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An information-theoretic principle implies that any
discrete physical theory is classical
Corsin Pfister1 & Stephanie Wehner1,2

It has been suggested that nature could be discrete in the sense that the underlying state

space of a physical system has only a finite number of pure states. Here we present a strong

physical argument for the quantum theoretical property that every state space has infinitely

many pure states. We propose a simple physical postulate that dictates that the only possible

discrete theory is classical theory. More specifically, we postulate that no information gain

implies no disturbance or, read in the contrapositive, that disturbance leads to some form of

information gain. Furthermore, we show that non-classical discrete theories are still ruled out

even if we relax the postulate to hold only approximately in the sense that no information gain

only causes a small amount of disturbance. Our postulate also rules out popular general-

izations such as the Popescu–Rohrlich-box that allows non-local correlations beyond the

limits of quantum theory.
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I
n contrast to classical theory, quantum theory has the
remarkable property that the state space of every system has
continuously many pure states. These are states that can be

seen as states of maximal knowledge: they cannot be prepared by
flipping a (possibly biased) coin to decide between two different
preparation procedures to be executed, hiding the outcome of the
coin flip. Even the qubit, the smallest possible system with no
more than two perfectly distinguishable states, has continuously
many such states. This non-discreteness of quantum theory
contrasts sharply with classical theory, where systems with a finite
number of perfectly distinguishable states have the same finite
number of pure states. While from a mathematical point of view,
this quantum property is satisfactorily explained as a consequence
of the mathematical framework of quantum theory, a physical
explanation of this phenomenon is less evident.

Indeed, one might conjecture that the actual state space of a
physical system really was discrete with only finitely many pure
states (Fig. 1)1,2. The fact that experiments have not found a
deviation from the continuous nature of the quantum state spaces
could then be explained by insufficient measurement precision. A
qubit, for example, could be described by a polytope that
approximates the continuous spherical shape of the Bloch ball
very well, while it actually is a discrete system. Quantum
gravitational considerations have led some authors to the idea
that indications for the discreteness of spacetime could in turn
provide an indication for the discreteness of quantum state
spaces1,2. Such considerations might suggest state spaces with an
extremely high number of pure states, but as long as the number
of pure states is finite, they would differ from quantum state
spaces in a fundamental way.

In this work, we present a strong physical counter-argument to
the idea that quantum theory could be replaced by a theory with
discrete state spaces. This argument is derived from a postulate
that claims a very basic principle for measurements. It states that
every (pure) measurement can be performed in a way such that
the states with a definite outcome (that is, the states with an
outcome of probability one) are left invariant. We regard this
principle to be a natural property of a theory that describes
physical measurements, so we impose it as a postulate.
Performing a measurement with a definite outcome does not
give any information, while performing a measurement for which
the outcome is not known in advance can be seen as a process of
gaining information. This allows to regard our postulate as a
converse to the well-known fact in quantum theory that
information gain causes disturbance3: we postulate that a
measurement with no information gain causes no disturbance.

We prove that a non-classical probabilistic theory that satisfies
this postulate cannot be discrete. By a discrete system, we mean a
system for which the state space has only finitely many pure
states. In other words, we show that every theory that satisfies our
postulate must either be classical or it must have infinitely many
pure states.

Results
The framework. We formulate our result in the abstract state
space framework4–7. This framework arises from the idea to
consider the largest possible class of physical theories (more
precisely, generalized probabilistic theories) which satisfy
minimal assumptions, containing classical and quantum theory
as special cases. This allows us to study properties of quantum
theory, like the non-discreteness of the state space, from an
outside perspective. Here, we discuss these minimal assumptions
very briefly and refer to Pfister8 for a detailed introduction to the
abstract state space framework and its mathematical background.

The framework, which relies on four minimal assumptions, is
based on the idea that any physical theory admits the notions of
states and measurements. Their interpretation is assumed to be
given. The first assumption is that the normalized states form a
convex subset OA of a real vector space A. The underlying
motivation is the idea of probabilistic state preparation: if o; t 2
OA are states that can each be prepared by a corresponding
preparation procedure, then executing the preparation
procedures with probability p and 1� p should also lead to a
state (described by the convex sum poþð1� pÞt), which should
therefore be an element of OA as well. The second assumption is
that the dimension of the vector space containing the set of states
is arbitrarily large but finite. This is a purely technical assumption
intended to make the involved mathematics feasible. The third
assumption is that the set of states OA is compact. Although there
might be some physical motivation for this assumption, we shall
be satisfied with considering it as a technical assumption.

Before we discuss the fourth assumption, we make a few
comments on the structure of OA. The extreme points of OA are
the pure states of the system, the other elements are called mixed
states. As OA is a convex and compact subset of a finite-
dimensional vector space A, every element of OA is a convex
combination of the extreme points of OA (ref. 9). Thus, every
state is a convex combination of pure states. As a convex
combination is a sum with positive weights that sum up to one, a
state can be seen as a probability distribution over pure states. In
general, this probability distribution is not unique. In classical
theory, however, it is (see the example below). In addition to the
normalized states OA, an abstract state space A also contains the
subnormalized states O�1

A , which are given by all rescalings of the
normalized states by factors between zero and one.

The fourth assumption states, roughly speaking, that every
mathematically well-defined measurement is regarded as a valid
measurement: a measurement is a finite set M¼ {f1,y,fn} of
functions fi : A ! R that are called effects, each corresponding to
an outcome of the measurement. For a state o 2 OA, the value
fiðoÞ is interpreted to be the probability that the measurement
yields the outcome i when the system was in the state o before
the measurement. Thus, one must have 0 � fiðoÞ � 1 for all
o 2 OA. If the measured system was in the state o with
probability p and in the state t with probability 1� p, then the
probability pfiðoÞþ ð1� pÞfiðtÞ of getting the outcome i has to be
identical to fiðpoþð1� pÞtÞ as poþð1� pÞt is regarded to be a
state in its own right (in accordance with the first assumption).
Skipping a few details, this means that effects are assumed to be
linear. Moreover, the effects of a measurement have to sum up to
the so-called unit effect

Pn
i¼ 1 fi ¼ uA for which uAðoÞ¼ 1 for all

o 2 OA (as the probability that any outcome occurs has to be
one). The fourth assumption is that every set of such linear
functionals (effects) is a valid measurement. We denote the set of
all effects on an abstract state space by EA, and we denote
measurements (that is, sets of effects that sum up to the unit
effect) by calligraphic letters (M or N in this paper).

We would like to emphasize that the fourth assumption, which
connects the geometry of the states with the geometry of the

Discretized Bloch ballBloch ball

Figure 1 | Illustration of discretized state spaces. One might conjecture

that physical state spaces are discrete in the sense that they only have a

finite number of pure statesIn such discrete state spaces, the pure states

are given by the corners of the state space.
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effects8, is standard but non-trivial and of crucial technical
importance for our result. A compelling physical motivation does
not seem to be obvious, so it should be regarded as a tentative
assumption on the way to a better understanding of quantum
theory. Note that as a consequence of this assumption, a theory
where the set of states is a quantum state space but where the
measurements are restricted to a proper subset of the positive
operator valued measures (POVMs) is not part of the framework
(c.f. quantum theory in the examples below). In quantum
information science, it is always assumed that the full set of
POVMs can be performed.

These four assumptions determine the framework of abstract
state spaces. This structure is sufficient as long as one is only
interested in measurement statistics of one-shot measurements. If
one wants to describe several consecutive measurements, one has
to introduce measurement transformations. We will discuss this
below, but first, we make a few examples.

In the following, we introduce a few examples of theories that
can be formulated in the abstract state space framework. (More
examples can be found in ref. 8.) While quantum and classical
theories are theories of actual physical significance, other theories
that we introduce have the role of toy theories, which are helpful
to understand the framework. Especially the square and the
pentagon, which are instances of polygon models (see below), will
serve as useful examples in the illustration of the proof idea of our
result.

As a first example, let us have a look at quantum theory. The
set of states of a (finite-dimensional) quantum system is given by
OA¼S(H) for some (finite-dimensional) Hilbert space H, where
S(H) denotes the positive operators on H with unit trace (the
density operators). These operators form a compact convex
subset of A¼Herm(H), the vector space of Hermitian operators
on H. Every quantum system has continuously many pure states.
The most general description of measurement statistics in
quantum theory is given by a POVM, which is a set fFigni¼ 1 of
positive operators that sum up to the identity-operator I on H.
They give rise to the effects r7!trðFirÞ that sum up to the unit
effect uA given by r7!trðIrÞ¼ 1 for all r 2 SðHÞ. In analogy to
our comment above, we emphasize that a theory where the states
form a proper subset of a quantum state space but where the
measurements are given by not more than POVMs fails to satisfy
the fourth assumption of the framework because a reduction of
the allowed states requires an extension of the effects.

Another example is classical theory. The states OA of a (finite)
classical theory are given by a simplex, that is, by the convex hull
of finitely many affinely independent points. (We say that points
p1 ; . . . ; pn in a real vector space are affinely independent if no
point is an affine combination of the other points, that is, if for
every pi, there are no real coefficients fakgk 6¼ i with

P
k 6¼ i ak ¼ 1

such that
P

k 6¼ i akpk ¼ pi.) Examples of simplices are given by a
line segment, a triangle, a tetrahedron, a pentachoron and so on.
Every element of a simplex OA is a unique convex combination of
the extreme points of OA (Fig. 2). Thus, for a simplex OA, the
states are in a one-to-one correspondence with the probability
distributions over the pure states, which in the case of a simplex
are perfectly distinguishable. This allows to interpret the pure
states as classical symbols. In a classical system, there is a generic
measurement. For a given state o, the outcome probabilities for
this measurement are precisely the coefficients in the convex sum
of the pure states that yield o.

A more general class of examples is given by what we call
discrete theories. We say that OA is a discrete state space if it is the
convex hull of finitely many (not necessarily affinely independent)
points. As OA is compact, this is equivalent to saying that the
theory has only finitely many pure states. Classical theory is an
example of a discrete theory, while quantum theory is not.

Very illustrative examples are given by the polygon models10:
these are abstract state spaces where OA is a regular polygon, so
they are special kinds of discrete theories. As the whole situation
can be drawn in only three dimensions, the polygon models
provide examples for which we can give a picture (Fig. 3). To see
the interplay of states and effects in such a low-dimensional
example, it is useful to represent effects as vectors in the same
space as the states10. To evaluate an effect at some state, one
simply takes the scalar product of the state and the vector
representing the effect. In the Methods section below, the square
and the pentagon will be the central examples in the illustration of
the proof idea.
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they correspond to an octahedron). The reader who is familiar with the

mathematics of ordered vector spaces may notice that the effects arise

from the structure of the dual cone A�
þ (more precisely, the effects form an

order interval [0, uA] in A�)8. Here, they are represented as vectors in the

same space as the states. To calculate a probability fðoÞ, one simply takes

the scalar product of the vector o and the vector representing f.
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So far, we have discussed the core structure of abstract state
spaces: states and effects. They only allow for the description of
one-shot measurement statistics. If one wants to describe the
statistics of several consecutive measurements, then one has to
specify what happens to the state of the system when a
measurement is performed (otherwise, the statistics of the
subsequent measurement cannot be described). In other words,
one has to specify a rule for post-measurement states. The
structure of an abstract state space, however, does not provide
such a rule and leaves open the question of how to specify post-
measurement states.

We deal with this question and consider some extra structure
on abstract state spaces that provides a rule for post-measurement
states. We describe the transition from the initial state of the
system (before the measurement) to the post-measurement state
by what we call a measurement transformation. Such
transformations have been considered, for example, in refs
11–13. We go one step further. Our result makes a statement
about the existence of measurement transformations in abstract
state spaces that satisfy a certain postulate.

As we have just mentioned above, the general idea is that a
measurement transformation specifies a rule for how post-
measurement states are assigned. However, in a physical theory,
how such a rule looks like depends on the particular situation that
one wants to describe. To be more specific, we can think of at least
three such situations (we will make quantum examples below),
which correspond to the case where (a) the observer finds out the
outcome of the measurement and describes the state of the system
after the measurement conditioned on that outcome; (b) the
observer describes the system after the measurement by a
subnormalized state for the hypothetical case that a particular
outcome occurred, incorporating the probability of that outcome
into the post-measurement state; and (c) the observer does not
find out the outcome of the measurement and describes the state
of the system after the measurement, knowing only that the
measurement has been performed. A physical theory has to allow
for a mathematical description for all of these cases. Each of the
three situations can be described by a particular kind of map. To
understand the difference between them, it is helpful to see how
these maps look like for the particular case of quantum theory.
There, if the measurement is a projective measurement
M¼fPigni¼ 1, the maps are given by Lüders projections14 (the
literature is ambiguous about which of the three maps is called a
Lüders projection, but as they are very closely related, this usually
does not lead to problems). The situations (a), (b) and (c) above
are described by the following maps: in situation (a), if the
outcome associated with projector Pk is measured, then the state is
transformed as

r7! PkrPk
trðPkrÞ

: ð1Þ

In situation (b), considering the outcome associated with
projector Pk, the state transforms into a subnormalized state as

r7!PkrPk: ð2Þ

In situation (c), if the outcome of the measurement is unknown,
the state is transformed as

r7!
Xn

i¼ 1

trðPirÞ
PirPi
trðPirÞ

¼
Xn

i¼ 1

PirPi: ð3Þ

Most introductory textbooks on quantum theory only discuss
situation (a). Note that (a) is not a linear map. By the definition
that we will make below, it should not be called a transformation.

The maps (b) and (c) are linear. The map (b) describes what
Lüders calls a ‘measurement followed by selection’, whereas the
map (c) describes what he calls a ‘measurement followed by
aggregation’14.

The preceding discussion allows us to understand what we
mean by a measurement transformation. By a measurement
transformation, we mean a map of type (b). Note that such a map
leads to subnormalized post-measurement states rather than
normalized ones. The norm of the post-measurement state (the
trace-norm in the quantum case, trðPkrPkÞ¼ trðPkrÞ) is equal to
the probability that the outcome occurs (which is what we mean
by ‘the probability of that outcome is incorporated into the state’).

Choosing maps of type (b) (rather than maps of type (a) or (c))
as the subject matter is not a relevant restriction as the three types
of maps are so closely related that insights into one of these maps
translate into insights into the other maps as well. In particular,
from the map of type (b), one can construct the map of type (a) by
rescaling the images with the inverse probability and the map of
type (c) by summing up over all outcomes.

With the above motivation in mind, we now proceed to the task
of formally defining what we mean by a measurement
transformation on an abstract state space. A transformation T
on an abstract state space A is a linear map T: A-A such that
TðOAÞ � O�1

A . The motivation for the linearity of
transformations is similar to the motivation for the linearity of
effects. The linearity expresses a compatibility condition for
probabilistically prepared states: if the system is in a state o with
probability p and in a state t with probability 1� p before the
transformation, then the transformed state pTðoÞþ ð1� pÞTðtÞ
has to coincide with Tðpoþð1� pÞtÞ as poþð1� pÞt is
regarded as a state in its own right. (A more rigorous argument
would require pf ðTðoÞÞþ ð1� pÞf ðTðtÞÞ¼ f ðTðpoþð1� pÞtÞÞ
for all effects f, which eventually boils down to what we have just
required.) A measurement transformation has to satisfy one more
condition. As we have explained above, a measurement
transformation is associated with a particular outcome, or more
precisely, with a particular effect. If T is a measurement
transformation for an effect f, then we require that the norm
uAðTðoÞÞ of the transformed state is equal to the probability f ðoÞ
for measuring the outcome associated with f. In short, we require

uA � T ¼ f : ð4Þ

In quantum theory, where uA is given by the trace, this property
is satisfied for projective measurements as the Lüders projection
gives trðPrPÞ¼ trðP2rÞ¼ trðPrÞ.

We will only consider measurement transformations for a
special class of effects that we call pure effects. We say that an
effect f 2 EA is pure if it is an extreme point of the (convex) set of
effects EA, and we say that a measurementM¼ {f1,y,fn} is pure if
every effect f1 ; . . . ; fn is pure. It turns out that in the case of
quantum theory, an effect F 7!trðFrÞ of a POVM element F is
pure if and only if F is a projector8. Thus, we only consider
measurement transformations for a class of effects that, in the case
of quantum theory, reduces to projectors. For this class, the
measurement transformations are given by Lüders projections.
The fact that we will restrict our considerations to pure effects is
not a restriction of the validity of our result. Quite the contrary,
this makes our result stronger. As we will see below, our postulate
claims a property of measurement transformations for pure effects
rather than claiming this property for all effects. This results in a
weaker postulate, so every implication derived from this postulate
leads to a stronger result. As we will see later, we will restrict the
claim of the postulate to an even smaller subclass of effects (see the
Methods section and the Supplementary Note 1 for further
details).
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In a nutshell, a measurement transformation for a pure effect f
is a linear map T: A-A with TðOAÞ � O�1

A and uA � T ¼ f .

The postulate. Before we can formulate our result, we first state
our postulate. For a mathematically precise formulation, we refer
to the Methods section and the Supplementary Note 1 of this
article.

The postulate reads: Every pure measurement can be per-
formed in a way such that the states for which it yields a certain
outcome (that is, the states with an outcome of probability one)
are left invariant. In more illustrative terms, this can be rephrased
by saying that no information gain implies no disturbance.

In more technical terms, the postulate states that for every pure
effect f 2 EA, there exists an associated measurement transfor-
mation T with uA � T ¼ f such that for all states o 2 OA with
f ðoÞ¼ 1, we have that TðoÞ¼o. The existence of such a mea-
surement transformation T is what is meant by saying that there
exists a way to perform the measurement. Furthermore, note that
without looking at the definition of a measurement transforma-
tion, saying that ‘there exists a way to perform the measurement’
may appear trivial by itself. After all, doing nothing and out-
putting the measurement outcome (associated with) f preserves o
and yields f with probability 1. This case is ruled out by the
definition of a measurement transformation. More precisely, note
that T must be such that ðuA � TÞðo0Þ ¼ f ðo0Þ for all states
o0 2 OA. That is, it yields the correct probabilities for any state
that we wish to measure. It is interesting to note that the actual
proof of our main result only needs an even weaker but rather
technical requirement (see the Methods section).

To see the link to information gain, note that the Shannon
information content (see, for example, ref. 15) � log f ðoÞ is zero
for any outcome of an experiment that occurs with certainty. As
such, f ðoÞ¼ 1 is equivalent to stating that no information gain
occurs. The demand that TðoÞ¼o says that the state is
unchanged, that is, no disturbance has occurred.

Quantum theory and classical theory satisfy this postulate. In
quantum theory, for example, if a system is in a state r such that a
projective measurement fPigni¼ 1 has some outcome k with
probability trðPkrÞ¼ 1, then the transformation r7!PkrPk leaves
the state invariant. Quantum theory even satisfies the postulate in
a much stronger form in the sense that little information gain also
causes only little disturbance. This can be seen from a special case
of the gentle measurement lemma16,17. It states that if measuring
an outcome associated with a projector F has probability
trðFrÞ � 1� E, then measuring that outcome disturbes the state
by no more than k r� FrF k1�

ffiffiffiffiffi
8E

p
. Setting E¼ 0, this reduces

to our postulate. However, we emphasize that our postulate is
much weaker than postulating the gentle measurement lemma.
We also note that our postulate does not make any assumptions
about locality, that is, it does not make a statement about whether
verification measurements of bipartite states can be implemented
on local quantum systems or locally disturb the state as has been
considered in Popescu and Vaidman18.

Even though the statement of the postulate is very concise, it
may appear unsatisfying as it involves the abstract concept of a
state, which is something that one cannot observe directly.
However, it can be reformulated in purely operational terms,
referring only to directly observable objects, namely measurement
statistics. Such a reformulation is possible because two states can
be regarded as being identical if and only if they induce the same
measurement statistics for every measurement (in more
mathematical terms, a state o is an equivalence class under the
relation o � o0 , ðf ðoÞ¼ f ðo0Þ for all f 2 EAÞ)19. Hence,
instead of making statements about states, one can make
statements about the statistics of all potential measurements.
Figure 4 illustrates the idea of this reformulation.

Main findings. In terms of the postulate, our result can now be
stated as follows: an abstract state space that satisfies the postulate
is either non-discrete (that is, it has infinitely many pure states) or
it is classical.

This means that if a physical system is described by an abstract
state space where the set of states OA is a polytope that is not a
simplex (that is, if it is a discrete non-classical system), then it
violates our postulate.

Furthermore, our result is robust in the sense that discrete non-
classical theories are ruled out even if the postulate is weakened to
an approximate version. To formulate this approximate version of
the result, we assume that A is equipped with a norm k 	 kA. This
induces a distance function distðo;o0Þ : ¼ k o�o0 kA on A.
We prove that for every discrete non-classical theory, equipped
with some norm k 	 kA, there is a positive number E4 0 such that
the implication f ðoÞ¼ 1 )k TðoÞ�o kA� E (where T is the
measurement transformation for f) cannot be satisfied for every
pure effect f 2 EA. We prove this approximate case, which is a
stronger version of the result, in the Supplementary Note 2.
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Definite outcome Identical statistics for every 
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Figure 4 | A reformulation of the postulate in purely operational terms.

Instead of referring to initial and post-measurement states, the

reformulated version states that a measurement with a definite outcome

does not influence the statistics of any subsequent measurement, so it only

refers to directly observable quantities. This reformulation can be

understood as follows: consider a preparation P that outputs an initial state

o 2 OA and a measurement M¼ {f1,y,fn} such that fkðoÞ¼ 1 for some k.

According to the postulate, the state of the system after the two

experiments shown in (a) are identical. Thus, if the two experiments are

followed by any measurement, say N ¼ {g1,y,gl}, then the statistics of the

N -measurement coincide (see part (b) of the figure). The N -statistics

coincide for every measurement N . This is equivalent to saying that the

states before the N -measurement (that is, TkðoÞ and o) are identical.

Thus, we do not need to refer to states and can reformulate the postulate

as: if a measurement has a definite outcome, then performing this

measurement does not influence the statistics of any subsequent

measurement. This is shown diagrammatically in part (c) of the figure.
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Discussion
Our simple postulate rules out discrete non-classical theories,
while classical and quantum theory satisfy the postulate.
Read in the contrapositive, our postulate says that disturbance
implies information gain. Any theory that does not satisfy our
postulate thus allows for disturbance without a corresponding
ability of information gain. Note that even in a theory that a
priori only defines transformations T, one can define effects as
uA � T .

We also note that our postulate rules out several alternatives to
quantum theory, most notably the famous Popescu–Rohrlich-box
(PR-box)20–22 that allows a violation of the CHSH inequality23

far beyond the limits of quantum theory. More specifically, the
PR-box achieves the algebraically maximal violation of the CHSH
inequality, while still respecting the law that no information can
travel faster than light. This is in spirit similar to other
approaches such as information causality24, communication
complexity assumptions25, the assumption of local quantum
mechanics26 or the uncertainty principle27. We emphasize,
however, that whereas this is a nice byproduct of our result,
our real aim lies in the study of local physical systems with the
goal to identify just one postulate that sheds light on the simple
question whether the state space should be discrete or continuous.
It is very satisfying that this question can be understood by
introducing just a single postulate.

One may wonder whether our postulate does in fact rule out all
theories but classical and quantum mechanics. To answer this
question, let us first be more precise about what we mean by ‘a
theory is (not) ruled out by the postulate’. We mentioned in the
preceding section that for general abstract state spaces, measure-
ment transformations are not specified, so we cannot make
statements saying that the (unique) measurement transforma-
tions do (not) satisfy our postulate. Instead, we can discuss the
following well-defined question: given an abstract state space, is it
true that for every pure effect, there exists a measurement
transformation that satisfies our postulate? If this is the case, then
we say that the theory can satisfy the postulate, or that it is not
ruled out by the postulate. If this is not true, then we say that the
theory cannot satisfy the postulate, or that it is ruled out by the
postulate.

This is the precise meaning of our statement that ‘discrete non-
classical theories are ruled out by the postulate’. Using this
terminology, we can identify a class of theories that, in addition to
classical and quantum theory, is not ruled out by the postulate:
the strictly convex theories can satisfy our postulate. These are
theories where the set of normalized states is strictly convex, that
is, the boundary contains no line segment. There are more
theories that can satisfy the postulate, but we do not know a
concise classification. For example, a state space OA formed like a
piece of pizza is ruled out by the postulate, while a state space
formed like an ice cream cone is not. Figure 5 gives an overview.

In the recent past, there have been several attempts to derive
(finite-dimensional) quantum theory within a framework of
probabilistic theories12,28,29. The idea is the following. One starts
with a very general framework of probabilistic theories (like the
abstract state space formalism). Then, one imposes a few physical
postulates (our postulate can be seen as one such postulate). If
one manages to show that all theories in this framework other
than quantum theory are ruled out by these physical postulates,
then this can be seen as a physical derivation of quantum theory.
As our postulate rules out quite a large fraction of all possible
abstract state spaces already (Fig. 5), it seems promising that
adding just a few more postulates might be sufficient to rule out
all theories except for quantum theory.

However, we do not make such an attempt and focus on one
particular aspect only, introducing only one postulate. What

makes our postulate special is that its nature is very different from
the postulates that have been considered in this context so far.
Many approaches focus on the aspect of non-locality, introducing
rules for how physical systems are combined to form bi- or multi-
partite systems. In contrast, our approach deals with local state
spaces only, making a statement about post-measurement states.
Within probabilistic theories, this aspect has gained less attention
in the literature so far. The fact that, within the framework of
abstract state spaces, we introduce just one postulate (instead of a
set of postulates) helps us to understand its influence on one
particular aspect of physical theories.

One might argue that an experimental proof of the non-
discreteness of physical state spaces needs infinite measurement
precision as the verification of the postulate that TðoÞ¼o (strict
equality) requires the verification that o and TðoÞ give rise to the
same measurement statistics (to arbitrary precision). Hence, our
result is experimentally less accessible than other no-go theorems
(for example, the Bell Inequality, where it is sufficient to verify the
violation of a single statistical inequality). There is a partial reply
to this objection. As we have mentioned before, there is an
approximate version of our result. It states that for a given
polytope P, there is a positive number EP 4 0 such that the
postulate can be weakened to the following form (without
changing the validity of the result): if a measurement on a state
has an outcome with probability one, then performing the
measurement does not change the state of the system by more
than EP (for details, see the Supplementary Note 2). Thus, even if
one weakens the postulate to allow for an EP-disturbance of the
state, it still rules out the polytope P. This is a stronger form of the
result. It states that in order to rule out a given polytope
experimentally, only finite measurement precision is needed
(quantified by EP). However, the allowed disturbance EP depends
on the polytope P, so in order to rule out all polytopes
experimentally, infinite measurement precision is needed because
for every measurement error, there could be a polytopic theory
for the measured system for which the allowed disturbance EP is
too small to be tested.

Abstract state spaces

Qubit

Strictly convex
theories

Quantum
theory

Classical
theory

Discrete theories

Ruled out by the
postulate

Postulate can be
satisfied

Some theories can satisfy the postulate, some theories
cannot, for example:

A state space witha ‘piece of pizza’
form is ruled out,

But a state space with an ‘ice cream
cone’ form can satisfy the postulate.

Figure 5 | An overview over the abstract state spaces ruled out by the

postulate.
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Methods
Overview. In this section, we sketch the idea of the proof of our main result. This
will lead to geometric pictures that illustrate the incompatibility of non-classical
discrete state spaces with our postulate (Fig. 6 and Fig. 7). For the full version of
the proof and for a proof of the approximate version of our result, see the
Supplementary Notes 1 and 2 of this article, respectively.

Here, we aim for a geometric understanding of the proof. It is mainly based on a
lemma that establishes geometric criteria for a set of states OA that is compatible
with our postulate. To illustrate this lemma, we provide two very basic examples
that violate these criteria: the square and the pentagon (Fig. 6). For these two
examples, it is easy to see geometrically why they cannot satisfy our postulate (as
we will illustrate in Fig. 7). Finally, we describe roughly how we prove that every
polytope OA that satisfies the conditions of the lemma is a simplex (which is our
main result).

Before we sketch the proof of the main result, it is useful to define in a bit more
detail what an abstract state space is. For detailed definitions of the framework see
the Supplementary Note 1 of this article, for a detailed motivation of the framework
with detailed examples see Chapter 3 in Pfister8.

The formal setup. As illustrated in Fig. 8, an abstract state space is fully specified
by a tuple ðA;Aþ ; uAÞ, where A is a real finite-dimensional vector space, Aþ is a
cone in A and uA is a linear functional on A (called the unit effect). This linear
functional is required to be strictly positive on the cone Aþ (that is, uAðoÞ4 0 for
all o 2 Aþ n f0g). The tuple ðA;Aþ ; uAÞ gives rise to the normalized states OA

and the subnormalized states O�1
A in the following way (c.f. Fig. 8):

OA : ¼fo 2 Aþ j uAðoÞ¼ 1g; ð5Þ

O�1
A : ¼fo 2 Aþ j uAðoÞ � 1g: ð6Þ

The set EA of effects on A is given by the linear functionals that take values
between zero and one on the states OA, that is

EA : ¼ff 2 A� j 0 � f ðoÞ � 1 8o 2 OAg; ð7Þ
where A� is the dual space of A. A measurement is given by a finite set of effects
M¼ff1; . . . ; fng � EA such that the effects sum up to the unit effect uA, that is,Pn

i¼ 1 fi ¼ uA . Recall that if the system is in the state o 2 OA before the mea-
surement described by M¼ {f1,y,fn}, then the probability for outcome k is given
by fkðoÞ.

As we have mentioned earlier, we restrict ourselves to pure effects when we deal
with post-measurement states (that is, with measurement transformations). The
pure effects are the extreme points of EA. A pure effect f 2 EA has the property that
the set of states o that have probability f ðoÞ¼ 1 is a face of OA

8. A face of OA is a
convex subset F � OA with the property that every line segment whose endpoints
are contained in F must be fully contained in F, that is, a face is some kind of
‘extreme subset’. For a pure effect f, this allows us to define the certain face Ff of f by

Ff : ¼fo 2 OA j f ðoÞ¼ 1g: ð8Þ

Analogously, the set of states o that have probability f ðoÞ¼ 0 is a face of OA as
well8. We call it the impossible face of f and define it by

Ff : ¼fo 2 OA j f ðoÞ¼ 0g: ð9Þ

The notion of the certain face and the impossible face of an effect is central in
our proof.

A transformation on an abstract state space is a linear map T: A-A that is
positive (that is, T(Aþ )DAþ ) and does not increase the norm of the states, that is,
uA(T(o))ruA(o) for all oAAþ . Equivalently, a transformation is a linear map
T: A-A with TðOAÞ � O�1

A . Recall that we describe the state change due to a
measurement by introducing measurement transformations. If a measurement
yields an outcome associated to a pure effect fAEA, then the transformation of the
state is described by o 7!TðoÞ, where T is the measurement transformation for f.
As mentioned, we require that T is a transformation that satisfies uA � T ¼ f .

With these definitions at hand, we can formulate our postulate as follows: for
every pure effect fAEA, there is a transformation T: A-A such that f ¼ uA � T and
T(o)¼o for every oAFf.

Note that we only postulate the existence of a measurement transformation for f
that satisfies our postulate. For the actual proof, we will require an even weaker

Ff

Ff

Ff co
nv

 (
F

f ∪
 F

f )

dim Ff = dim Ff = 1,
dim ΩA = 2, so
dim Ff + dim Ff > dim ΩA − 1

Ff

aff (Ff ∪ Ff) ∩ ΩA = ΩA,
but conv (Ff ∪ Ff ) ≠ ΩA

Figure 6 | Violation of the conditions stated in the lemma. The square and

the pentagon serve as very basic examples of abstract state spaces that

violate the conditions stated in the lemma. The square violates condition

(a), while the pentagon violates (b).

Dimension mismatch:

0

span(Ff)

span (Ff)

Shape mismatch:

�

Ff

ΩA
Ff 

ΩA

T (Ff) = 0

T (�)
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<1

Figure 7 | Consequences of the violation of conditions (a) or (b). This

figure illustrates geometrically why the square and the pentagon violate our

postulate. Intuitively, all non-classical discrete state spaces exhibit either a

dimension or a shape mismatch.
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Ω

Ω
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Figure 8 | Visualization of the state cone. The states of any normalization

are given by a cone Aþ in the real vector space A. The linear functional uA
gives the normalization of a state, so the intersection of Aþ with the plane

described by uAðoÞ¼ 1 gives the normalized states, while the

subnormalized states O�1
A are those elements of Aþ where uA takes values

between 0 and 1.
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condition. We will not require the existence of such a measurement transformation
for every pure effect but only for pure effects for which the certain face Ff is what
we call a minus-face of OA . This is a face that is exactly one dimension smaller than
OA. This weakening of the postulate is particularly useful for the proof of the
approximate version of our result.

Basic idea of the proof. To derive the result, we first prove a lemma that estab-
lishes geometric criteria that a set of states OA has to satisfy to be compatible with
our postulate. Given a pure effect fAEA, the lemma tells us geometric criteria for
the certain face Ff and the impossible face Ff of f, which are necessary for the
existence of a measurement transformation satisfying our postulate.

Let ðA;Aþ ; uAÞ be an abstract state space and let fAEA be a pure effect. If there
exists a transformation T: A-A such that uA � T ¼ f and T(o)¼o for every oAFf,
then, (a) dim Ff þ dim Ff � dimOA � 1; and (b) affðFf [ Ff Þ \ OA ¼ convðFf [ Ff Þ;
where aff( 	 ) and conv( 	 ) denote the affine hull and the convex hull, respectively (the
reader unfamiliar with these two notions is referred to the Supplementary Note 1).

To get a geometric idea for the two conditions (a) and (b), it is useful to consider
abstract state spaces that violate these conditions. The two simplest examples we can
think of are the square and the pentagon, depicted in Fig. 6.

To see why the conditions (a) and (b) are necessary for the existence of a trans-
formation compatible with our postulate, we now examine what goes wrong in the
case where one of the conditions is violated. If condition (a) is violated, a contra-
diction occurs that we call a dimension mismatch. If (b) is violated, then we say that a
shape mismatch occurs. Again, the square and the pentagon serve as good examples
for a geometric illustration.

We first look at the dimension mismatch. If condition (a) is violated (that is,
dim Ff þ dim Ff 4 dimOA � 1), then there is no linear map T such that

uA � T ¼ f ; ð10Þ

TðoÞ¼o for every o 2 Ff ðpostulateÞ: ð11Þ

In particular, there is no transformation with these two properties. To see this,
there are two things to notice.

First, equation (10) implies that uAðTðoÞÞ¼ f ðoÞ¼ 0 for all o 2 Ff (c.f. the
definition (9) of Ff ). As the zero-vector o¼ 0 is the only state (that is, the only
element of O�1

A ) for which f ðoÞ¼ 0, it follows that the whole impossible face Ff has
to be mapped to the zero-vector. By the linearity of T, this implies that the restriction
TspanðFf Þ of T to spanðFf Þ is the zero-operator on spanðFf Þ:

T j spanðFf Þ ¼ 0 j spanðFf Þ : ð12Þ

Second, the postulate (11) and the linearity of T imply that the restriction
T j spanðFf Þ of T to spanðFf Þ is the identity-operator on spanðFf Þ:

T j spanðFf Þ ¼ I j spanðFf Þ : ð13Þ

However, in the case where dim Ff þ dim Ff 4 dimOA � 1, equations (12) and
(13) lead to a contradiction. In this case, the intersection spanðFf Þ \ spanðFf Þ is a
subspace that is at least one-dimensional (Fig. 7). Equations (12) and (13) imply that
on this subspace, T has to be the zero-operator and the identity-operator simulta-
neously, which could only be satisfied if the subspace would be {0}.

Now we look at the shape mismatch. If condition (b) is violated (that is,
convðFf [ Ff Þ 6¼ affðFf [ Ff Þ \ OA), then for every linear map that satisfies
equations (10) and (11), there is a state r such that TðrÞ =2 O�1

A (that is, TðrÞ is not a
state). Therefore, such a T cannot be a transformation. To see this geometrically, it is
useful to consider the pentagon for a particular choice of the effect f where the certain
face Ff is an edge of the pentagon (Fig. 7). Equation (10) implies that the impossible
face Ff is mapped to the zero-vector, while equation (11) means that the certain face
Ff is left invariant. In the case of the pentagon illustrated in Fig. 7, there is precisely
one linear map T with these two properties. It maps the normalized states OA

(dark grey surface in the figure) to a set in the vector space (dashed lines) which is not
contained in O�1

A (the truncated cone between 0 and OA). In particular, there is a r
such that TðrÞ =2 OA . If one compares Fig. 7 with Fig. 6, then one can see that the part
of OA that is mapped to a subset of O�1

A (light grey face in Fig. 7) is precisely given by
convðFf [ Ff Þ (grey part in Fig. 6). However, the part of OA that is mapped outside
of OA is given by ðaffðFf [Ff Þ \ OAÞ n convðFf [Ff Þ (the white part in Fig. 6). This
observation generalizes to statement (b) of the Lemma: if (a) is satisfied, then TðOAÞ
is contained in O�1

A if and only if affðFf [ Ff Þ \ OA ¼ convðFf [ Ff Þ.
These two examples illustrate all that can go wrong for discrete theories. We show

that for every discrete theory (that is, for every theory where OA is a polytope), either
condition (10) or (11) is violated (so either a dimension mismatch or a shape mis-
match occurs), except for the case where OA is a simplex (that is, for classical
theories). To show this, we proceed as follows.

We consider an abstract state space (A, Aþ , uA) where OA is a polytope.
We assume that for every pure effect f 2 EA for which the certain face Ff is a minus-
face of OA , there is a measurement transformation satisfying the postulate (11).
In a first step, we show (using the lemma) that every polytope OA that is compatible
with our postulate has a property that we call being uniformly pyramidal. This
means that for every minus-face F of OA, it holds that there is a point aF 2 OA such

that OA ¼ convðF [ faFgÞ (see the Supplementary Note 1 for more intuition).
In a second step, we show that every uniformly pyramidal polytope OA is a simplex.
This shows that every discrete theory satisfying our postulate has to be classical.
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