H3 (1:10,000 dilu-
tion) antibodies were obtained from Abcam (Cambridge, UK). Anti-lamin A/C
(1:3,000 dilution for western blotting; 1:100 dilution for immunofluorescence
staining) and 53BP1 (1:50 dilution for immunofluorescence staining) antibodies
were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Mouse
anti-Suv39h1 (1:500 dilution), rabbit anti H3K9me3 (1:1,000 dilution for western
blotting; 1:50 dilution for immunofluorescence staining), H3K9me2 (1:1,000
dilution), H3K27me3 (1:1,000 dilution), H4K20me3 (1:3,000 dilution), H4K20me2
(1:1,000 dilution), H3K9ac (1:1,000 dilution) and acetyl H3 (1:1,000 dilution)
antibodies were sourced from Millipore (Bedford, MA, USA). Mouse anti-GFP
(1:3,000 dilution) antibodies were purchased from Roche (Indianapolis, IN, USA).
SA-b-galactosidase assay in MEFs was performed using a Cellular Senescence
Assay Kit (Chemicon International, CA, USA), according to the manufacturer’s
instructions. Unless otherwise mentioned, dilution factors are indicated for western
blotting.

Zmpste24� /� Suv39h1� /� mice. Zmpste24–/– mice have been described
previously5. Suv39h1� /� mice were provided by Dr Thomas Jenuwein (then at the
Research Institute of Molecular Pathology, IMP, in Vienna). Zmpste24–/– mice
were crossed to Suv39h1–/– mice to get Zmpste24–/–Suv39h1–/– mice. Body weight
and lifespan of Zmpste24� /� and Zmpste24� /�Suv39h1� /� mice was recorded.
Bone mineral density was determined by MicroCT. The survival rate was analysed
by Kaplan–Meier method and statistical comparison was performed by Log-rank
(Mantel-Cox) Test. Mouse experimentation was performed in accordance with the
guidelines of the Committee on the Use of Live Animals in Teaching and Research
(CULATR) at the University of Hong Kong.

Western blotting and Co-immunoprecipitation. Whole-cell lysate was prepared
by suspending the cells in 1 volume of suspension buffer (10 mM Tris-HCl, pH 7.5,
0.1M NaCl, 1mM EDTA, 1mM DTT, pH 8.0, protease inhibitors), and then
adding 1 volume of Laemmli buffer (0.1M Tris-HCl, pH 7.0, 4% SDS, 20% glycerol,
1 mM DTT, protease inhibitors) and boiling for 5min. Western blotting was
performed as described previously6. Relative band intensity was measured by
Image J and normalized to corresponding controls as indicated. For statistical
analysis, at least three independent immunoblots were quantified and two-tailed
t-test was used for P-values. For co-immunoprecipitation, cells were lysed into
pre-chilled RIPA buffer with 300mM NaCl. Primary antibody or appropriate
control IgGs was added to the lysate and incubated for 2 h on a rocking platform at
4 �C before agarose beads were added and incubated overnight. The beads were
washed twice with RIPA buffer, resuspended into Laemmli buffer and boiled and
protein suspension was collected by centrifugation and stored for further analysis.
For direct protein–protein interaction, co-immunoprecipitation was performed
with 2–5 mg antibodies in the test tube containing recombinant human lamin A
(Abcam, Cambridge, UK) and full-length recombinant human rhSUV39H1
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(SignalChem, Richmond, Canada). Full-length images of immunoblots are shown
in Supplementary Fig. S10.

Immunofluorescence staining. Cells grown on chamber-slides were washed
with PBS and fixed in 4% paraformaldehyde. Slides were blocked in 1% BSA/PBS
with 5% normal host serum overnight at 4 �C, and then incubated with primary
antibody diluted in 1% BSA/PBS overnight at 4 �C in a humid box. The slides were
washed three times with PBS, incubated with FITC- or TRITC-coupled secondary
antibodies diluted in 1% BSA/PBS for 40min at room temperature., washed three
times with PBS to remove unbound antibodies, mounted with SlowFade
Gold antifade reagent with DAPI (Invitrogen, USA), sealed with nail polish and
subjected for microscopy analysis. Photos were processed with Photoshop CS.
Two-tailed t-test was used for P-values where applied.

FRAP analysis. FRAP was done as described45 with a few modifications.
Briefly, MEFs were plated on glass-bottom Petri dishes and GFP-SUV39H1 was
transfected with lipofectamine2000 according to the manufacturer’s instructions.
Forty-eight hours after transfection, FRAP was performed in a 37 oC/5% CO2

chamber using the 488-nm laser on a confocal microscope (LSM 510).
Targeted cells were scanned five times before a single bleach of a region of interest
(ROI) at full laser power. Time-lapse images were collected at 1-s intervals for up to
2min. The fluorescence intensity of ROI was normalized to reference ROI
(same size as ROI and in the same nucleus except no bleaching was applied) and
background (outside the cell). The relative ROI fluorescence intensities were
plotted as a function of time.
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